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(STONE) X COMPACT HAUSDORFF SPACE

C(X ) = {f : X → C,CONTINUOUS}

x0 ∈ X ↔ MAXIMAL IDEAL {f ∈ C(X ) : f (x0) = 0}.

X → C(X )
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`1(Z) CONVOLUTION MULTIPLICATION
(f ∗ g)(n) =

∑
m∈Z

f (n −m)g(m)

(WIENER) f ∗ `1(Z) = `1(Z) IFF f̂ (eit ) 6= 0, eit ∈ T.

f̂ (eit ) =
∑
n∈Z

f (n)eint ∈ C

T = MAXIMAL IDEAL SPACE OF `1(Z)

f ∈ `1(Z), f̂ 6= 0⇒ 1
f ∈ `

1(Z
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A(D) = {ϕ ∈ C(T) :

∫ 2π

0
ϕ(eit )eiktdt = 0 for k > 0}.

A(D) ⊆ C(T) BUT ALSO A(D) ⊆ C(closD)

(GELFAND) B COMMUTATIVE BANACH ALGEBRA WITH 1
MB =SPACE OF MAXIMAL IDEALS OF B WITH

WEAK*-TOPOLOGY

MB COMPACT HAUSDORFF SPACE AND
B → C(MB) : φ→ φ̂

THEOREM: φ ∈ B INVERTIBLE IN B IFF φ̂ 6= 0 ON MB.
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(I. J. SCHARK)
H∞(D) = {ϕ : D→ C BOUNDED, HOLOMORPHIC ON D}.

MH∞(D) COMPACT HAUSDORFF SPACE

z0 ∈ D {ϕ ∈ H∞(D) : ϕ(z0) = 0} IS MAXIMAL IDEAL OF
H∞(D)

D→ MH∞(D) ONE-TO-ONE, CONTINUOUS.
QUESTION: IS D DENSE IN MH∞(D)? IF NOT, H∞(D) IS SAID
TO HAVE THE CORONA MH∞(D)\closD.
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CONCRETE FORMULATION:

GIVEN {ϕι}nι=1 ⊆ H∞(D)

n∑
ι=1

|ϕι(z)|2 ≥ ε2 > 0 FOR z ∈ D

DOES THERE EXIST {ψi}nι=1 ⊆ H∞(D) SUCH THAT

n∑
ι=1

ϕi(z)ψi(z) = 1 for z ∈ D?

(CARLESON) FOR H∞(D), THE ANSWER IS AFFIRMATIVE.
THAT IS, H∞(D) HAS NO CORONA.
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TECHNIQUES FROM FUNCTION THEORY AND HARMONIC
ANALYSIS

CORONA PROBLEM FOR EVERY APPROPRIATE ALGEBRA
OF BOUNDED HOLOMORPHIC FUNCTIONS SUCH AS
H∞(Ω) = {ϕ : Ω→ C : BOUNDED, HOLOMORPHIC},
Ω ⊆ Cm, BOUNDED DOMAIN

GENERAL SETUP: R HILBERT SPACE COMPLETION OF
H∞(Ω) SO THAT R ⊆ O(Ω), HOLOMORPHIC FUNCTIONS
ON Ω AND zιR ⊆ R, ι = 1...,n.

SUBNORMAL CASE: R = L2
a(µ), µ PROBABILITY MEASURE

ON Ω.
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II. SHORT EXACT SEQUENCES OF HILBERT
MODULES

C[z1, ..., zm]×R → R POINTWISE MULTIPLICATION
MR = {ψ : Ω→ C 3 ψR ⊆ R} MULTIPLIER ALGEBRA

MR ⊆ H∞(Ω), EQUALS H∞(Ω) FOR SUBNORMAL CASE.

LET {ei}nι=1 BE ORTHONORMAL BASIS FOR Cn.

