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Sensor Network Localization or Graph Realization

Given a graph G = (V ,E ) and a set of non–negative weights,
{dij : (i , j) ∈ E} on edges, the goal is to compute a localization of
G in the Euclidean space Rd for a given low dimension d . That is,
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Sensor Network Localization or Graph Realization

Given a graph G = (V ,E ) and a set of non–negative weights,
{dij : (i , j) ∈ E} on edges, the goal is to compute a localization of
G in the Euclidean space Rd for a given low dimension d . That is,

� to position the vertexes of G in Rd such that

� the Euclidean distance between a pair of adjacent vertexes
(i , j) equals to (or bounded by) the prescribed weight dij ∈ E .

Sometimes, the positions of a few vertexes are known and they are
called anchors.
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50-vertex 2-D Sensor Network Localization
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3-D Tensegrity Network; a Toy Example by Anstreicher
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Molecular Conformation: 1F39(1534 atoms) with 85% of
distances below 6Å and 10% noises
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Quadratic Equality and Inequality Systems

Given network (G ,D), find xj ∈ Rd such that

‖xi − xj‖2 (≤) = (≥) d2
ij , ∀ (i , j) ∈ E , i < j .
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Quadratic Equality and Inequality Systems

Given network (G ,D), find xj ∈ Rd such that

‖xi − xj‖2 (≤) = (≥) d2
ij , ∀ (i , j) ∈ E , i < j .

Or given anchors ak ∈ Rd , dij ∈ Nx , and d̂kj ∈ Na, find xi ∈ Rd

such that

‖xi − xj‖2 (≤) = (≥) d2
ij , ∀ (i , j) ∈ Nx , i < j ,

‖ak − xj‖2 (≤) = (≥) d̂2
kj , ∀ (k , j) ∈ Na;

that is, edge (ij) (or (kj)) connects sensors i and j (or anchor k
and sensor j) with the Euclidean length equal to dij (or d̂kj).
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Key Questions Related to SNL

Consider a bar SNL problem:

‖xi − xj‖2 = d2
ij , ∀ (i , j) ∈ Nx , i < j ,

‖ak − xj‖2 = d̂2
kj , ∀ (k , j) ∈ Na,
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Key Questions Related to SNL

Consider a bar SNL problem:

‖xi − xj‖2 = d2
ij , ∀ (i , j) ∈ Nx , i < j ,

‖ak − xj‖2 = d̂2
kj , ∀ (k , j) ∈ Na,

� Does the network have a solution or localization for all xj ’s?

� Given a localization xi = pi ∈ Rd , i = 1, . . . , n, is the
localization unique (up to a rigid motion when anchor free),
and can the uniqueness be computationally certified?

� Is the network partially localizable with a certification?
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Rigidity Notions for SNL, Connelly ...

� Global Rigidity (GR): the network has a unique localization
pi s in Rd .

� Universal Rigidity (UR): the network has a unique localization
in all dimensions.

� Strong Rigidity (SR): let P = [p1, . . . ,pn] be a localization
and e be the vector of all ones, and extended matrix

A =

[
P
eT

]
.

Then, there is a rank n − d − 1 and positive semidefinite
stress matrix for SNL such that

Sij = 0, ∀(i , j) �∈ E (G ), and AS = 0.
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Rigidity Notions for SNL, Connelly ...

� Global Rigidity (GR): the network has a unique localization
pi s in Rd .

� Universal Rigidity (UR): the network has a unique localization
in all dimensions.

� Strong Rigidity (SR): let P = [p1, . . . ,pn] be a localization
and e be the vector of all ones, and extended matrix

A =

[
P
eT

]
.

Then, there is a rank n − d − 1 and positive semidefinite
stress matrix for SNL such that

Sij = 0, ∀(i , j) �∈ E (G ), and AS = 0.

Similar rigidity notions hold for SNL with anchors.
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UR (not even GR when with anchors in 2-D)
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Relation of Rigidity Notions

� NP-hardness related to GR (Saxe 79).

� UR implies GR.

� SR implies UR when P is in generic positions (Connelly 99,
also see Alfakih 10).

