# The Toeplitz Corona Problem and a Distance Formula

## Ryan Hamilton Joint with Mrinal Raghupathi (USNA)

UNIVERSITY OF CALGARY UNIVERSITY OF WATERLOO

June 21, 2012

RYAN HAMILTONJOINT WITH MRINAL RAGHUPATHI (USNA) The Toeplitz Corona Problem and a Distance Formula

◆ロ > ◆母 > ◆臣 > ◆臣 >



RYAN HAMILTONJOINT WITH MRINAL RAGHUPATHI (USNA) The Toeplitz Corona Problem and a Distance Formula

▲口 → ▲圖 → ▲ 国 → ▲ 国 → 二 国 →

990

## LEMMA (DOUGLAS)

For bounded operators A and B, the following are equivalent:

•  $AA^* \geq BB^*$ ;

**2** There is a contraction C so that AC = B.

Remark: Such a C can be found in  $W^*(A, B)$ .

# THE FACTORIZATION PROBLEM FOR OPERATOR ALGEBRAS

Given an operator algebra  $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$  and A, B in  $\mathcal{A}$ , when does the hypothesis  $AA^* \geq BB^*$  imply the existence of a contractive C in  $\mathcal{A}$  so that AC = B? We call this the factorization problem.

#### EXAMPLE

- von Neumann algebras have the FP.
- C([0,1]) does not.
- Certain classes of  $C^*$  algebras do (Fialkow and Salas).
- Nest algebras generally do not (Arveson).
- The analytic Toeplitz algebra  $\mathcal{T}(H^\infty)$  has the FP (Nevanlinna-Pick)

イロト 人間ト イヨト イヨト

# THE FACTORIZATION PROBLEM FOR OPERATOR ALGEBRAS

Suppose  $\mathcal{H}$  is a reproducing kernel Hilbert space and  $\mathcal{M}(\mathcal{H})$  its multiplier algebra.

## THEOREM (MCCULLOUGH-TRENT 2011)

Let  $\mathcal{L}$  be a separable Hilbert space. The algebra  $\mathcal{M}(\mathcal{H}) \otimes \mathcal{B}(\mathcal{L})$  has the FP if and only if  $\mathcal{H}$  is a complete Nevanlinna-Pick space.

#### COROLLARY

The multiplier algebras of Bergman spaces and the Hardy spaces  $H^2(\mathbb{D}^d)$  and  $H^2(\mathbb{B}_d)$  (tensored with  $\mathcal{B}(\mathcal{H})$ ) do not have the factorization property.

This suggests they probably do not satisfy the Toeplitz corona theorem either.

- 4 同 ト 4 三 ト

THEOREM (ARVESON-1975; SCHUBERT-1978)

Suppose  $f_1, \ldots, f_n \in H^\infty$  satisfy

$$\sum_{i=1}^n T_{f_i}T_{f_i}^* \geq c^2 I.$$

Then there are functions  $g_1, \ldots, g_n \in H^\infty$  so that

$$\sum_{i=1}^{n} f_{i}g_{i} = 1, \text{ and } \|[T_{g_{i}}, \ldots, T_{g_{n}}]^{T}\| \leq c^{-1}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Suppose  $\{P_m\}_{m\geq 0}$  is an increasing sequence of projections tending strongly to  $I_H$  and let  $\mathcal{A}:=\mathsf{Alg}\{P_m\}_{m\geq 0}$ .

## THEOREM (ARVESON-1975)

Suppose  $A_1, \ldots, A_n \in \mathcal{A}$  satisfy

$$\sum_{k=1}^n A_k P_m A_k^* \ge c^2 P_m$$
 for every  $m \ge 0$ .

