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Overview

I’m going to talk about Toeplitz operators on model spaces. This is a
developing area that I think is very interesting.

I will introduce Hankel forms on model spaces. They haven’t been
studied in this context. Their theory is almost the same as that of the
Toeplitz operators and so they bring an interesting alternative
perspective.

Outline

1 Classical Background, Toeplitz operators and Hankel forms.
2 Model spaces and conjugation operators, definitions and examples.
3 Truncated Toeplitz Operators (TTOs), Truncated Hankel Forms
(THF s), and their equivalence.

4 Results about bounded operators, bounded forms, and bounded
symbols.

5 Results and questions about Schatten classes.
6 General questions.
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The Venue

Function theory on D and T; L2, H2, P.

Inner function, Θ. Θ = BZSµ

Model space; K = KΘ = H2Θ = H
2 	ΘH2, PK is the projection if L2

onto K .

K is an RKHS. For all ζ in the disk and some on the boundary,
evaluation at ζ is bounded. Denote the kernel function by kζ .

kζ(z) =
1−Θ(ζ)Θ (z)

1− ζ̄z
.

H1Θ = the H1 closure of H2Θ =the H
1 closure of K .
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Classical Background; Toeplitz Operators

Given φ, a symbol function, the Toeplitz operator Tφ is the map of
H2 to itself given by

f → Tφf = Pφf .

The operator and symbol determine each other. The operator is
bounded if and only if the symbol is bounded; in fact∥∥Tφ

∥∥
operator

= ‖φ‖∞ .

One can then study the relationship between the operator and the
symbol.
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Classical Background; Hankel Forms

A Hankel form, B, is a bilinear form on H2 whose value only depends
on the product of its arguments. Thus, it is given by a symbol
function b through

B(f , g) = Bb(f , g) = 〈fg , b〉L2 .

The symbol is not unique and so one asks different questions. For
instance: What can be said about the symbol if the form is bounded.

By the Cauchy-Schwarz inequality, if there is a bounded symbol the
form is bounded.
By the Hahn-Banach theorem a bounded form has a bounded symbol.
What about the "natural" symbol b+ = P(b)? b+ is the unique
holomorphic symbol giving the Hankel form Bb .
Having b+ bounded is not necessary for the form to be bounded.
What is the condition?
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Classical Background; Weak Factorization

In modern language the necessary and suffi cient condition for Bb+ to
be bounded is b+ ∈ BMOA.

However that is an amalgamation of several things:

1 Define the weakly factored space H2 �H2 by

H2 �H2 =
{
f = ∑ gihi : gi , hi ∈ H2,∑ ‖gi‖H 2 ‖hi‖H 2 < ∞

}
.

2 Using functional analysis Hb+ is bounded if and only if
b+ ∈

(
H2 �H2

)∗
.

3 Using the inner-outer factorization, H2 �H2 = H1. (In fact,....)
4 Fefferman’s theorem: (H1)∗ = BMOA.

We will see echoes of these statements later.
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Model Spaces: Definitions and Examples

K = H2 	ΘH2.

Here are some specific choices of Θ :

Θ = zn+1 : K = Pn , polynomials of degree at most n.
Θ = an interpolating Blaschke product, K is naturally equivalent to a
weighted `2 space on the interpolating sequence.
Θ = Θ2α the singular inner function generated by a point mass 2αδ1.
The RKHS K is equivalent to the RKHS PWα, the Paley-Wiener space,
the subspace of L2 (R) consisting of functions with Fourier transform
supported on [−α, α] .
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Model Spaces; the Conjugation Operator

Each KΘ has a conjugation operator, C = CΘ, defined by

Cf = z̄Θf̄ .

This is a statement about boundary values. It is not true that for
ζ ∈ D

(Cf ) (ζ) = ζ̄ ·Θ (ζ) · f (ζ).
C is "anti-unitary"; it is a conjugate linear involutive isometry of K .
Operators A which satisfy CAC = A∗ are called symmetric
We use the same symbol and formula to define Cf for any f on the
boundary

Θ = zn+1 : C
(
∑n
0 akz

k
)
= ∑n

0 ākz
n−k

Θ = Θ2α : When transported to PW the conjugation becomes
eaz → e−az ; i.e. Ĉf (ξ) = f̂ (−ξ).
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Rochberg () TTO’s and THF ’s on KΘ Fields Institute 22 June, 2012 8 / 28



Model Spaces; the Conjugation Operator

Each KΘ has a conjugation operator, C = CΘ, defined by

Cf = z̄Θf̄ .

