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Basic Definitions

For a commutative unital complex Banach algebra A with dual space
A∗ the maximal ideal space M(A) of A is the set of nonzero
homomorphisms A → C equipped with the Gelfand topology, i.e., the
weak∗ topology induced by A∗. It is a compact subset of the unit ball
of A∗.

3 / 56



Basic Definitions

For a commutative unital complex Banach algebra A with dual space
A∗ the maximal ideal space M(A) of A is the set of nonzero
homomorphisms A → C equipped with the Gelfand topology, i.e., the
weak∗ topology induced by A∗. It is a compact subset of the unit ball
of A∗.

Let C(M(A)) be the algebra of continuous complex-valued functions
on M(A) equipped with supremum norm.

The Gelfand transform ˆ: A → C(M(A)), â(ϕ) := ϕ(a), is a
nonincreasing-norm morphism of algebras.
If the Gelfand transform is an isometry, then A is called a uniform

algebra.
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In the case of Banach algebra H∞ of bounded holomorphic functions on

the unit disk D ⊂ C with pointwise multiplication and supremum norm,
evaluation at a point of D is an element of M(H∞), so D is naturally
embedded into M(H∞) as an open subset.
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In the case of Banach algebra H∞ of bounded holomorphic functions on

the unit disk D ⊂ C with pointwise multiplication and supremum norm,
evaluation at a point of D is an element of M(H∞), so D is naturally
embedded into M(H∞) as an open subset.

The famous Carleson corona theorem asserts that D is dense in
M(H∞).

This is equivalent to the folowing statement.

For {fi}
n
i=1 ⊂ H∞, n ∈ N, the Bezout equation∑n

i=1 gifi = 1 is solvable with {gi}
n
i=1 ⊂ H∞ if and

only if max1≤i≤n |fi(z)| > δ > 0 for every z ∈ D.
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Main Theorem and its Applications
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Main Theorem and its Applications

Let U ⊂ M(H∞) be an open subset and B be a complex Banach
space.
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Main Theorem and its Applications

Let U ⊂ M(H∞) be an open subset and B be a complex Banach
space.

Definition 1
A continuous function f ∈ C(U ;B) is said to be
B-valued holomorphic if its restriction to U ∩ D is
B-valued holomorphic in the usual sense.
By O(U ;B) we denote the vector space of B-valued holomorphic

functions on U .
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Next, by OB
M(H∞) we denote the sheaf of B-valued holomorphic

functions on M(H∞).
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Next, by OB
M(H∞) we denote the sheaf of B-valued holomorphic

functions on M(H∞).

Theorem 1
For all k ∈ N

Hk
(
M(H∞);OB

M(H∞)

)
= 0.

Here Hk(X;J ) stands for the k th Čech cohomology group of a sheaf of
abelian groups J defined on a Hausdorff topological space X.
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The proof of Theorem 1 is based on a new method for solving of
certain Banach-valued ∂̄-equations on D.
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The proof of Theorem 1 is based on a new method for solving of
certain Banach-valued ∂̄-equations on D.

Some Applications of Theorem 1
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The proof of Theorem 1 is based on a new method for solving of
certain Banach-valued ∂̄-equations on D.

Some Applications of Theorem 1

A function h on an open subset U ⊂ M(H∞) is said to be
meromorphic if h = f

g
, where f, g ∈ O(U) (:= O(U ;C)) and g is

not identically zero.

The set of meromorphic functions on U is denoted by M(U).

A (Cartier) divisor on M(H∞) consists of pairs (Ui, hi), where
(Ui) is an open cover of M(H∞) and hi ∈ M(Ui), such that for all
Ui ∩ Uj 6= ∅ functions hi

hj
∈ O(Ui ∩ Uj) and are nowhere zero.