Then there are  $B_1, \ldots, B_n \in \mathcal{A}$  such that

$$\sum_{k=1}^n A_k B_k = I_H$$

< 同 > < 回 > < 回 >

# Subalgebras of $H^{\infty}$

If  $\mathcal{B}$  is an algebra of operators and h a vector, let  $\mathcal{B}[h] := \overline{\operatorname{span}\{Bh : B \in \mathcal{B}\}}.$ 

## THEOREM (RAGHUPATHI-WICK 2010)

Suppose A is a unital, weak\*-closed subalgebra of  $H^{\infty}$  and  $f_1, \ldots, f_n \in A$  satisfy

$$\sum_{i=1}^n T_{f_i} P_L T_{f_i}^* \ge c^2 P_L$$

for every L of the form  $\mathcal{A}[h]$  where h is an outer function. Then there are  $g_1, \ldots, g_n \in \mathcal{A}$  so that

$$\sum_{i=1}^{n} f_i g_i = 1$$
 and  $\| [T_{g_1}, \dots, T_{g_n}]^T \| \le c^{-1}$ 

- 4 同 ト - 4 三 ト - 4

THEOREM (AMAR 2003; TRENT-WICK 2008)

Suppose  $f_1, \ldots, f_n \in H^{\infty}(\mathbb{D}^d)$  (resp.  $H^{\infty}(\mathbb{B}_d)$ ) satisfy

$$\sum_{i=1}^n T^
u_{f_i}(T^
u_{f_i})^* \geq c^2 I_
u$$

for measure of the form  $\nu = |f|^2 \mu$  where  $f \in H^2(\mathbb{D}^d)$  (reps.  $H^2(\mathbb{B}_d)$ ). Then there are functions  $g_1, \ldots, g_n \in H^\infty(\mathbb{D}^2)$  (resp.  $H^\infty(\mathbb{B}_d)$ ) so that

$$\sum_{i=1}^{n} f_{i}g_{i} = 1, \text{ and } \|[T_{g_{i}}, \ldots, T_{g_{n}}]^{T}\| \leq c^{-1}.$$

イロト イポト イヨト イヨト 三日

200

#### DEFINITION

Suppose  $\mathcal{L}$  is any Hilbert space. A vector-valued reproducing kernel Hilbert space is a Hilbert space  $\mathcal{H}$  of  $\mathcal{L}$ -valued functions on some domain X such that point evaluation is norm continuous for  $\mathcal{H}$ .

Every RKHS admits a positive semidefinite kernel  $\mathcal{K} : X \times X \rightarrow \mathcal{B}(\mathcal{L})$ . When  $\mathcal{L} = \mathbb{C}$ , we use the notation  $k(x, y) = \langle k_y, k_x \rangle$  for the kernel function for  $\mathcal{H}$ .

< 同 > < 回 > < 回 >

#### DEFINITION

Given two RKHS  $\mathcal{H}_1(K_1, \mathcal{L}_1, X_1)$  and  $\mathcal{H}_2(K_2, \mathcal{L}_2, X_2)$ , a *multiplier* between  $\mathcal{H}_1$  and  $\mathcal{H}_2$  is a function

 $F: X \to \mathcal{B}(\mathcal{L}_1, \mathcal{L}_2)$ 

such that  $Ff \in \mathcal{H}_2$  for every  $f \in \mathcal{H}_1$ .

Every multiplier F determines a bounded operator  $M_F \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$ determined by  $M_F f(x) := F(x)f(x)$ . Let  $\mathcal{M}(\mathcal{H}_1, \mathcal{H}_2)$  denote the operator space of all multiplication operators.

・ 同 ト ・ ヨ ト ・ ヨ ト

### EXAMPLE

- For  $\Omega \in \{\mathbb{B}_d, \mathbb{D}^d\}$ , the Hardy space  $H^2(\Omega)$ .  $\mathcal{M}(H^2(\Omega)) = H^{\infty}(\Omega)$ .
- For  $\Omega \subset \mathbb{C}^d$  bounded and open, the Bergman spaces  $L^2_a(\Omega)$ .  $\mathcal{M}(L^2_a(\Omega)) = H^{\infty}(\Omega)$ .
- The DA spaces  $H_d^2$ .  $\mathcal{M}(H_d^2) \subsetneq H^{\infty}(\mathbb{B}_d)$ .  $k^{H^2(d)}(z, w) = (1 - \langle z, w \rangle)^{-1}$ .
- A kernel k is complete Nevanlinna-Pick iff 1 − 1/k is a positive semidefinite function on X × X. All such spaces admit natural embeddings into H<sup>2</sup><sub>∞</sub>.