This is a statement about boundary values. It is not true that for
ζ ∈ D

(Cf ) (ζ) = ζ̄ ·Θ (ζ) · f (ζ).
C is "anti-unitary"; it is a conjugate linear involutive isometry of K .
Operators A which satisfy CAC = A∗ are called symmetric

We use the same symbol and formula to define Cf for any f on the
boundary

Θ = zn+1 : C
(
∑n
0 akz

k
)
= ∑n

0 ākz
n−k

Θ = Θ2α : When transported to PW the conjugation becomes
eaz → e−az ; i.e. Ĉf (ξ) = f̂ (−ξ).
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Single Component Inner Functions

The examples we gave of Θ’s are very misleading. They look away
from the fact that general inner functions are very complicated.

A class of inner functions which are very well behaved for our
purposes are the single component inner functions.

An inner function Θ is said to be a single component inner functions
if, for some ε, 0 < ε < 1

{z : |Θ(z)| < ε} is connected.

(Also called connected level set inner functions, CLS inner functions.)

Θ2α is an example.

For these inner functions the Carleson measure theory for KΘ is
relatively well understood.
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TTOs, Definition

Fix Θ and KΘ. Given a symbol function φ on the circle, the TTO Aφ

is the linear map of KΘ to itself given by Aφf = PKφf

The symbols of such operators are not unique !

TTOs are symmetric operators: CAφC = A∗φ = Aφ̄.

They are exactly the operators A such that, if f , g , zf , zg ∈ K then

〈Azf , zg〉 = 〈Af , g〉 .

Special cases of TTO’s were studied in the ’80’s by Bercovici, Foias,
Tannenbaum and by RR. However the systematic study of this class
began with a 2007 paper of Sarason.
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TTOs Examples

The operators

kζ ⊗ Ckζ(
kζ ⊗ Ckζ

)∗
= Ckζ ⊗ kζ

are rank one TTOs. Sarason has shown that these are essentially the
only such.

If Θ = zn+1 the matrix of a TTO with respect to the monomial basis
is the upper left square section of the Toeplitz matrix with symbol φ.

If Θ = Θ2α and Aφ is carried to the Paley Wiener space we obtain
(on the Fourier transform side) a Wiener-Hopf convolution operator
with symbol φ̂, truncated to an interval; roughly

T̂f (s) =
∫

χ[−α,α](s)f̂ (t)φ̂(s − t)dt.
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THFs Definition

A Hankel form on KΘ, a truncated Hankel form, THF, is a bilinear
form B on KΘ ×KΘ which depends only on the product of its
arguments; B(f , g) = L(fg) for a linear functional L.

There is a symbol function b which realizes the functional L :

B(f , g) = Bb(f , g) = 〈fg , b〉 .

These are exactly the forms B such that, if f , g , zf , zg ∈ K then

B(zf , g) = B(f , zg).

Rochberg () TTO’s and THF ’s on KΘ Fields Institute 22 June, 2012 12 / 28



THFs Definition

A Hankel form on KΘ, a truncated Hankel form, THF, is a bilinear
form B on KΘ ×KΘ which depends only on the product of its
arguments; B(f , g) = L(fg) for a linear functional L.

There is a symbol function b which realizes the functional L :

B(f , g) = Bb(f , g) = 〈fg , b〉 .

These are exactly the forms B such that, if f , g , zf , zg ∈ K then

B(zf , g) = B(f , zg).

Rochberg () TTO’s and THF ’s on KΘ Fields Institute 22 June, 2012 12 / 28



THFs Definition

A Hankel form on KΘ, a truncated Hankel form, THF, is a bilinear
form B on KΘ ×KΘ which depends only on the product of its
arguments; B(f , g) = L(fg) for a linear functional L.

There is a symbol function b which realizes the functional L :

B(f , g) = Bb(f , g) = 〈fg , b〉 .

These are exactly the forms B such that, if f , g , zf , zg ∈ K then

B(zf , g) = B(f , zg).