FOR {ϕi}nι=1 ⊆MR SET MΦ : R → R⊗ Cn SUCH THAT

MΦf =
n∑
ι=1

ϕi f ⊗ ei

FOR f ∈ R.
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II. SHORT EXACT SEQUENCES OF HILBERT
MODULES

CORONA PROBLEM:

IF

(1)
n∑
ι=1

|ϕi(z)|2 ≥ ε2 FOR z ∈ Ω, THEN DOES

THERE EXIST
{Ψi}nι=1 ⊆MR

SUCH THAT

(2)
n∑
ι=1

ϕι(z)Ψι(z) = 1, z ∈ Ω.
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II. SHORT EXACT SEQUENCES OF HILBERT
MODULES

Lemma

IF (1) HOLDS AND R IS HYPONORMAL OR (2) HOLDS,
THEN MΦ HAS CLOSED RANGE.
CONSIDER

(0) 0→ R MΦ−−→ R⊗ Cn πΦ−→ RΦ → 0,

WHERE RΦ IS THE QUOTIENT HILBERT MODULE AND πΦ

THE QUOTIENT MODULE MAP.

QUESTION: IS HYPONORMAL NEEDED? DOES MΦ HAVING
CLOSED RANGE IMPLY (1)?
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II. SHORT EXACT SEQUENCES OF HILBERT
MODULES

Definition

AN OPERATOR X : R⊗ Cp → R⊗ Cq, 1 ≤ p,q <∞, IS SAID
TO BE A MODULE MAP IF
X (MΨ ⊗ ICp ) = (MΨ ⊗ ICq )X FOR Ψ ∈MR.

Lemma

X : R⊗Cp → R⊗Cq IS A MODULE MAP IFF THERE EXISTS
χ = χij : Ω→ L(Cp,Cq), BOUNDED HOLOMORPHIC,
χij ∈MR SUCH THAT
(Xf )(z) =

∑q
ι=1

∑p
j=1 χij(z)fj(z)⊗ eι FOR

f =
∑p

j=1 fj ⊗ ej ∈ R⊗ Cp, z ∈ Ω.
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II. SHORT EXACT SEQUENCES OF HILBERT
MODULES

Proposition

ASSUME {ϕι}nι=1 ⊆MR SATISFIES (1).

THERE EXISTS {Ψι}nι=1 ⊆MR SATISFYING (2) IFF
(3) MΦ HAS A LEFT MODULE INVERSE
NΨ : R⊗ Cn → R IFF

(4) THE SHORT EXACT SEQUENCE (0) SPLITS OR
THERE EXISTS A MODULE MAP σΦ : RΦ → R⊗ Cn SUCH
THAT σΦπΦ = IR⊗Cn OR A RIGHT INVERSE FOR πΦ.

NOTE: MΦ ALWAYS HAS A LEFT OPERATOR INVERSE.
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II. SHORT EXACT SEQUENCES OF HILBERT
MODULES

PROOF: BY THE LEMMA, A LEFT MODULE INVERSE FOR
MΦ HAS THE FORM NΨ FOR Ψ = {Ψι}nι=1 ⊆MR WITH
NΨ(

∑n
ι=1 fι ⊗ eι) =

∑n
ι=1 Ψιfι, {fι}nι=1 ⊆ R.

E = NΨMΦ IS A MODULE IDEMPOTENT AND σΦ = Eπ−1
Φ IS

WELL-DEFINED AND A RIGHT MODULE INVERSE FOR πΦ.

CONVERSELY, IF E ′ IS A MODULE IDEMPOTENT ON R⊗Cn

WITH RANGE OF THE COMPLEMENTARY IDEMPOTENT,
I − E ′, EQUAL THE RANGE OF MΦ, ONE DEFINES A LEFT
MODULE INVERSE FOR MΦ BY M−1

φ (I − E ′) WHICH IS
WELL-DEFINED.
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II. SHORT EXACT SEQUENCES OF HILBERT
MODULES

ASSUME (1) HOLDS AND LET P(z) BE THE ORTHOGONAL
PROJECTION OF Cn ONTO RANGE Φ(z). IF (3) HOLDS,
AND E = NΨMΦ, THEN RANGE E(z) IS BOUNDED
HOLOMORPHIC INMR ⊗ L(Cn) AND

(5) E(z) = P(z) + V (z) WITH
V (z) = P(z)V (z)(I − P(z)), z ∈ Ω.