� It’s necessary to have d + 1 anchors in general positions to be
UR for SNL with anchors, and then SR implies UR (So and Y,
05).
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Semidefinite Programming Problem (SDP)

(SDP) inf C • X
subject to Ai • X = bi i = 1, . . . ,m,

X � 0.

where C ,A1, . . . ,Am are given dimension n real symmetric
matrices with real scalars b = [b1, . . . , bm],

A • X =
∑
i ,j

aijxij ,

and � represents positive semi-definiteness.
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Semidefinite Programming Problem (SDP)

(SDP) inf C • X
subject to Ai • X = bi i = 1, . . . ,m,

X � 0.

where C ,A1, . . . ,Am are given dimension n real symmetric
matrices with real scalars b = [b1, . . . , bm],

A • X =
∑
i ,j

aijxij ,

and � represents positive semi-definiteness.
The dual problem to (SDP):

(SDD) sup b · y
subject to S = C −∑m

i yiAi � 0,

where variables y = [y1, . . . , ym] ∈ Rm.
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SDP Solution Rank

� There are optimal solutions of X ∗ or S∗ such that the rank of
X ∗ or S∗ is minimal.

� There are optimal solutions of X ∗ or S∗ such that the rank of
X ∗ or S∗ is maximal.

� But the sum of the two ranks should be no more than n when
they are complementary. If the sum is n, then the problem
admits a strictly complementary solution pair.

� In applications, we like to find either a max-rank or min-rank
solution or/and to prove it exist.

If there is S∗ such that rank(S∗) ≥ n− d , then the rank of any X ∗

is bounded above by d .
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SDP Computational Complexity and Solution Rank

� Let the SDP problem have a finite complementary solution
pair. Then, the SDP interior-point algorithm finds an
ε-approximate solution where solution time is linear in
log(1/ε) and polynomial in m and n.
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� Let the SDP problem have a finite complementary solution
pair. Then, the SDP interior-point algorithm finds an
ε-approximate solution where solution time is linear in
log(1/ε) and polynomial in m and n.

� The solution pair (X (ε),S(ε)) computed by the interior-point
algorithm converges to a max-rank solution pair for both the
primal and dual (Güler and Y 93, Y 95).
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SDP Computational Complexity and Solution Rank

� Let the SDP problem have a finite complementary solution
pair. Then, the SDP interior-point algorithm finds an
ε-approximate solution where solution time is linear in
log(1/ε) and polynomial in m and n.

� The solution pair (X (ε),S(ε)) computed by the interior-point
algorithm converges to a max-rank solution pair for both the
primal and dual (Güler and Y 93, Y 95).

� But finding a min-rank SDP solution is strongly NP-Hard.
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Matrix Representation of SNL

Find Y = XTX , where X = [x1, . . . , xn] is d × n, such that

(ei − ej )(ei − ej)
T • Y = d2

ij , ∀ i , j ∈ Nx , i < j ,
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Matrix Representation of SNL

Find Y = XTX , where X = [x1, . . . , xn] is d × n, such that

(ei − ej )(ei − ej)
T • Y = d2

ij , ∀ i , j ∈ Nx , i < j ,

(ak ;−ej)(ak ;−ej)
T •

(
I X

XT Y

)
= d̂2

kj , ∀ k , j ∈ Na.

where ej is the vector of all zeros except 1 at the jth position.
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Relax Y = XTX to Y � XTX � 0;
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SDP Relaxations of SNL, Biswas and Y 04, Biswas, Toh
and Y 06

Relax Y = XTX to Y � XTX � 0; or equivalently

Z :=

(
I X

XT Y

)
� 0.

Then, we face a standard SDP (feasibility) problem for SNL

(ei − ej)(ei − ej)
T • Y = d2

ij , ∀ i , j ∈ Nx , i < j ,

Y � 0.

Yinyu Ye September 2011, Fields Institute, Toronto



Introduction to Sensor Network Localization and Rigidity Theory
Semidefinite Programming Relaxation for SNL

Theory of SDP Relaxations for SNL

SDP Relaxations of SNL, Biswas and Y 04, Biswas, Toh
and Y 06

Relax Y = XTX to Y � XTX � 0; or equivalently

Z :=

(
I X

XT Y

)
� 0.