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose  $M_F \in \mathcal{M}(\mathcal{H}_1, \mathcal{H})$  and  $M_G \in \mathcal{M}(\mathcal{H}_2, \mathcal{H})$  satisfy

 $M_F M_F^* \ge M_G M_G^*$ .

When can we find a multiplier  $M_H \in \mathcal{M}(\mathcal{H}_2, \mathcal{H}_1)$  such that FH = G?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Suppose  $M_F \in \mathcal{M}(\mathcal{H}_1, \mathcal{H})$  and  $M_G \in \mathcal{M}(\mathcal{H}_2, \mathcal{H})$  satisfy

 $M_F M_F^* \geq M_G M_G^*.$ 

When can we find a multiplier  $M_H \in \mathcal{M}(\mathcal{H}_2, \mathcal{H}_1)$  such that FH = G? Facts:

- Multiplier spaces are weak-\* closed.
- Point evaluation is weak-\* continuous for multipliers.

イロト 不得 とうき とうとう ほう

~ ~ ~ ~

Suppose for the moment we could 'solve' the factorization problem on finite subsets of X. That is, for every  $E = \{x_1, \ldots, x_n\} \subset X$ , we can find a contractive multiplier  $H_E$  so that

$$F(x)H_E(x) = G(x) x \in E.$$

Then any weak cluster point of  $\{H_E\}_{E \subset X}$  will solve the factorization problem!

Suppose for the moment we could 'solve' the factorization problem on finite subsets of X. That is, for every  $E = \{x_1, \ldots, x_n\} \subset X$ , we can find a contractive multiplier  $H_E$  so that

$$F(x)H_E(x) = G(x) x \in E.$$

Then any weak cluster point of  $\{H_E\}_{E \subset X}$  will solve the factorization problem!

For any reasonable space, we can always find  $H_E$  (not necessarily contractive). What we require is a uniform bound on all the  $H_E$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のの(~

If  ${\mathcal H}$  is a scalar-valued RKHS, then  ${\mathcal H}\otimes \ell^2$  is a RKHS and

$$\mathcal{M}(\mathcal{H} \otimes \ell^2, \mathcal{H}) = \mathsf{Row}(\mathcal{M}(\mathcal{H}))$$
  
 $\mathcal{M}(\mathcal{H}, \mathcal{H} \otimes \ell^2) = \mathsf{Col}(\mathcal{M}(\mathcal{H}))$ 

・ロト ・回ト ・モト ・モト

E ∕Q (~

If  ${\mathcal H}$  is a scalar-valued RKHS, then  ${\mathcal H}\otimes \ell^2$  is a RKHS and

$$egin{aligned} \mathcal{M}(\mathcal{H}\otimes\ell^2,\mathcal{H}) &= \mathsf{Row}(\mathcal{M}(\mathcal{H})) \ \mathcal{M}(\mathcal{H},\mathcal{H}\otimes\ell^2) &= \mathsf{Col}(\mathcal{M}(\mathcal{H})) \end{aligned}$$

By letting  $F = (f_1, f_2, \dots)$  and G = c, the factorization problem for

$$M_F M_F^* = \sum M_{f_i} M_{f_i}^* \ge c^2 I$$

is precisely the Toeplitz corona problem.

▲日▼ ▲雪▼ ▲ヨ▼ ▲目▼ ■ ● ● ●

# A RETURN TO THE TOEPLITZ CORONA PROBLEM

- Now suppose  $\mathcal{A}$  is *any* weakly closed algebra of multipliers on  $\mathcal{H}$  and  $M_F \in \text{Row}(\mathcal{A})$  satisfies  $M_F M_F^* \ge c^2 I$ .
- We wish to find a contractive  $G_E \in Col(A)$  so that  $F(x_i)G_E(x_i) = \sum f(x_i)g(x_i) = 1$  for every  $x_i \in E$ .

