Numerically Effective Corona Problems

NikolaÏ Nikolski

Univ. Bordeaux 1/ Steklov Inst. of Math

June 21, 2012, Fields Institute

 The Problem: Effective Inversions and Solution of Bezout Equations (constructive, algorithmic, norm controlled)

Motivated by

- Inverse Problems of Signal Processing
- Control Theory
- Tx= y, Matrix Numerical Analysis
- Functional Calculi in Operator Theory and Harmonic Analysis
- Others

Stationary frequency filters:

S= signal

R= response

STATIONARY FILTERS

Translation invariant

$$\tau_u F = F \tau_u$$

where $\tau_u f(t) = f(t-u)$. It follows that there exists T (a function, a measure, or a distribution) such that

$$F(S) = S * T,$$

a convolution.

DISCRETE TIME SIGNALS

A signal: $S: \mathbf{z} \longrightarrow \mathbf{c}$, a sequence $S = (S_n)_{n \in \mathbf{z}}$

Translation $\tau_k S = (S_{n-k})_{n \in \mathbb{Z}}, k \in \mathbb{Z}$

Convolution $S * T = (\sum_{k \in \mathbb{Z}} S_{n-k} T_k)_n$

Bounded amplitude signals $l^{\infty}(z) = \{S : ||S||_{\infty} = \sup_{n} |S_n| < \infty\}$

A finite power filter: $Fl^{\infty}(z) \subset l^{\infty}(z) \Leftrightarrow F(S) = S * T, ||T||_{1} = \sum_{n} |T_{n}| < \infty$

The Wiener convolution algebra:

$$W(z) = l^{1}(z) = \{T = (T_{n})_{n} : ||T||_{1} = \sum_{n} |T_{n}| < \infty\}.$$

REQUENCY CHARACTERISTIC (TRANSFER) FUNCTION

Frequency characteristic function of a filter F(S) = S * T, $T \in W(z)$

$$f = \mathcal{F}T = \sum_{k \in \mathbf{z}} T_k e^{-ikx}, x \in \mathbf{R}$$

Amplitude and phase factors on an elementary harmonic inputs:

$$S = (e^{ikx})_{k \in \mathbf{z}} \longrightarrow F(S) = f(x)(e^{ikx})_{k \in \mathbf{z}}$$

The Wiener algebra of transfer functions

$$A(\mathbf{T}) = \ \mathcal{F}l^1(\mathbf{z}) = \ \{f: \mathbf{T} \longrightarrow \mathbf{C}: \ f = \ \sum_{k \in \mathbf{z}} \hat{f}(k)\zeta^k, \ \sum_{k \in \mathbf{z}} |\hat{f}(k)| < \ \infty\}$$

FREQUENTLY ASKED QUESTIONS:

▶ An Identification Problem: knowing a response R = S * T, can one recognize S:

$$R_1 = R_2 \Rightarrow S_1 = S_2$$
?

FACT: The IP has a positive solution if and only if $f(\zeta) = \mathcal{F}T(\zeta) \neq 0$ for every $\zeta \in \tau$.

▶ Well-Posed (norm controlled) Identification Problem: can one control the amplitude of S in function of the amplitude of R:

$$\exists C > 0 \text{ such that } ||S||_{\infty} \leq C||R||_{\infty}$$
?

Wiener's 1/f Theorem (1932): IP is equivalent to W-P IP, i.e.

$$f \in A(T)$$
 and $f(\zeta) \neq 0$ $(\zeta \in T) \Rightarrow 1/f \in A(T)$,

and hence $||S||_{\infty} \leq ||1/f||_1 ||R||_{\infty}$ for every $R \in l^{\infty}(z)$.

SIMILARLY FOR MULTI-CHANNEL FILTERING:

▶ Identification Problem:

- knowing responses $R_k = S * T_k, k = 1, ..., n$, can one recognize S, or
- to have a linear (time invariant) desintegration formula

$$\sum_{k=1}^{n} U_k * R_k = \sum_{k=1}^{n} U_k * T_k * S = S, \text{ i.e., } \sum_{k=1}^{n} U_k * T_k = \delta_0 ?$$

FACT: The IP for multi-channel filtering has a positive solution if and only if $\delta_f =: \min_{\zeta \in \tau} |f(\zeta)|^2 = \min_{\zeta \in \tau} \sum_{k=1}^n |\mathcal{F}T_k(\zeta)|^2 > 0$.

▶ Well-Posed (norm controlled) Identification Problem: to control

$$\exists C = C(\delta_f) > 0 \text{ such that } ||U_k|| \leq C(\delta_f)$$
?