Then, we face a standard SDP (feasibility) problem for SNL

(ei − ej)(ei − ej)
T • Y = d2

ij , ∀ i , j ∈ Nx , i < j ,

Y � 0.

or SNL with anchors

(0; ei − ej)(0; ei − ej )
T • Z = d2

ij , ∀ i , j ∈ Nx , i < j ,

(ak ;−ej )(ak ;−ej )
T • Z = d̂2

kj , ∀ k , j ∈ Na,

Z � 0.
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Properties of the SDP Relaxation

Given a framework/network (G ,P), we have

� Y = ATA (X = P , Y = PTP) is an SDP solution for the
SDP relaxation of SNL (SNL with anchors).
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Given a framework/network (G ,P), we have

� Y = ATA (X = P , Y = PTP) is an SDP solution for the
SDP relaxation of SNL (SNL with anchors).

� If P is in general positions, then the SDP solution Y = ATA
has rank d + 1 so that any dual solution matrix has rank no
more than n − d − 1.
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� If P is in general positions, then the SDP solution Y = ATA
has rank d + 1 so that any dual solution matrix has rank no
more than n − d − 1.

� For SNL with anchors
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Given a framework/network (G ,P), we have

� Y = ATA (X = P , Y = PTP) is an SDP solution for the
SDP relaxation of SNL (SNL with anchors).

� If P is in general positions, then the SDP solution Y = ATA
has rank d + 1 so that any dual solution matrix has rank no
more than n − d − 1.

� For SNL with anchors
� Any solution matrix Z has rank at least d so that any dual

solution matrix has rank no more than n.
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Properties of the SDP Relaxation

Given a framework/network (G ,P), we have

� Y = ATA (X = P , Y = PTP) is an SDP solution for the
SDP relaxation of SNL (SNL with anchors).

� If P is in general positions, then the SDP solution Y = ATA
has rank d + 1 so that any dual solution matrix has rank no
more than n − d − 1.

� For SNL with anchors
� Any solution matrix Z has rank at least d so that any dual

solution matrix has rank no more than n.
� It’s d if and only if Y = XTX and then X is a localization.
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Theory of SDP Relaxations for SNL

Properties of the SDP Relaxation

Given a framework/network (G ,P), we have

� Y = ATA (X = P , Y = PTP) is an SDP solution for the
SDP relaxation of SNL (SNL with anchors).

� If P is in general positions, then the SDP solution Y = ATA
has rank d + 1 so that any dual solution matrix has rank no
more than n − d − 1.

� For SNL with anchors
� Any solution matrix Z has rank at least d so that any dual

solution matrix has rank no more than n.
� It’s d if and only if Y = XTX and then X is a localization.
� If there exists a dual solution matrix with rank n, then the rank

of any primal solution Z must be d .
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The Dual of the SDP Relaxations

minimize
∑

i<j∈Nx
wijd

2
ij

subject to
∑

i<j∈Nx
wij(ei − ej)(ei − ej )

T = S � 0,
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Theory of SDP Relaxations for SNL

The Dual of the SDP Relaxations

minimize
∑

i<j∈Nx
wijd

2
ij

subject to
∑

i<j∈Nx
wij(ei − ej)(ei − ej )

T = S � 0,

or

minimize I • V +
∑

i<j∈Nx
wijd

2
ij +

∑
k,j∈Na

ŵkj d̂
2
kj

subject to

(
V 0
0 0

)
+

∑
i<j∈Nx

wij(0; ei − ej)(0; ei − ej)
T

+
∑

k,j∈Na
ŵkj(ak ;−ej)(ak ;−ej)

T = S � 0,

where variable matrix V ∈ Sd , variable wij is the (stress) weight
on edge between xi and xj , and ŵkj is the (stress) weight on edge
between ak and xj .