As a consequence of Theorem 1 we obtain the solution of the second
Cousin problem on M(H∞).
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Theorem 2
For any divisor D = {(Ui, hi)}i∈I on M(H∞) there
exist a meromorphic function hD ∈ M(M(H∞)) and a

family of nowhere vanishing functions ci ∈ O(Ui),
i ∈ I, such that

hD|Ui
= hi · ci for all i ∈ I.
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Theorem 2
For any divisor D = {(Ui, hi)}i∈I on M(H∞) there
exist a meromorphic function hD ∈ M(M(H∞)) and a

family of nowhere vanishing functions ci ∈ O(Ui),
i ∈ I, such that

hD|Ui
= hi · ci for all i ∈ I.

The statement is equivalent to the fact that any holomorphic line
bundle on M(H∞) (i.e., a line bundle determined by a holomorphic
cocycle) is trivial.
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Our next result is a Runge-type approximation theorem for
Banach-valued holomorphic functions defined on subsets of M(H∞).
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Our next result is a Runge-type approximation theorem for
Banach-valued holomorphic functions defined on subsets of M(H∞).

A compact subset K ⊂ M(H∞) is called holomorphically convex if for
any x /∈ K there is f ∈ H∞ such that maxK |f | < |f(x)|.

18 / 56



Our next result is a Runge-type approximation theorem for
Banach-valued holomorphic functions defined on subsets of M(H∞).

A compact subset K ⊂ M(H∞) is called holomorphically convex if for
any x /∈ K there is f ∈ H∞ such that maxK |f | < |f(x)|.

Theorem 3A
Any B-valued holomorphic function defined on a
neigbourhood of a holomorphically compact set
K ⊂ M(H∞) can be uniformly approximated on K by
functions from O(M(H∞);B).
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For an ideal J ⊂ O(M(H∞)) (∼= H∞) define

hull(J) := {x ∈ M(H∞) ; f(x) = 0 ∀f ∈ J}.

Theorem 3B
For every g ∈ O(N ;B), where N is an open
neighbourhood of hull(J), there exists a function
g̃ ∈ O(M(H∞);B) such that g̃|hull(J) = g.

A quantitative version of this result for B = C and J a principal ideal
generated by a Blaschke product was proved by Carleson.

20 / 56



Banach Algebras H∞
comp(A)
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Banach Algebras H∞
comp(A)

In this part we study Banach algebras H∞
comp(A) of holomorphic

functions on D with relatively compact images in a commutative
complex unital Banach algebra A. (One can easily show that algebra
H∞

comp(A) is isomorphic to O(M(H∞);A).)
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Banach Algebras H∞
comp(A)

In this part we study Banach algebras H∞
comp(A) of holomorphic

functions on D with relatively compact images in a commutative
complex unital Banach algebra A. (One can easily show that algebra
H∞

comp(A) is isomorphic to O(M(H∞);A).)

Theorem 4
Let f1, . . . , fm, f ∈ O(M(H∞);A). Then f belongs to
the ideal I ⊂ O(M(H∞);A) generated by f1, . . . , fm if
and only if there exists a finite open cover (Uk)1≤k≤ℓ of
M(H∞) such that for every 1 ≤ k ≤ ℓ the function f |Uk

belongs to the ideal Ik ⊂ O(Uk;A) generated by
functions f1|Uk

, . . . , fm|Uk
.
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In the proof one uses a standard argument involving Koszul
complexes which reduces the statement to a question on existence of
bounded on the boundary solutions of certain A-valued ∂̄-equations on
D similar to those in Wolff’s proof of Carleson’s corona theorem.

24 / 56



In the proof one uses a standard argument involving Koszul
complexes which reduces the statement to a question on existence of
bounded on the boundary solutions of certain A-valued ∂̄-equations on
D similar to those in Wolff’s proof of Carleson’s corona theorem.

However, since the target space A may be infinite dimensional, the
classical duality method allowing to get such solutions for scalar
∂̄-equations does not work anymore.
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In the proof one uses a standard argument involving Koszul
complexes which reduces the statement to a question on existence of
bounded on the boundary solutions of certain A-valued ∂̄-equations on
D similar to those in Wolff’s proof of Carleson’s corona theorem.