LOOKING FOR A CONSTRUCTIVE PROOF to 1/f THEOREM:

- ▶ an algorithm giving T^{-1} such that $T * T^{-1} = id$
- ▶ an estimate of the amplitude amplifier factor $||1/f||_{A(\tau)}$ in terms of the a.a.f. of elementary harmonic signals $1/\delta_f$:

$$\frac{1}{\delta_f} = |sup_x||T^{-1} * (e^{ikx})_{k \in z}||_{\infty} = \frac{1}{inf_x|f(x)|}.$$

FACT: Wiener's, and then Gelfand's proofs are highly non-constructive

Attempts on a constructive proof

a	<u>brief</u>	history)	

PRO	CONTRA
A.Calderón, 1950	
P.Cohen, 1961 (Fields Medal 1966)	H.Helson, J.P.Kahane, Y.Katznelson, W.Rudin, 1959
D.Newman, 1965	J.Staffney, 1967
E.Bishop, 1970	G.Björk, 1972 H.Shapiro, 1975
	N.N 1995

GENERAL SETTING

- Let A be a commutative Banach algebra, X ⊂ m(A) a "visible part" of the maximal ideal space.
- For $0 < \delta \le 1$, the best upper bound for inverses

$$c_1(\delta) = c_1(\delta, A, X) =:$$

$$= \sup\{\|1/f\|_A: \ f \in A, \ \delta \le |f(x)| \le \|f\|_A \le 1, \ \forall x \in X\}.$$

• The first critical constant $\delta_1 = \delta_1(A, X)$ is defined by:

$$\delta_1 < \delta \le 1 \Rightarrow c_1(\delta) < \infty,$$

$$0 < \delta < \delta_1 \Rightarrow c_1(\delta) = \infty.$$

GENERAL SETTING (CONTINUED)

• For $0 < \delta \le 1$ and n = 1, 2, ..., the best bound for solutions of n-order Bezout equations

$$c_n(\delta) = c_n(\delta, A, X) =:$$

$$= \sup\{\|f^{(-1)}\|_{A^n}: f \in A^n, \delta \le |f(x)| \le \|f\|_{A^n} \le 1, \forall x \in X\},\$$

where
$$f = (f_k)_1^n$$
, $|f(x)|^2 = \sum_{k=1}^n |f_k(x)|^2$ $(x \in X)$, $||f||_{A^n}^2 = \sum_{k=1}^n ||f_k||_A^2$,

$$||f^{(-1)}||_{A^n} =: \inf\{||g||_{A^n}: \sum_{k=1}^n g_k f_k = id_A\}.$$

• The *n*-th critical constant $\delta_n = \delta_n(A, X)$ is defined by:

$$\delta_n < \delta \le 1 \Rightarrow c_n(\delta) < \infty,$$

 $0 < \delta < \delta_n \Rightarrow c_n(\delta) = \infty.$

THREE EXAMPLES

I. Convolution measure algebra $\mathcal{M}(G)$, where G is a locally compact abelian group.

Visible spectrum is given by the Fourier transform $y \mapsto \mathcal{F}\mu(y)$, $y \in \hat{G}$ (on the dual group of characters).

II. H^{∞} trace algebras $H^{\infty}|\sigma$, where σ is a Blaschke set.

Visible spectrum is given by the restriction map $z \mapsto f(z), z \in \sigma$.

III. Fourier-Hadamard multiplier algebra $Mult(L^2(\tau, w))$ for L^2 Muckenhoupt weighted space $(w \in (A_2))$.

Visible spectrum is given by eigenvalues $\mu = (\mu_k)_{k \in \mathbf{z}}; \ \mathbf{z}^k \longmapsto \mu_k \mathbf{z}^k$ $(k \in \mathbf{z})$ extends to a linear bounded map $L^2(\mathbf{T}, w) \longrightarrow L^2(\mathbf{T}, w)$.