・ 同 ト ・ ラ ト ・ ラ ト

SOR

- Now suppose  $\mathcal{A}$  is *any* weakly closed algebra of multipliers on  $\mathcal{H}$  and  $M_F \in \text{Row}(\mathcal{A})$  satisfies  $M_F M_F^* \ge c^2 I$ .
- We wish to find a contractive  $G_E \in Col(A)$  so that  $F(x_i)G_E(x_i) = \sum f(x_i)g(x_i) = 1$  for every  $x_i \in E$ .
- More generally, we seek to solve the interpolation problem: Given a finite set E, vectors v<sub>1</sub>,..., v<sub>n</sub> in ℓ<sup>2</sup> and complex numbers w<sub>1</sub>,..., w<sub>n</sub>, find a contractive G<sub>E</sub> ∈ Col(A) so that

$$\langle G_E(x_i), v_i \rangle = \overline{w_i}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Taking  $w_i = c$  and  $v_i = F(x_i)^*$  yields the result.

# Our approach

If k is any reproducing kernel for which A is contained in its multiplier algebra, we have

$$M_F^*k_x = F(x_i)^*k_x$$

The following are equivalent

イロト イポト イヨト イヨト

SQR

3

# Our approach

If k is any reproducing kernel for which A is contained in its multiplier algebra, we have

$$M_F^* k_x = F(x_i)^* k_x$$

The following are equivalent

$$egin{aligned} &M_FM_F^* = \sum_{i=1}^n M_{f_i}M_{f_i}^* \geq c^2 I_H \ &igl( M_FM_F^* - c^2 ) \, h, h igr) \geq 0, \ h \in H \end{aligned}$$

イロト 人間ト イヨト イヨト

SQR

3

# OUR APPROACH

If k is any reproducing kernel for which A is contained in its multiplier algebra, we have

$$M_F^* k_x = F(x_i)^* k_x$$

The following are equivalent

$$M_F M_F^* = \sum_{i=1}^n M_{f_i} M_{f_i}^* \ge c^2 I_H$$
$$\left\langle \left( M_F M_F^* - c^2 \right) h, h \right\rangle \ge 0, \ h \in H$$
Now take  $h = \sum a_i k_{x_i}$ .
$$\left[ \left( \left\langle F(x_i)^*, F(x_j)^* \right\rangle - c^2 \right) \left\langle k_{x_i}, k_{x_j} \right\rangle \right]_{i,i=1}^n \ge 0.$$

(日) (同) (三) (三)

-

We have reduced the problem to a statement about interpolation.

## DEFINITION

Suppose  $x_1, \ldots, x_k \in X$ ,  $v_1, \ldots, v_k \in \ell_n^2$  and  $w_1, \ldots, w_k \in \mathbb{C}$ . A collection of kernels  $\{k^{\alpha}\}$  is said to be a **tangential family** if the following statement holds:

・ 同 ト ・ ヨ ト ・ ヨ ト

We have reduced the problem to a statement about interpolation.

## DEFINITION

Suppose  $x_1, \ldots, x_k \in X$ ,  $v_1, \ldots, v_k \in \ell_n^2$  and  $w_1, \ldots, w_k \in \mathbb{C}$ . A collection of kernels  $\{k^{\alpha}\}$  is said to be a **tangential family** if the following statement holds:

There is a contractive column multiplier  $M_G = [M_{g_1}, \ldots, M_{g_n}]^T$ with  $g_i \in A$  such that  $\langle G(x_i), v_i \rangle_{\mathbb{C}^n} = w_i$  for each *i* if and only if

$$\left[\left(\langle \textit{v}_{\textit{i}},\textit{v}_{\textit{j}}
ight
angle -\textit{w}_{\textit{i}}\overline{\textit{w}_{\textit{j}}}
ight)\langle\textit{k}_{\textit{x}_{i}}^{lpha},\textit{k}_{\textit{x}_{j}}^{lpha}
ight
angle 
ight]_{\textit{i},\textit{j}=1}^{k},$$
 all  $lpha$ 

is positive semidefinite.