Rochberg () TTO’s and THF ’s on KΘ Fields Institute 22 June, 2012 12 / 28



Equivalence of the Two Classes

The relation between the two classes is that〈
Aφf , Cg

〉
= BCφ(f , g).

This follows directly from unpacking the definitions.

This sets up an antilinear isometric bijection between the set of TTOs
and the set of THFs. That is, if Aφ is given then the equation defines,
BCφ; similarly in the other direction.

A consequence of this bijection is that many questions and answers
can be easily carried back and forth. For instance, questions about
finite rank operators/forms, trace class, bounded symbols, etc.
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THFs, Examples

For a kernel function kζ , the forms

Bkζ
(f , g) = f (ζ)g(ζ) =

〈
f , kζ

〉 〈
g , kζ

〉
,

BCΘ2 kζ
(f , g) = Cf (ζ)Cg(ζ) =

〈
f , Ckζ

〉 〈
g , Ckζ

〉
are rank one THFs and are essentially the only ones. This can be
shown directly or seen as a consequence of the bijection and the
result for TTOs. The first type are analogous to classical Hankel
forms; the second class has not classical analog.

If Θ = zn+1 the matrix of a THF with respect to the monomial basis
is the upper left square section of the Hankel matrix with symbol φ.

If Θ = Θ2α then Bφ is carried to a bilinear form on the Paley Wiener
space of "truncated Hankel" type

B(f , g) =
∫ ∫

f̂ (s)ĝ(t)φ̂(s + t)dsdt.
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Bounded Symbols, Elementary Observations

Sarason asked if every bounded TTO has a bounded symbol.

Because of the equivalence noted earlier, the questions for TTOs and
THFs are equivalent.

The case of finite dimensional K is trivial – but only if one doesn’t
ask for estimates.

Symbols of classical Toeplitz’s and Hankel’s restrict to TTOs and
THFs with norms that are no larger.

In particular, if the TTO or THF has a bounded symbol it is bounded.
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The Question of Bounded Symbols

Theorem (Sarason 1967)

Given K , Θ, α with |α| < 1, and φ ∈ Hol (D) .

1 The TTO Aφ is bounded iff ∃ ψ ∈ H∞ such that

Aφ = Aψ,
∥∥Aφ

∥∥
operator

= ‖ψ‖∞ .

2 Aφ(1+αΘ̄), φ ∈ H∞ is bounded iff ∃ ψ ∈ H∞ such that

Aφ(1+αΘ̄) = Aψ(1+αΘ̄),
∥∥∥Aφ(1+αΘ̄)

∥∥∥
operator

= ‖ψ‖∞ .

3 And corresponding statements for the adjoints.

Proof: (1) Commutant lifting theorem; (2) unitary equivalence.

For each α the set
{
Aφ(1+αΘ̄), φ ∈ H∞

}
is a commutative subalgebra

of {TTO} . There is no classical analog of this phenomenon.
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For each α the set
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Aφ(1+αΘ̄), φ ∈ H∞

}
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Bounded Symbols, A Negative Result

Theorem (Baranov, Chalendar, Frican, Mashreghi, Timotin, 2009)

Suppose Θ is given and the point evaluation at some ζ ∈ T is bounded on
KΘ. If, for some p > 2, kζ /∈ Lp then the rank one TTO kζ ⊗ kζ does not
have a bounded symbol.

For boundary points, the two types of rank one TTOs described
earlier and the one in the theorem are scalar multipliers of each other.

It is automatic that kζ ∈ L2.
Given p > 2, classical results give straightforward recipes for building
examples for which kζ /∈ Lp .
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Bounded Symbols, CLS Inner Functions

Define H2Θ �H2Θ analogously to H2 �H2.

For p = 1, 2 let Ep (Θ) be the class of positive measures µ on D for
which a Carleson type embedding holds:

K pΘ ↪→ Lp (µ)

Theorem (Baranov, Bessonov, Kapustin, 2010)
TFAE:

1 H2Θ �H2Θ = H1Θ2 .

2 E1
(
Θ2
)
= E2

(
Θ2
)
.

3 Every bounded TTO on KΘ has a bounded symbol.
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Discussion:

H2Θ �H2Θ = H1Θ2 plays the same role here as H2 �H2 = H1 in
classical Hardy space theory.