- I. Measure algebra $\mathcal{M}(G)$, G is a LCAG. Visible spectrum is given by the Fourier transform $y \mapsto \mathcal{F}\mu(y)$, $y \in \hat{G}$.
- N.Wiener and H.R.Pitt phenomenon (1938): $\exists \mu \in \mathcal{M}(\mathbb{R})$ s.t. $inf_{y\in\mathbb{R}}|\mathcal{F}\mu(y)| > 0$ BUT there exists NO $\nu \in \mathcal{M}(\mathbb{R})$ s.t. $\nu * \mu = \delta_0$, i.e.

$$\delta_1(\mathcal{M}(\mathbb{R})) > 0.$$

- E.Hewitt: M(G) has a Wiener-Pitt phenomenon iff G is NON DIS-CRETE.
- H.Helson, J-P.Kahane, Y.Katznelson, and W.Rudin (1959), J.Staffney (1967): $\delta_1(\mathcal{M}(G)) > 0$ for every infinite LCAG G.
- Y.Katznelson and H.S.Shapiro's conjecture (1975): $\delta_1(\mathcal{M}(z)) = 1/2$.
- N.N., 1999: $\delta_1(\mathcal{M}(z_+)) = 1/2$ and $1/2 \le \delta_n(\mathcal{M}(z)) \le 1/\sqrt{2}$ for every n = 1, 2,
- O.ElFallah, M.Zarrabi, and N.N., 1999: $1/2 \le \delta_n(\mathcal{M}(G)) \le 1/\sqrt{2}$ for every infinite LCAG G, n = 1, 2, ...

Measure algebra $\mathcal{M}(G)$: COMMENTS

• Weighted algebras $\mathcal{M}(G, w) = \{\mu \in \mathcal{M}(G) : \int_G wd|\mu| < \infty\},$ $w(x+y) \leq w(x)w(y)$, G is not compact and $\lim_{x \to \infty} w(x) = \infty$ (w is "regularly varying" weight).

Then $\delta_n(\mathcal{M}(G, w)) = 0$ for all $n \geq 1$. The same for weighted convolution algebras $L^p(G, w)$.

• Let G be an infinite DISCRETE LCAG. Then $\mathfrak{M}(G) = \hat{G}(NO \text{ corona})$, but there is a NUMERICALLY DETECTABLE CORONA:

$$c_n(\delta, \hat{G}) = \infty$$
 for every δ , $0 < \delta \le 1/2$.

For "flat" data $\mu \in \mathcal{M}(G)$, $1/\sqrt{2} < \delta \le |\hat{\mu}(y)| \le ||\mu|| \le 1$ $(y \in \hat{G})$ a corona cannot be detected: $c_n(\delta, \hat{G}) < \infty$.

- II. Trace algebras $H^{\infty}|\sigma$ and quotient algebras $H^{\infty}/\Theta H^{\infty}$ (Θ inner).
- Visible spectrum is given by the restriction $f \mapsto f | \sigma, f \in H^{\infty}$.
- σ is a Blaschke set in $\mathbf{D} = \{z \in \mathbf{c} : |z| < 1\}$, then $H^{\infty}|\sigma = H^{\infty}/BH^{\infty}$, $B = \Pi_{\lambda} b_{\lambda}$, $b_{\lambda} = (z \lambda)/(1 \overline{\lambda}z)$ a Blaschke factor.
- THEOREM (P.Gorkin, R.Mortini, N.N.; 2008). Given a Blaschke set σ in p, TFAE:
- $(1) \delta_1(H^{\infty}|\sigma) = 0.$
- (2) $H^{\infty}|\sigma \text{ inverse closed:} f \in H^{\infty}|\sigma, \inf_{\lambda \in \sigma}|f(\lambda)| > 0 \Rightarrow 1/f \in H^{\infty}|\sigma.$
- (3) There is NO corona: σ is dense in $\mathfrak{M}(H^{\infty}|\sigma)$.
- (4) $\delta_n(H^{\infty}|\sigma) = 0$ for every n = 1, 2, ...
- (5) Weak Embedding Property: $\forall \epsilon > 0 \ \exists C(\epsilon) > 0 \ s.t.$

$$\inf_{\lambda \in \sigma} |b_{\lambda}(z)| = \epsilon > 0 \implies \sum_{\lambda \in \sigma} \frac{(1 - |z|^2)(1 - |\lambda|^2)}{|1 - \overline{\lambda}z|^2} \le C(\epsilon).$$

 $(6) \ \forall \epsilon > 0 \ \exists \eta(\epsilon) > 0 \ s.t. \ |B_{\sigma}(z)| \leq \ \eta(\epsilon) \ \Rightarrow \ \inf_{\lambda \in \sigma} |b_{\lambda}(z)| \leq \epsilon.$

Trace algebras $H^{\infty}|\sigma$ and $\delta_n(H^{\infty}|\sigma)$ (continued).

• THEOREM (N.N., V.Vasyunin; 2011). Given a number δ , $0 < \delta < 1$, there exists a Blaschke set σ in $\mathfrak p$ such that $\delta_1(H^{\infty}|\sigma) = \delta$. Moreover, there is $f \in H^{\infty}$ such that $\delta \leq |f(z)| \leq ||f||_{\infty} \leq 1$ $(z \in \sigma)$ but $1/f \notin H^{\infty}|\sigma$.