THIS IS THE ANALYSIS OF TREIL-WICK IN CONNECTION
WITH NIKOLSKI’S LEMMA TO OBTAIN:
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Theorem

ASSUME (1). THEN (2), (3) OR (4) HOLD IFF THERE EXISTS
V : Ω→ L(Cn) SATISFYING (5) SO THAT E(z) = P(z) + V (z)
IS BOUNDED AND HOLOMORPHIC INMR.

PROOF: TO SHOW (5) IMPLIES (2), WE NOTE THAT E(z) IS
A MODULE IDEMPOTENT DEFINED SUCH THAT
RANGE E = RANGE MΦ.
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II. SHORT EXACT SEQUENCES OF HILBERT
MODULES

IT IS NOT HARD TO SEE THAT SUCH A MODULE
IDEMPOTENT E EXISTS IFF THERE EXISTS A
COMPLEMENTARY SUBMODULE S ⊆ R⊗ Cn SUCH THAT
RANGE MΦ+̇S = R⊗ Cn IFF THE HOLOMORPHIC BUNDLE

qz∈ΩRANΦ(z)

HAS A COMPLEMENTARY HOLOMORPHIC SUB-BUNDLE
OF Ω× Cn WITH A FRAME INMR ⊗ Cn WITH ANGLES
UNIFORMLY BOUNDED AWAY FROM ZERO.
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II. SHORT EXACT SEQUENCES OF HILBERT
MODULES

TREIL-WICK PROCEED TO SHOW FOR R = H2(D) THAT (1)
IMPLIES THE EXISTENCE OF SUCH A V (z). APPROACH
FORMALLY SIMILAR TO THAT OF HÖRMANDER, BUT
MORE IS TRUE. FOR R = L2

a(µ) GIVEN {ϕι}nι=1 ⊆ H∞(Ω)

SATISFYING (1), IF

{αι}nι=1 ⊆ L∞(µ), αι(z) = ϕι(z)/
n∑

j=1

|ϕj(z)|2,

THEN
n∑
ι=1

ϕι(z)αι(z) = 1, z ∈ Ω BUT {αι}nι=1 * H∞(Ω).
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II. SHORT EXACT SEQUENCES OF HILBERT
MODULES

HÖRMANDER SEEKS {θι(z)}nι=1 ⊆ C2(Ω) SUCH THAT

(6)
n∑
ι=1

ϕι(z)θι(z) = 0, z ∈ Ω, {αι + θι}nι=1 ⊆ H∞(Ω).

THE OPERATOR NA(z) : Cn → C, z ∈ Ω, SUCH THAT
NA(z)(a) =

∑n
ι=1 αι(z)aι,a = (a1, ...,an) ∈ Cn, DEFINES

NA ∈ L(L2(µ)⊗ Cn,L2(µ)) AND Ẽ = MΦNA IS MODULE MAP
ON L2(µ)⊗ Cn SUCH THAT Ẽ(z) NON-NEGATIVE MULTIPLE
OF PROJECTION P(z), RANGE Ẽ(z) = RANGE P(z), z ∈ Ω.
MODIFICATION NA + Θ TO BE BOUNDED HOLOMORPHIC
EQUIVALENT TO MODIFICATION P + V .
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Ψ ∈MR TOEPLITZ OPERATOR TRΨ ∈ L(R),TRΨ f = Ψf , f ∈ R.

R-TOEPLITZ CORONA PROBLEM:

(7) THERE EXISTS {fι}nι=1 ⊆ R SUCH THAT∑n
ι=1 ϕι(z)fι(z) = 1, z ∈ Ω.

(2) IMPLIES A STRONGER RESULT. FOR f ∈ R THERE
EXISTS {fι}nι=1 ⊆ R SUCH THAT

(8)
∑n

ι=1 ϕι(z)fι(z) = f (z), z ∈ Ω.



CORONA PROBLEM: CONNECTIONS WITH OPERATOR THEORY AND COMPLEX GEOMETRY

III. TOEPLITZ CORONA PROBLEM

Lemma

(8) IFF N∗Φ IS ONTO OR, EQUIVALENTLY,

(9)
∑n

ι=1 ||TR∗Φι
f ||2 ≥ ε2||f ||2, f ∈ R.