Neither 1. nor 2. is easy to establish directly.

However

Theorem (Aleksandrov, 1999)

If Θ is a CLS inner function then E1(Θ2) = E2(Θ2).

Some have speculated/conjectured the converse of that theorem
holds; i.e., if every bounded TTO has a bounded symbol then Θ is
CLS.

Rochberg () TTO’s and THF ’s on KΘ Fields Institute 22 June, 2012 19 / 28



Discussion:

H2Θ �H2Θ = H1Θ2 plays the same role here as H2 �H2 = H1 in
classical Hardy space theory.

Neither 1. nor 2. is easy to establish directly.

However

Theorem (Aleksandrov, 1999)

If Θ is a CLS inner function then E1(Θ2) = E2(Θ2).

Some have speculated/conjectured the converse of that theorem
holds; i.e., if every bounded TTO has a bounded symbol then Θ is
CLS.

Rochberg () TTO’s and THF ’s on KΘ Fields Institute 22 June, 2012 19 / 28



Discussion:

H2Θ �H2Θ = H1Θ2 plays the same role here as H2 �H2 = H1 in
classical Hardy space theory.

Neither 1. nor 2. is easy to establish directly.

However

Theorem (Aleksandrov, 1999)

If Θ is a CLS inner function then E1(Θ2) = E2(Θ2).

Some have speculated/conjectured the converse of that theorem
holds; i.e., if every bounded TTO has a bounded symbol then Θ is
CLS.

Rochberg () TTO’s and THF ’s on KΘ Fields Institute 22 June, 2012 19 / 28



Discussion:

H2Θ �H2Θ = H1Θ2 plays the same role here as H2 �H2 = H1 in
classical Hardy space theory.

Neither 1. nor 2. is easy to establish directly.

However

Theorem (Aleksandrov, 1999)

If Θ is a CLS inner function then E1(Θ2) = E2(Θ2).

Some have speculated/conjectured the converse of that theorem
holds; i.e., if every bounded TTO has a bounded symbol then Θ is
CLS.

Rochberg () TTO’s and THF ’s on KΘ Fields Institute 22 June, 2012 19 / 28



Discussion:

H2Θ �H2Θ = H1Θ2 plays the same role here as H2 �H2 = H1 in
classical Hardy space theory.

Neither 1. nor 2. is easy to establish directly.

However

Theorem (Aleksandrov, 1999)

If Θ is a CLS inner function then E1(Θ2) = E2(Θ2).

Some have speculated/conjectured the converse of that theorem
holds; i.e., if every bounded TTO has a bounded symbol then Θ is
CLS.

Rochberg () TTO’s and THF ’s on KΘ Fields Institute 22 June, 2012 19 / 28



More Background

If A is a TTO then

A = Aα + A∗β, α, β ∈ K (split)

and the decomposition is (essentially) unique.

Recall that the Schatten ideals S1, S2 are the ideals of trace class and
of Hilbert Schmidt operators respectively.

There is a general theory of Schatten ideals Sp , 0 < p < ∞.
It is a classical result (Peller, Rochberg, Semmes; 1980’s) that a
Hankel operator on the Hardy space is in Sp if and only if the
holomorphic symbol is in the Besov smoothness class Bp .
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I Had Hoped to Talk About This "Theorem"

Still assuming Θ is a CLS inner function.

Speculation:

1 If Aα+β̄, α, β ∈ Hol is bounded if and only if Aα and Aβ̄ are each
bounded. In that case both α and β can be chosen to be bounded.

2 0 < p < ∞; Aα+β̄, α, β ∈ Hol is in Sp if and only each of Aα and Aβ̄

is in Sp . In that case both Cα and Cβ can be chosen to be in the
Besov space Bp .
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Discussion

This is stated for Toeplitz operators; however the bits of proof I have
use the Hankel viewpoint and associated technology. In the passage
from the Toeplitz operators to the Hankel forms attention shifts from
α, β to Cα,Cβ.

I can prove 1 and the easy parts of 2 (although perhaps that is the
definition of "easy parts".)