A question on the sequence $(\delta_n(H^{\infty}|\sigma))_{n\geq 1}$. Clearly, $\delta_1 \leq \delta_2 \leq \delta_3 \leq \dots$ Is it necessary that $\delta_1 = \delta_2$ (as it is if $\delta_1 = 0$)? Or δ_2 can be any number in $[\delta_1, 1)$?

• F.Nazarov (unpublished): Given an integer $n \ge 1$, there exists a set X and a uniform function algebra A on X such that 1) every Bezout equation of order $\le n$ is solvable in A; 2) there is a Bezout equation of order n + 1 having no solution in A.

III. Fourier-Hadamard multipliers.

 Let X be a space of functions or distributions on the torus τ containing trigo polynomials as a dense subset.

A sequence $\mu = (\mu_k)_{k \in \mathbf{z}}$ is a multiplier of X, $\mu \in Mult(X)$, if the map

$$T_{\mu}: e^{ikx} \longmapsto \mu_k e^{ikx}, k \in \mathbf{z},$$

extends to a bdd linear operator on X.

- A multiplier = a convolution operator = a singular integral operator.
- Popular example: the Hilbert transform, $\mu_k = 1$ for $k \geq 0$, $\mu_k = -1$ for k < 0.
- Always, Mult(X) ⊂ l[∞](z), and Mult(X) = l[∞](z) ⇔ (e^{ikx}) is an unconditional basis of X.

Fourier-Hadamard multipliers (continued).

Problem: What is the spectrum of a multiplier?

A visible (point) spectrum of T_{μ} is $\{\mu_k : k \in \mathbf{z}\}$, and hence $clos\{\mu_k : k \in \mathbf{z}\}$.

- Should it be σ(T_μ) = clos{μ_k : k ∈ z}? (the Spectral Localization Property = SLP).
- Is there a corona m(Mult(X))\clos{φ_k: k ∈ z} ≠ ∅?
 (φ_k(T_μ) = μ_k, evaluation functionals).
- NO SLP for BAD spaces X or/and for BAD geometry of eigenfunctions (e^{ikx}).
- A NICE CASE: X = L²(τ, w) a Hilbert space, (e^{ikx}) a Schauder basis, i.e. w ∈ (A₂) (a Muckenhoupt weight).

Fourier-Hadamard multipliers (continued).

Theorem 1 (N.N., 2009). (1) $\forall w \in L^1(\tau)$ SLP \Leftrightarrow "No corona".

(2) ∃w ∈ (A₂) s.t. Mult(L²(w)) has NO SLP (there exists a unimodular multiplier μ = (μ_k) with σ(T_μ) = (̄σ).

Theorem 2 (I.Verbitsky + N.N., 2012). Any weight w having a finite number of "singularities of Schoenberg type" satisfies the SLP (condition $w \in (A_2)$ is for free).

A I.J.Schoenberg weight: $w^{\pm 1} \in L^1(\tau)$, w << 0 (negatively definite). A "Schoenberg type weight" is equivalent to w or 1/w, where w is a rotation of a Schoenberg weight.

Example: $w(e^{ix}) = |1 - e^{ix}|^{\alpha}$, $0 < \alpha < 1$, is equivalent to a Schoenberg weight $w_0 = \sum_{k \ge 1} k^{-1-\alpha} Sin^2(kx/2)$.

REFERENCES

- In search of the invisible spectrum, Ann. Inst. Fourier, 49:6 (1999), 1001-1074.
- The problem of efficient inversions and Bezout equations, in: Twentieth Century Harmonic Analysis - A Celebration, pp.235-269, (J.S.Byrnes, ed.) NATO Science Series, II. Mathematics - vol.33, Kluwer, 2001.
- 3. (with P.Gorkin and R.Mortini) Norm controlled inversions and a corona theorem for H^{∞} -quotient algebras, J.Functional Analysis, 255(2008), 854-876.
- 4. The Spectral Localization Property for Diagonal Operators and Semigroups, St. Petersburg Math. J., 21(2009), N ° 6, 1-25.
- (with V.Vasyunin) The invertibility threshold for H[∞] trace algebras, and effective matrix inversions, St.Petersburg Math.J., 23(2011), N ° 1, 87-110.
- (with I.Verbitsky) Fourier-Hadamard multipliers of weighted L² spaces, in progress.

THE END

THANK YOU!