However, since the target space A may be infinite dimensional, the
classical duality method allowing to get such solutions for scalar
∂̄-equations does not work anymore.

One uses instead the fact due to Suárez that the set of trivial
Gleason parts of H∞ is totally disconnected together with a result on
existence of bounded solutions of A-valued ∂̄-equations with ‘supports‘
in the set of nontrivial Gleason parts of M(H∞). The fact that D is
dense in M(H∞) is not used in the proof; hence, from Theorem 4 one
obtains yet another proof of the corona theorem for H∞.
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As a corollary we obtain

Theorem 5

M(H∞
comp(A))

∼= M(H∞)×M(A).
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As a corollary we obtain

Theorem 5

M(H∞
comp(A))

∼= M(H∞)×M(A).

This is equivalent to the folowing statement.

For {fi}
n
i=1 ⊂ H∞

comp(A), n ∈ N, the Bezout equation∑n
i=1 gifi = 1 is solvable with {gi}

n
i=1 ⊂ H∞

comp(A) if
and only if max1≤i≤n |ϕ(fi(z))| > δ > 0 for every
z ∈ D and ϕ ∈ M(A).
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As a corollary we obtain

Theorem 5

M(H∞
comp(A))

∼= M(H∞)×M(A).

This is equivalent to the folowing statement.

For {fi}
n
i=1 ⊂ H∞

comp(A), n ∈ N, the Bezout equation∑n
i=1 gifi = 1 is solvable with {gi}

n
i=1 ⊂ H∞

comp(A) if
and only if max1≤i≤n |ϕ(fi(z))| > δ > 0 for every
z ∈ D and ϕ ∈ M(A).

Theorem 5 would also follow if we knew that H∞ has the
Grothendieck approximation property (which is still an open problem).
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Let SN (H∞) := S(H∞; . . . ;H∞) be the N -dimensional slice algebra
on M(H∞)N of continuous functions f such that f(x, ·, y) ∈ H∞ for
each x ∈ M(H∞)k−1 and y ∈ M(H∞)N−k, k = 1, . . . , N .
A major open problem posed in the mid of 1960s asks whether the

maximal ideal space of SN (H∞) is M(H∞)N .
This fact is obtained now as a corollary of Theorem 5.
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Let SN (H∞) := S(H∞; . . . ;H∞) be the N -dimensional slice algebra
on M(H∞)N of continuous functions f such that f(x, ·, y) ∈ H∞ for
each x ∈ M(H∞)k−1 and y ∈ M(H∞)N−k, k = 1, . . . , N .
A major open problem posed in the mid of 1960s asks whether the

maximal ideal space of SN (H∞) is M(H∞)N .
This fact is obtained now as a corollary of Theorem 5.

Corollary 1

M(SN(H
∞)) = M(H∞)N .
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Oka Principle for Holomorphic
Banach Vector Bundles on M(H∞)
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Oka Principle for Holomorphic
Banach Vector Bundles on M(H∞)

Let E → M(H∞) be a continuous Banach vector bundle with fibre
X defined on an open cover U = (Ui)i∈I of M(H∞) by a cocycle
{gij ∈ C(Ui ∩ Uj ;GL(X))}; here GL(X) is the group of invertible
elements of the Banach algebra L(X) of bounded linear operators on X
equipped with the operator norm.
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Oka Principle for Holomorphic
Banach Vector Bundles on M(H∞)

Let E → M(H∞) be a continuous Banach vector bundle with fibre
X defined on an open cover U = (Ui)i∈I of M(H∞) by a cocycle
{gij ∈ C(Ui ∩ Uj ;GL(X))}; here GL(X) is the group of invertible
elements of the Banach algebra L(X) of bounded linear operators on X
equipped with the operator norm.

We say that E is holomorphic if all gij ∈ O(Ui ∩ Uj ;GL(X)). In this
case E|D is a holomorphic Banach vector bundle on D in the usual
sense.
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Recall that E is defined as the quotient space of the disjoint union
⊔i∈I Ui ×X by the equivalence relation:

Uj ×X ∋ u× x ∼ u× gij(u)x ∈ Ui ×X.