FOR ω ∈ Ω, THERE EXISTS 0 6= kω ∈ R SUCH THAT
TR∗Ψ kω = Ψ(ω)kω,Ψ ∈MR.
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Proposition

(8) OR (9) IMPLIES (1)

PROOF: USING kω WE HAVE∑n
ι=1 |ϕι(ω)|2||kω||2 = 〈

∑n
ι=1 TRϕιT

R∗
ϕι kω, kω〉 =

=
∑n

ι=1 ||TR∗ϕι kω||2 ≥ ε2||kω||2.
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QUESTION: DOES (8) OR (9) IMPLY (2)?

SINCE (2) IMPLIES (8) AND (9) FOR ALL R′ WITH
MR′ =MR, WHAT ABOUT STRONGER ASSUMPTION?

QUESTION: DOES (8) OR (9) FOR ALL R′ WITHMR′ =MR,
SAME LOWER BOUND, IMPLY (2)?

NOTE: (2) DOES NOT INVOLVE ANY R.
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AFFIRMATIVE IF WE ASSUME COMMUTANT LIFTING
THEOREM HOLDS FOR R.

FOR R, GIVEN SUBMODULES S1 ⊆ R⊗ Cp,S2 ⊆ R⊗ Cq

AND BOUNDED MODULE MAP X : L(R⊗ Cp,R⊗ Cq),
THERE EXISTS MODULE MAP X̂ ∈ L(R⊗ Cp,R⊗ Cq) SUCH
THAT

πS2X̂ = XπS1 AND ||X̂ || = ||X ||.
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THEOREM: IF R SATISFIES CLT , THEN (8) OR (9) IMPLIES
(2).

PROOF: LET K = KERNEL NΦ : R⊗ Cn → R. CONSIDER
Y : R⊗ Cn/K → R SO THAT NΦ = YπK. (8) IMPLIES THAT
X = Y−1 IS BOUNDED MODULE MAP. CLT IMPLIES THERE
EXISTS X̂ : R → R⊗ Cn SO THAT X = πKX̂ . SINCE
πK = XNΦ, ONE HAS X = πKX̂ = XNΦX̂ , WHICH IMPLIES
NΦX̂ = IR SINCE X IS INERTIBLE. BY EARLIER LEMMA,
X̂ = MΨ FOR Ψ = {Ψι}nι=1 ⊆MR OR∑n

ι=1 ϕι(z)Ψι(z) = 1, z ∈ Ω.
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CLT HOLDS ONLY FOR VERY SPECIAL R. AMAR,
TRENT-WICK SHOW (9) FOR ALL SUBMODULES OF H2(Ω),
SAME LOWER BOUND, IMPLIES (2) FOR Ω = Bm,Dm.

(D-SARKAR) THEOREM: SUPPOSE R = L2
a(µ),R ⊆ O(Ω)

(ι) {kω}ω∈Ω ⊆MR AND RANGE TRω CLOSED, z ∈ Ω.

(ιι) FOR {ωj}Nj=1 ⊆ Ω, {λj} ∈ CN ,N ∈ N,
THERE EXISTS g ∈ R SUCH THAT

|g(z)|2 =
N∑

j=1

|λj |2|kωj (z)|2, µ a.e.

THEN ASSUMING (8) OR (9)HOLDS FOR ALL CYCLIC
SUBMODULES OF R, SAME LOWERBOUND IMPLIES (2).
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QUESTION: DOES (ι) HOLD FOR HARDY MODULE H2(Ω)
FOR A STRONGLY PSEUDO-CONVEX DOMAIN Ω IN Cm?
WHAT ABOUT ιι?

KOSZUL COMPLEX FOR {TRϕι}
n
ι=1 ON R

0→ R→ R⊗ C2 → R→ 0
(10) 0 /∈ TAYLOR SPECTRUM IF EXACT

PROPOSITION: (10) IMPLIES (8) AND (9).
QUESTION: DOES (10) IMPLY (2)?