- (目) - (日) - (日)

- Let  $\mathcal{J}$  be the submodule of Col( $\mathcal{A}$ ) consisting of those H which satisfy  $\langle H(x_i), v_i \rangle = 0$ .
- If G is any column (not necessarily contractive) which satisfies  $\langle G(x_i), v_i \rangle = w_i$ , then G + H also interpolates the data for any  $H \in \mathcal{J}$ .
- Thus, the minimal possible norm for a solution is  $dist(G, \mathcal{J})$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のの(~

Suppose  $\mathcal{A}$  is a weakly closed algebra of multiplication operators for  $\mathcal{H}$  and  $\mathcal{L}$  is an invariant subspace for  $\mathcal{A}$ .

- The reproducing kernel on  $\mathcal{L}$  is given by  $k_x^{\mathcal{L}} := P_{\mathcal{L}}k_x$
- Any  $M_F \in \mathcal{A}$  determines the multiplication operator  $M_F^{\mathcal{L}} := M_F|_{\mathcal{L}}$  on  $\mathcal{L}$ .

・ロット (中)・ (ヨット (中)・ (ロッ

Suppose  $\mathcal{A}$  is a weakly closed algebra of multiplication operators for  $\mathcal{H}$  and  $\mathcal{L}$  is an invariant subspace for  $\mathcal{A}$ .

- The reproducing kernel on  $\mathcal{L}$  is given by  $k_x^{\mathcal{L}} := P_{\mathcal{L}}k_x$
- Any M<sub>F</sub> ∈ A determines the multiplication operator M<sup>L</sup><sub>F</sub> := M<sub>F</sub>|<sub>L</sub> on L.

## LEMMA

Let  $\mathcal{L}$  be any cyclic invariant subspace for  $\mathcal{A}$  and let  $\mathcal{M}_{\mathcal{L}} := \operatorname{span}\{k_{x_1}^{\mathcal{L}} \otimes v_1, \dots, k_{x_n}^{\mathcal{L}} \otimes v_n\}$ . Then  $\{k^{\mathcal{L}}\}$  is a tangential family for  $\mathcal{A}$  if and only if

$${
m dist}(G,\mathcal{J}) = \sup_{\mathcal{L}} \| (M_G^{\mathcal{L}})^*|_{\mathcal{M}_{\mathcal{L}}} \|$$

## DERIVING A TANGENTIAL FAMILY

It is immediate that  $\|(M_G^{\mathcal{L}})^*|_{\mathcal{M}_{\mathcal{L}}}\| \leq 1$  if and only if the matrix

$$\left[\left(\langle \mathsf{v}_i,\mathsf{v}_j\rangle-\mathsf{w}_i\overline{\mathsf{w}_j}\right)\langle \mathsf{k}_{\mathsf{x}_i}^{\mathcal{L}},\mathsf{k}_{\mathsf{x}_j}^{\mathcal{L}}\rangle\right]_{i,j=1}^k$$

is positive semidefinite. To summarize:

◆□ > ◆□ > ◆豆 > ◆豆 > → 豆 → ⊙ < ⊙

## DERIVING A TANGENTIAL FAMILY

It is immediate that  $\|(M_G^{\mathcal{L}})^*|_{\mathcal{M}_{\mathcal{L}}}\| \leq 1$  if and only if the matrix

$$\left[\left(\langle \mathsf{v}_i,\mathsf{v}_j\rangle-\mathsf{w}_i\overline{\mathsf{w}_j}\right)\langle \mathsf{k}_{\mathsf{x}_i}^{\mathcal{L}},\mathsf{k}_{\mathsf{x}_j}^{\mathcal{L}}\rangle\right]_{i,j=1}^k$$

is positive semidefinite. To summarize:

## THEOREM

Suppose  $\{k^{\mathcal{L}}\}_{L \ cyclic}$  is a tangential family for  $\mathcal{A}$ . Then the following are equivalent

• 
$$\sum (M_{f_i}^{\mathcal{L}})(M_{f_i}^{\mathcal{L}})^* \geq c^2 I_{\mathcal{L}}$$
 for all  $\mathcal{L}$  cyclic;

**2** There is a column  $G = (g_1, g_2, ...)$  in Col  $\mathcal{A}$  such that

$$\sum f_i g_i = 1$$

・ロト ・ 同ト ・ ヨト ・

ъ

3.5

SOG

and  $||M_G|| \le c^{-1}$ .

## DEFINITION

A weakly closed subspace  $S \subset \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$  of operators is said to have *property*  $\mathbb{A}_1(r)$  if for every contractive weak-\* continuous functional  $\varphi$  on S, there are vectors  $f \in \mathcal{H}$  and  $g \in \mathcal{H}$  so that

 $arphi(A) = \langle Af, g 
angle$  and  $\|f\| \|g\| < r$ 

< □ > < □ > < □ >

## DEFINITION

A weakly closed subspace  $S \subset \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$  of operators is said to have *property*  $\mathbb{A}_1(r)$  if for every contractive weak-\* continuous functional  $\varphi$  on S, there are vectors  $f \in \mathcal{H}$  and  $g \in \mathcal{H}$  so that

$$\varphi(A) = \langle Af, g \rangle$$
 and  $\|f\| \|g\| < r$ 

#### EXAMPLE

- Brown 1978: Subnormal operators have A<sub>1</sub>(r) for some r ≥ 1 (Bercovici-Conway: A<sub>1</sub>(1)).
- Bercovici 1988: Any algebra isometrically isomorphic to  $H^{\infty}$  has  $\mathbb{A}_1(1)$ .

Da A

- BCP operators have  $\mathbb{A}_1(1)$ .
- Arias-Popescu:  $\mathcal{M}(H_d^2)$  has  $\mathbb{A}_1(1)$ .
- Still open for subnormal tuples.

### THEOREM

Let  $\mathcal{A}$  be any weakly closed algebra of multiplication operators on  $\mathcal{H}$ . Then  $\{k^{\mathcal{L}}\}_{\mathcal{L} cyclic}$  is a tangential family if  $Col(\mathcal{A})$  has property  $\mathbb{A}_1(1)$ . More generally, if  $Col(\mathcal{A})$  has property  $\mathbb{A}_1(r)$ , a solution may be found of norm at most  $rc^{-1}$ .

/□ ▶ < 글 ▶ < 글

Let G be any solution to the tangential interpolation problem.

 A standard duality argument shows that there is a contractive weak-\* functional φ on Col(A) such that

 $arphi({\mathcal G})pprox {
m dist}({\mathcal G},{\mathcal J}) ext{ and } arphi|_{{\mathcal J}}=0.$ 

- Find  $f \in \mathcal{H}$  and  $g \in \mathcal{H} \otimes \ell^2$  so that  $\varphi(G) = \langle Gf, g \rangle$ .
- Replace  $M_G$  with  $P_{\mathcal{M}_{\mathcal{L}}}M_G^{\mathcal{L}}$ .
- Thus dist $(G, \mathcal{J}) \leq \|(M_G^{\mathcal{L}})^*|_{\mathcal{M}_{\mathcal{L}}}\|\|f\|\|g\| \leq r\|(M_G^{\mathcal{L}})^*|_{\mathcal{M}_{\mathcal{L}}}\|.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- It is always the case that for any  $\mathcal{L}$ , we have dist $(G, \mathcal{J}) \ge ||(M_G^{\mathcal{L}})^*|_{\mathcal{M}_{\mathcal{L}}}||.$
- It follows that we have

$$\sup_{\mathcal{L}} \|M_{G}^{\mathcal{L}}|_{\mathcal{M}_{\mathcal{L}}}\|\| \leq \mathsf{dist}(G,\mathcal{J}) \leq r \sup_{\mathcal{L}} \|M_{G}^{\mathcal{L}}|_{\mathcal{M}_{\mathcal{L}}}\|\|$$

• Thus, if the corona hypothesis holds for all members of the tangential family, the right hand side is at most *r*, and so we obtain a solution of norm at most *r*.