The projection p : E → X is induced by natural projections
Ui ×X → Ui, i ∈ I.
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Recall that E is defined as the quotient space of the disjoint union
⊔i∈I Ui ×X by the equivalence relation:

Uj ×X ∋ u× x ∼ u× gij(u)x ∈ Ui ×X.

The projection p : E → X is induced by natural projections
Ui ×X → Ui, i ∈ I.

A morphism ϕ : (E1, X1, p1) → (E2, X2, p2) of holomorphic Banach
vector bundles on M(H∞) is a continuous map which maps each vector
space p−1

1 (w) ∼= X1 linearly to vector space p−1
2 (w) ∼= X2, w ∈ M(H∞),

and such that ϕ|D : E1|D → E2|D is a holomorphic map of complex
Banach manifolds. If, in addition, ϕ is bijective, then it is called an
isomorphism.
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Recall that E is defined as the quotient space of the disjoint union
⊔i∈I Ui ×X by the equivalence relation:

Uj ×X ∋ u× x ∼ u× gij(u)x ∈ Ui ×X.

The projection p : E → X is induced by natural projections
Ui ×X → Ui, i ∈ I.

A morphism ϕ : (E1, X1, p1) → (E2, X2, p2) of holomorphic Banach
vector bundles on M(H∞) is a continuous map which maps each vector
space p−1

1 (w) ∼= X1 linearly to vector space p−1
2 (w) ∼= X2, w ∈ M(H∞),

and such that ϕ|D : E1|D → E2|D is a holomorphic map of complex
Banach manifolds. If, in addition, ϕ is bijective, then it is called an
isomorphism.

We say that a holomorphic Banach vector bundle (E,X, p) on
M(H∞) is holomorphically trivial if it is isomorphic to the trivial
bundle M(H∞)×X.
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Let GL0(X) be the connected component of GL(X) containing the
identity map IX := idX : X → X. Then GL0(X) is a clopen normal
subgroup of GL(X). By q : GL(X) → GL(X)/GL0(X) := C(GL(X))
we denote the continuous quotient homomorphism onto the discrete
group of connected components of GL(X).
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Let GL0(X) be the connected component of GL(X) containing the
identity map IX := idX : X → X. Then GL0(X) is a clopen normal
subgroup of GL(X). By q : GL(X) → GL(X)/GL0(X) := C(GL(X))
we denote the continuous quotient homomorphism onto the discrete
group of connected components of GL(X).

Let E → M(H∞) be a holomorphic Banach vector bundle with fibre
X defined on a finite open cover U = (Ui)i∈I of M(H∞) by a cocycle
g = {gij ∈ O(Ui ∩ Uj ;GL(X))}. By EC(GL(X)) we denote the principal
bundle on M(H∞) with fibre C(GL(X)) defined on U by the locally
constant cocycle q(g) = {q(gij) ∈ C(Ui ∩ Uj ;C(GL(X)))}.
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Let GL0(X) be the connected component of GL(X) containing the
identity map IX := idX : X → X. Then GL0(X) is a clopen normal
subgroup of GL(X). By q : GL(X) → GL(X)/GL0(X) := C(GL(X))
we denote the continuous quotient homomorphism onto the discrete
group of connected components of GL(X).

Let E → M(H∞) be a holomorphic Banach vector bundle with fibre
X defined on a finite open cover U = (Ui)i∈I of M(H∞) by a cocycle
g = {gij ∈ O(Ui ∩ Uj ;GL(X))}. By EC(GL(X)) we denote the principal
bundle on M(H∞) with fibre C(GL(X)) defined on U by the locally
constant cocycle q(g) = {q(gij) ∈ C(Ui ∩ Uj ;C(GL(X)))}.

Theorem 6 (Oka Principle)
E is holomorphically trivial if and only if the associated
bundle EC(GL(X)) is trivial in the category of principal
bundles with discrete fibres.