Yinyu Ye September 2011, Fields Institute, Toronto



Introduction to Sensor Network Localization and Rigidity Theory
Semidefinite Programming Relaxation for SNL

Theory of SDP Relaxations for SNL

Benefits of SDP Relaxation, So and Y 05, Biswas, Toh and
Y 06

Whether or not a network (G ,D) (with or without anchors) is UR
can be (numerically) certified in polynomial time.
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Benefits of SDP Relaxation, So and Y 05, Biswas, Toh and
Y 06

Whether or not a network (G ,D) (with or without anchors) is UR
can be (numerically) certified in polynomial time.

Whether or not a network (G ,D) (with or without anchors) is SR
can be (numerically) certified in polynomial time.

http://www.stanford.edu/˜yyye/URFrameworkTest.m
http://www.math.nus.edu.sg/˜mattohkc/disco.html
http://www.stanford.edu/˜yyye/Col.html
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An Equivalence Theorem, Biswas and Y 04, So and Y 05

Theorem
The following statements are equivalent for SNL with anchors:

1. The sensor network is UR;

2. The max-rank solution of the SDP relaxation has rank d;

3. The solution matrix has Y = XTX or Trace(Y − XTX ) = 0 .
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An Equivalence Theorem, Biswas and Y 04, So and Y 05

Theorem
The following statements are equivalent for SNL with anchors:

1. The sensor network is UR;

2. The max-rank solution of the SDP relaxation has rank d;

3. The solution matrix has Y = XTX or Trace(Y − XTX ) = 0 .

Moreover, the localization of a UR instance can be computed
approximately in a time polynomial in n, d, and the accuracy
log(1/ε).
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Identify the Largest UR Subnetwork, So and Y 05

Theorem
If a network with anchors contains a subnetwork that is UR, then
the SDP solution submatrix corresponding to the subnetwork has
rank d. Thus, the SDP relaxation method finds the localization of
the largest UR subnetwork for SNL with anchors.

Certification: Diagonals of the positive semidefinite matrix

Ŷ − X̂T X̂ ,

can be used to certify the UR subnetwork; that is, Ŷjj − ‖x̂j‖2 = 0
if any only if the jth sensor point is in the UR subnetwork.
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The Dual Matrix Theorem, So and Y 07

Theorem
Any optimal dual solution matrix is a positive semidefinite stress
matrix for SNL or SNL with anchors. Therefore, a max-rank
positive semidefinite stress matrix can be computed approximately
in a time polynomial in n, d, and the accuracy log(1/ε).
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UR Theorems in Generic Position, Gortler and Thurston 09

Theorem
Let the network possess a localization P in generic positions of Rd .
Then, the network is UR if and only if there exists a max-rank
positive semidefinite stress matrix, that is, the network is SR.
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UR Theorems in General Position I

Let the network possess a localization P in general positions of Rd .
Then the network is UR if the graph contains a spanning
(d + 1)-lateration graph for SNL with or without anchors (So 06
and Zhu, So and Y 09).
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Theory of SDP Relaxations for SNL

UR Theorems in General Position I

Let the network possess a localization P in general positions of Rd .
Then the network is UR if the graph contains a spanning
(d + 1)-lateration graph for SNL with or without anchors (So 06
and Zhu, So and Y 09).

A (d + 1)-lateration graph:

2

34

5

6

.....

1
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UR Theorems in General Position II

Let the network possess a localization P in general positions of Rd .
Then
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UR Theorems in General Position II

Let the network possess a localization P in general positions of Rd .
Then

� The existence of a max-rank stress matrix implies that the
network is UR, that is, SR implies UR (Alfakih and Y 10).
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UR Theorems in General Position II

Let the network possess a localization P in general positions of Rd .
Then

� The existence of a max-rank stress matrix implies that the
network is UR, that is, SR implies UR (Alfakih and Y 10).

� A network that contains a spanning (d +1)-lateration graph is
UR if and only if it is SR (Alfakih, Taheri and Y 10), and the
same result holds for SNL with anchors.
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Theory of SDP Relaxations for SNL

UR Theorems in General Position II

Let the network possess a localization P in general positions of Rd .
Then

� The existence of a max-rank stress matrix implies that the
network is UR, that is, SR implies UR (Alfakih and Y 10).