~ ~ ~ ~

Suppose  $\mathcal{H}$  is any Nevanlinna-Pick space and  $\mathcal{A}$  a weakly closed algebra of multipliers on  $\mathcal{H}$ . We say that a function  $h \in \mathcal{H}$  is **outer** if  $\mathcal{M}(\mathcal{H})[h] = \mathcal{H}$ .

### THEOREM

The column space Col(A) is elementary and every  $M_F \in (Col A)_*$  can be factored as

$$\varphi(M_F) = \langle Fg, h \rangle$$

where h is an outer function. In other words  $\{k^{\mathcal{L}}\}_{\{\mathcal{L}=\mathcal{A}[h]:h \text{ outer}\}}$  is a tangential family for  $\mathcal{A}$ .

▲ 同 ▶ ▲ 国 ▶ ▲ 国

# THE TOEPLITZ CORONA THEOREM FOR ALGEBRAS OF MULTIPLIERS ON NP SPACES

#### COROLLARY

Let  $\mathcal{H}$  be any Nevanlinna-Pick space. Suppose  $\mathcal{A}$  is a unital, weak\*-closed subalgebra of  $\mathcal{M}(\mathcal{H})$  and  $f_1, \ldots, f_n \in \mathcal{A}$  satisfy

$$\sum_{i=1}^{n} M^{L}_{f_{i}}(M^{L}_{f_{i}})^{*} \geq c^{2} I_{L}$$

for every L of the form  $\mathcal{A}[h]$  where h is an outer function. Then there are  $g_1, \ldots, g_n \in \mathcal{A}$  so that

$$\sum_{i=1}^{n} f_{i}g_{i} = 1 \text{ and } \|[M_{g_{1}}, \dots, M_{g_{n}}]^{T}\| \leq c^{-1}$$

When  $\mathcal{A} = \mathcal{M}(\mathcal{H})$ , this is the Ball-Trent-Vinnikov result. For  $\mathcal{H} = H^2$  it is the Raghupathi-Wick result.

RYAN HAMILTONJOINT WITH MRINAL RAGHUPATHI (USNA) The Toeplitz Corona Problem and a Distance Formula

For  $\Omega \subset \mathbb{C}^d$ , let  $L^2_a(\Omega)$  denote Bergman space.  $(\mathcal{M}(L^2_a(\Omega)) = H^{\infty}(\Omega).)$ 

THEOREM (BERCOVICI 1987)

For any weakly closed subalgebra  $\mathcal{A} \subset H^{\infty}(\Omega)$ , the finite column space  $\operatorname{Col}_n(H^{\infty}(\Omega))$  has property  $\mathbb{A}_1(\sqrt{n})$ .

Thus, the hypothesis that  $\sum_{i=1}^{n} (M_{\tilde{f}_{i}}^{\mathcal{L}}) (M_{\tilde{f}_{i}}^{\mathcal{L}})^{*} \geq c^{2} I_{\mathcal{L}}$  implies that the solution G satisfies

$$\|[g_1,\ldots,g_n]^T\|\leq \sqrt{n}c^{-1}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

SOR

More generally, if  $\mathcal{H}$  is *any* space such that  $\mathcal{H} \subset L^2(X, \mu)$  for a suitable measure  $\mu$ , we have

THEOREM (PRUNARU 2011)

 $\operatorname{Col}(\mathcal{M}(\mathcal{H}))$  has property  $\mathbb{A}_1(\sqrt{n})$ .

In particular, this applies to weighted versions of Bergman spaces.

< □ > < □ > < □ >