40 / 56



Corollary 2
E is holomorphically trivial in one of the following

cases:

(1) The image of each function gij in the definition of
E belongs to GL0(X) (e.g., this is true if GL(X) is
connected);

(2) E is trivial in the category of continuous Banach
vector bundles.
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In particular, the result is valid for spaces X with contractible group
GL(X). The class of such spaces include infinite-dimensional Hilbert
spaces, spaces ℓp and Lp[0, 1], 1 ≤ p ≤ ∞, c0 and C[0, 1], spaces
Lp(Ω, µ), 1 < p < ∞, of p-integrable measurable functions on an
arbitrary measure space Ω, and some classes of reflexive symmetric
function spaces; the class of spaces X with connected but not simply
connected group GL(X) include finite dimensional Banach spaces,
finite direct products of James spaces etc. There are also Banach
spaces X whose linear groups GL(X) are not connected. E.g., the
groups of connected components of spaces ℓp × ℓq, 1 ≤ p < q < ∞, are
isomorphic to Z.
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Sz.-Nagy Operator Corona Problem
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Sz.-Nagy Operator Corona Problem

We apply Theorem 5 to the Sz.-Nagy operator corona problem posed
in 1978. In its formulation H∞(L(X,Y )) stands for the Banach space
of holomorphic functions F on D with values in the space of bounded
linear operators X → Y of complex Banach spaces X,Y with norm
‖F‖ := supz∈D ‖F (z)‖L(X,Y ).

44 / 56



Sz.-Nagy Operator Corona Problem

We apply Theorem 5 to the Sz.-Nagy operator corona problem posed
in 1978. In its formulation H∞(L(X,Y )) stands for the Banach space
of holomorphic functions F on D with values in the space of bounded
linear operators X → Y of complex Banach spaces X,Y with norm
‖F‖ := supz∈D ‖F (z)‖L(X,Y ).

Problem (Sz.-Nagy)

Let F ∈ H∞(L(H1, H2)), where Hi, i = 1, 2, are
separable Hilbert spaces, satisfy ‖F (z)x‖ ≥ δ‖x‖ for
every x ∈ H1 and every z ∈ D, where δ > 0 is a
constant. Does there exist G ∈ H∞(L(H2, H1)) such
that G(z)F (z) = IH1

for every z ∈ D?
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This problem is of great interest in operator theory (angles between
invariant subspaces, unconditionally convergent spectral
decompositions), as well as in control theory. It is also related to the
study of submodules of H∞ and to many other subjects of analysis.
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This problem is of great interest in operator theory (angles between
invariant subspaces, unconditionally convergent spectral
decompositions), as well as in control theory. It is also related to the
study of submodules of H∞ and to many other subjects of analysis.

Obviously, the condition imposed on F is necessary. It implies
existence of a uniformly bounded family of left inverses of F (z), z ∈ D.

The question is whether this condition is sufficient for the existence
of a bounded analytic left inverse of F .
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In general, the answer is known to be negative (S. Treil). But in
some specific cases it is positive. In particular,

Carleson’s theorem stating that a Bezout equation
n∑

i=1

gifi = 1 is

solvable with {gi}
n
i=1 ⊂ H∞ as soon as {fi}

n
i=1 ⊂ H∞ satisfies

max
1≤i≤n

|fi(z)| > δ > 0 for every z ∈ D means that the answer is

positive when dimH1 = 1, dimH2 = n < ∞.

More generally, the answer is positive as soon as dimH1 < ∞
(Fuhrmann, Vasjunin, Tolokonnikov).
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In general, the answer is known to be negative (S. Treil). But in
some specific cases it is positive. In particular,

Carleson’s theorem stating that a Bezout equation
n∑

i=1

gifi = 1 is

solvable with {gi}
n
i=1 ⊂ H∞ as soon as {fi}

n
i=1 ⊂ H∞ satisfies

max
1≤i≤n

|fi(z)| > δ > 0 for every z ∈ D means that the answer is

positive when dimH1 = 1, dimH2 = n < ∞.