The part I can’t prove is, in 2., that Aα and Aβ̄ are individually in Sp
The BCMFT example shows that this implication fails without some
hypothesis on Θ.
The "Theorem" is correct for the Paley-Wiener space (RR ’87) and
that proof can be extended a bit using ideas in BCMFT.
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My Current Thoughts

My first thought was that the part that I can’t prove should be easy,
certainly for p = 2 and especially if Θ is a finite Blaschke product.

However even that case comes down to a Helson-Szego style question
about the angle between past and future, but for the Sobolev space of
order 1/2.
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We would like to know if there is an ε > 0 so that, given α, β ∈ K .
β(0) = 0∣∣∣〈Tα,T ∗β

〉
hilbert Schmidt

∣∣∣ ≤ (1− ε) ‖Tα‖HS
∥∥Tβ

∥∥
HS

This can be recast algebraically in terms of the values of α, β at the
zeros of Θ; or it can be recast function theoretically as follows:
Let D be the classical Dirichlet space, is there an ε > 0 so that

sup
{∣∣∣∣ 12π

∫
f ḡ w dφ

Θ′

Θ
dz

∣∣∣∣ : Cf ∈ (D)1 ,Cg ∈ (D0)1
}
≤ 1− ε.

where w is the positive weight defined by

w dφ =
Θ′

Θ
dz

If, for example Θ = zn then the left hand side is zero.
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f ḡ w dφ

Θ′

Θ
dz

∣∣∣∣ : Cf ∈ (D)1 ,Cg ∈ (D0)1
}
≤ 1− ε.

where w is the positive weight defined by

w dφ =
Θ′

Θ
dz

If, for example Θ = zn then the left hand side is zero.

Rochberg () TTO’s and THF ’s on KΘ Fields Institute 22 June, 2012 24 / 28



We would like to know if there is an ε > 0 so that, given α, β ∈ K .
β(0) = 0∣∣∣〈Tα,T ∗β

〉
hilbert Schmidt

∣∣∣ ≤ (1− ε) ‖Tα‖HS
∥∥Tβ

∥∥
HS

This can be recast algebraically in terms of the values of α, β at the
zeros of Θ; or it can be recast function theoretically as follows:
Let D be the classical Dirichlet space, is there an ε > 0 so that

sup
{∣∣∣∣ 12π

∫
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Tools for Proofs of Results in This Area

Sarason’s 2007 paper is titled "Algebraic Theory....". The main tools
in the paper are a mix of algebra and functional analysis. For instance
the characterization of the finite rank TTO’s is obtained using those
tools. Many papers since then are in the same tradition.

The commutant lifting theorem.

As mentioned, TTOs are C−symmetric if CAC = A∗. A general
theory of C−symmetric operators has been developing in recent years.
The spaces KΘ are the subspaces of H2 that are invariant under the
adjoint of the classical shift operator. The function theory associated
to them has been studied in detail since the ’80’s and a great deal is
known.

Classical theory of Hankel forms.

Recent progress on truncated Toeplitz operators, Garcia and Ross,
arXiv:1108.1858 is a nice survey.
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Recent progress on truncated Toeplitz operators, Garcia and Ross,
arXiv:1108.1858 is a nice survey.
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Specific Questions

Many of the classical results about Toeplitz operators and/or Hankel
forms suggest questions in this context. Here are two examples:

1 What is the invertibility criterion for operators Aφ? The answer for
Toeplitz operators is classical and is easy when φ is continuous. For
TTOs I don’t know how to give a good answer even when Θ is a finite
Blaschke product.

2 Are there analogs of the AAK results? For instance, is the best finite
rank approximation to a TTO itself a TTO? If so, or if not, is there a
good intrinsic description of the approximant. These questions are
essentially equivalent to the analogous questions for THFs. A positive
answer would resolve the open step in the "Theorem".
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Broader Questions

Several interrelated broader questions.

Describe the elements of E2(Θ), the Carleson measures for KΘ.
Which TTO or, equivalently, THF have bounded symbols? What
happens in the other case?
Describe H2Θ �H2Θ and

(
H2Θ �H2Θ

)∗
.

These questions are related to other basic problems in harmonic
analysis, for instance characterizing the weights for which there is a
two-weight weighted norm inequality for the Hilbert transform.

Research experience of recent years by a number of people suggests
some of these and related questions are quite diffi cult.
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Thank You !
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