A short proof that 4-prismatoids have width at most 4

Tamon Stephen

Francisco Santos and Hugh Thomas
The Fields Institute
September 20th, 2011

- The Diameter of a Polytope and Hirsch's Conjecture.
- Spindles and Prismatoids.
- The Width of 4 -prismatoids.
- Conclusions.

Polytopes

Polytopes are the intersection of finitely many half-spaces in \mathbb{R}^{d}; they can also be viewed as the convex hull of finitely many extreme points or vertices.

- These vertices are attached by 1-dimension edges which are the "exterior" line segments of the polytope.
- The vertices and edges of a polytope thus form a graph, which is sometimes called the skeleton of the polytope.
- Polytopes appear, for instance, as the feasible regions of linear programs. Linear programs are one of the most widely used applied mathematical models.

The Simplex Algorithm

The most famous algorithm for linear programming is the simplex method of Dantzig (1947).

- Its outline is very simple: after finding some vertex, it tries to improve the current solution by pivoting, that is, moving along an edge to an adjacent vertex in a way that improves the objective function.
- When no improvement is possible, the optimum has been reached.
- The simplex algorithm is incredibly effective in practice.
- There are several challenges in analyzing the worst-case (theoretical) behaviour of the simplex method.

Image: Journal of Combinatorial Optimization

Diameter of a Polytope

- The simplex algorithm finds a path in the skeleton graph of a polytope from the starting vertex to the optimal vertex.
- For a pivoting algorithm to solve a problem efficiently, there must be a short path available between the starting and optimal vertices.
- Given any two vertices of a polytope, we define the distance between them to be the length of the shortest path between them in the graph.
- Then we can define the diameter of a polytope to be the maximum distance between two of its vertices.

For example, a three dimensional cube has diameter 3.

The Hirsch conjecture

- Given a d-dimensional polytope, we can describe it as being bounded by a set of $(d-1)$-dimensional sides called facets. In a linear program these will be (some of) the half-spaces listed in the description of the problem.
- It is possible to build a polytope with arbitrarily large diameter by making a polytope with many facets.
- Question: Can we build a polytope with large diameter using only a small number of facets?
- Let n be the number of facets of a d-dimensional polytope P.
- In 1957 Hirsch conjectured that the diameter of P is at most $n-d$.
- Last summer Santos announced a counter-example to the Hirsch conjecture.

Outline of Santos' construction

- Santos' proof contains two key ingredients.
- The first is the construction of a special 5-dimensional polytope called a "spindle" whose two special vertices that are relatively far apart.
- The second is to repeatedly (38 times) modify the spindle by an operation that at each step increases the dimension, number of facets and diameter of the polytope by one.
- It also roughly doubles the number of vertices.
- The result is a 43-dimensional non-Hirsch polytope with 86 facets and diameter (at least) 44. It also has around 2^{40} vertices.
- Subsequent refinements have produced examples in dimension as low as 20 (by Matschke, Santos and Weibel).

Spindles

- A spindle is a polytope with two distinguished vertices u and v such that every facet contains exactly one of them.
- A spindle can be viewed as the result of intersecting two polyhedral cones that contain each other's origin.
- The length of a spindle is the minimum number of steps it takes to go from u to v.
- In 3 dimensions, spindles will have length 3 , unless a pair of rays of the cone collide (which would drop it to 2).
- Given a d-dimensional spindle of length at least $(d+1)$, Santos' methods can be used to build a counter-example to the Hirsch conjecture.
- The initial construction was a 5-dimensional spindle of length 6 with 48 facets and 322 vertices.
- Subsequent improvements give a 5-dimensional spindle of length 6 with only 25 vertices.

Spindles and Prismatoids

- Any polytope P has a dual polar polytope P^{\prime} where the vertices of P correspond to the facets of P^{\prime} and vice-versa.
- Rather than work with spindles directly, it is more intuitive to work with their duals, called prismatoids.
- Examples: In dimension d the cross-polytope (octahedron) is a particularly simple spindle, while the cube is a particularly simple prismatoid.
- Prismatoids have two distinguished facets Q^{+}and Q^{-}and each vertex lies on either Q^{+}or Q^{-}.
- In the prismatoid setting, moving from vertex to vertex along an edge is replaced by moving between facets that share a codimension 2 boundary.
- Santos constructs a 5-prismatoid of width 6 using a pair of geodesic maps on the 3-sphere.