More generally, the answer is positive as soon as dimH1 < ∞
(Fuhrmann, Vasjunin, Tolokonnikov).

For a long time there were no positive results in the case
dimH1 = ∞. The first positive results in this case were obtained by P.
Vitse. Following P. Vitse we consider a more general
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Problem 1
Let X1, X2 be complex Banach spaces and
F ∈ H∞(L(X1, X2)) be such that for each z ∈ D there
exists a left inverse Gz of F (z) satisfying
supz∈D

‖Gz‖ < ∞. Does there exist G ∈ H∞(L(X2, X1))
such that G(z)F (z) = IX1

for every z ∈ D?
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Problem 1
Let X1, X2 be complex Banach spaces and
F ∈ H∞(L(X1, X2)) be such that for each z ∈ D there
exists a left inverse Gz of F (z) satisfying
supz∈D

‖Gz‖ < ∞. Does there exist G ∈ H∞(L(X2, X1))
such that G(z)F (z) = IX1

for every z ∈ D?

Since in this general setting the answer is negative, we restrict
ourselves to the case of F ∈ H∞

comp(L(X1, X2)), the space of

holomorphic functions on D with relatively compact images in

L(X1, X2). In this case P. Vitse proved that

the answer is positive for F that can be uniformly
approximated by finite sums

∑
fk(z)Lk, where

fk ∈ H∞ and Lk ∈ L(X1, X2).
The question of whether each F ∈ H∞

comp(L(X1, X2)) can be
obtained in that form is closely related to the still open problem about
the Grothendieck approximation property for H∞.
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Theorem 7 (Complement Problem for
H∞

comp(L(X1, X2)))

Let F ∈ H∞
comp(L(X1, X2)), where Xi, i = 1, 2, are

complex Banach spaces, be such that for every z ∈ D

there exists a left inverse Gz of F (z) satisfying
supz∈D

‖Gz‖ < ∞. Let Y := KerG0. Assume that

GL(Y ) is connected. Then there exist functions

H ∈ H∞
comp(L(X1 ⊕ Y,X2)) and

G ∈ H∞
comp(L(X2, X1 ⊕ Y )) such that for all z ∈ D

H(z)G(z) = IX2
, G(z)H(z) = IX1⊕Y and

H(z)|X1
= F (z).
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Corollary 2
Let F ∈ H∞

comp(L(H1, H2)), where Hi, i = 1, 2, are
Hilbert spaces, satisfy ‖F (z)x‖ ≥ δ‖x‖ for every

x ∈ H1 and every z ∈ D, where δ > 0 is a constant. Let

Y :=
(
F (0)(H1)

)⊥
. Then there exist functions

H ∈ H∞
comp(L(H1 ⊕ Y,H2)), G ∈ H∞

comp(L(H2, H1 ⊕ Y ))
such that for all z ∈ D

H(z)G(z) = IH2
, G(z)H(z) = IH1⊕Y and

H(z)|H1
= F (z).
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Also, we obtain a positive answer in Problem 1 for spaces H∞
comp.
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Also, we obtain a positive answer in Problem 1 for spaces H∞
comp.

Theorem 8 (Generalized Sz.-Nagy
Problem for H∞

comp)

Let X1, X2 be complex Banach spaces and

F ∈ H∞
comp(L(X1, X2)) be such that for each z ∈ D there

exists a left inverse Gz of F (z) satisfying
supz∈D

‖Gz‖ < ∞. Then there exist

G ∈ H∞
comp(L(X2, X1)) such that for all z ∈ D

G(z)F (z) = IX1
.

55 / 56



For an ideal J ⊂ H∞ by Ĵ ⊂ H∞ we denote the ideal of functions
vanishing on hull(J) ⊂ M(H∞). Consider the Banach algebra
H∞

J ⊂ H∞ generated by constant functions and functions from Ĵ .
Then all the results presented in the talk are valid also if one replaces
in their formulations H∞ by H∞

J .
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