� A network that contains a spanning (d +1)-lateration graph is
UR if and only if it is SR (Alfakih, Taheri and Y 10), and the
same result holds for SNL with anchors.

� Given localization matrix P and the lateration order, such a
max-rank stress matrix can be computed exactly in strongly
polynomial time (Alfakih, Taheri and Y 10).

Yinyu Ye September 2011, Fields Institute, Toronto



Introduction to Sensor Network Localization and Rigidity Theory
Semidefinite Programming Relaxation for SNL

Theory of SDP Relaxations for SNL

Proof Sketch I

Recall the extended position matrix

A =

(
P
eT

)
∈ R(d+1)×(n+d+1) .
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Theory of SDP Relaxations for SNL

Proof Sketch I

Recall the extended position matrix

A =

(
P
eT

)
∈ R(d+1)×(n+d+1) .

Recall that symmetric matrix S is a stress matrix if and only if

orthogonality: AS = 0, (1)

and
purity: Sij = 0, ∀(i , j) �∈ E . (2)
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Proof Sketch II

� We start a PSD matrix satisfies orthogonality condition (1),
say

S0 = I − AT (AAT )−1A,

where the columns of A are ordered according to the
lateration order, and we call it a “prestress” matrix.
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Theory of SDP Relaxations for SNL

Proof Sketch II

� We start a PSD matrix satisfies orthogonality condition (1),
say

S0 = I − AT (AAT )−1A,

where the columns of A are ordered according to the
lateration order, and we call it a “prestress” matrix.

� We modify S0 column (row) by column (row), starting from
the last column (row) backward, by zeroing entries not in E
from solving a linear equation system of d + 1 variables in
each step.
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Theory of SDP Relaxations for SNL

Proof Sketch II

� We start a PSD matrix satisfies orthogonality condition (1),
say

S0 = I − AT (AAT )−1A,

where the columns of A are ordered according to the
lateration order, and we call it a “prestress” matrix.

� We modify S0 column (row) by column (row), starting from
the last column (row) backward, by zeroing entries not in E
from solving a linear equation system of d + 1 variables in
each step.

� In the modification process, we maintain the PSD, rank-n,
and the orthogonality conditions of the “prestress” matrix.
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Theory of SDP Relaxations for SNL

Proof Sketch II

� We start a PSD matrix satisfies orthogonality condition (1),
say

S0 = I − AT (AAT )−1A,

where the columns of A are ordered according to the
lateration order, and we call it a “prestress” matrix.

� We modify S0 column (row) by column (row), starting from
the last column (row) backward, by zeroing entries not in E
from solving a linear equation system of d + 1 variables in
each step.

� In the modification process, we maintain the PSD, rank-n,
and the orthogonality conditions of the “prestress” matrix.

� In at most n steps, we reach a “prestress” matrix that finally
satisfies purity condition (2).
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Conclusions and Open Research Questions

� SNL has benefited a lot from Rigidity Notion and Theory, and
SDP seems also to provide an efficient computation and
analysis model for applications related to Rigidity Theory.
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Conclusions and Open Research Questions

� SNL has benefited a lot from Rigidity Notion and Theory, and
SDP seems also to provide an efficient computation and
analysis model for applications related to Rigidity Theory.

� A network is UR if and only if it is SR under the general
position assumption?
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Conclusions and Open Research Questions

� SNL has benefited a lot from Rigidity Notion and Theory, and
SDP seems also to provide an efficient computation and
analysis model for applications related to Rigidity Theory.

� A network is UR if and only if it is SR under the general
position assumption?

� Other checkable sufficient and necessary conditions for UR
networks?
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Theory of SDP Relaxations for SNL

Conclusions and Open Research Questions

� SNL has benefited a lot from Rigidity Notion and Theory, and
SDP seems also to provide an efficient computation and
analysis model for applications related to Rigidity Theory.

� A network is UR if and only if it is SR under the general
position assumption?

� Other checkable sufficient and necessary conditions for UR
networks?

� SNL based on other metric measurements: angles,
path-distances, time-series data, etc.
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