4-prismatoids

- The construction of the maps on 3 -sphere is based on a pair of geodesic maps (graphs) that exist on the 2-torus.
- In fact, if we could get such a pair of geodesic maps on the 2-sphere, rather than the 2-torus, we could build a 4 -prismatoid of length 5 .
- The question of whether such a 4-prismatoid exists is a natural one that was left open in Santos' original work.
- It requires topological techniques, as the maps do exist on the torus.
- We give two proofs that such a 4-prismatoid cannot exist, one via simply-connectedness, and one via Euler characteristic.
- Both are short and fairly elementary. We present here the Euler characteristic proof.

From 4 dimensions to 3

A well known construction in polytopes is the Schlegel diagram: one face of the polytope is enlarged and the remainder of the polytope is projected onto that face.

- This has the effect of replacing a d-dimensional polytope by a ($d-1$)-dimensional polytope that is subdivided into ($d-1$)-dimensional cells representing the facets of the original polytope.
- In this case we will project onto the facet Q^{+}, with Q^{-} becoming an interior cell.
- The question then is how many $(d-2)$-dimensional facets of the resulting complex must be crossed to go from the outside Q^{+}to the inside Q^{-}.
- We observe that it is enough to prove it for triangulated cell complexes. Since this is 3-dimensional, the "triangles" are tetrahedra (simplices).
- Since all vertices lie on Q^{+}or Q^{-}, the tetrahedra come in 3 flavours: they can have either one, two or three vertices on Q^{+}. We think of colouring these blue, white and red respectively.
- All we have to prove is that there is some white tetrahedron that shares a 2-dimensional face with both a red and a blue tetrahedron.
- As a preprocessing step, we glob together groups of adjacent blue or red tetrahedra.

From 3 dimensions to 2

- Now we look at a "middle slice" of the complex, given by a (topological) sphere that lies strictly between Q^{+}and Q^{-}.
- This sphere is divided in 2-dimensional cells by the tetrahedra.
- White tetrahedra become quadrilaterals, while blue and red ones become triangles. However, they may have an arbitrary shape after globbing.
- Here is a possible portion of a middle slice:

A pair of graphs

- Each edge in the middle slice is a section of a face of a white tetrahedron that has an edge on either Q^{+}or Q^{-}, but not both.
- By colouring these edges red and blue depending on whether the face has an edge on Q^{+}or Q^{-}, we see that the graph formed by the vertices and edges on the slice is the refinement of transversal red and blue graphs embedded in the sphere.
- This gives us a purely combinatorial question about embedding pairs of transversal graphs.
- Each white face alternates between red and blue edges as we go around its perimeter.
- We proceed by evaluating the Euler characteristic locally at each vertex.
- Recall the Euler characteristic in 2 dimensions is $V-E+F$, i.e. the number of vertices - the number of edges + the number of faces.
- The Euler characteristic of any polytope is 2 .
- We compute at each vertex v, the quantity $f(v)$ by summing: $+1,\left(-\frac{1}{2}\right) \times$ the number of edges incident on the vertex, and $\frac{1}{4} \times$ the number of white faces incident on the vertex.
- Observe that $\sum_{v} f(v)+b=\chi(\mathbb{S})$ where b is the number of red and blue faces and $\chi(\mathbb{S})=2$ is the Euler characteristic of the sphere: vertices and white face contribute +1 to the sum, while edges contribute -1 .

Non-positivity of f

- Claim: For any v, we have that $f(v) \leq 0$.
- Proof: Walk around v alternating between edges contributing $-\frac{1}{2}$ and faces contributing at most $\frac{1}{4}$.
- If we see at least 4 faces, this is sufficient to cancel the +1 from the vertex.
- We might see only 3 faces, in which case one of them is not white and contributes 0 rather than $+\frac{1}{4}$. This follows from the alternation of the edges, and again allows us to cancel the +1 from the vertex.
- We still need to show that there are sufficient v with $f(v)<0$ to cancel the b term.

Special vertices

- To do this, we show that each red or blue face must contain at least two special vertices which either lie on a second red or blue face, or lie on at least 4 white faces.
- Assume not. Then decomposing the red or blue face into its constituent triangles, we see they all intersect Q^{-}in the same line segment. But this line segment then loops around and intersects itself.
- Each special vertex contributes at most $-1 / 2$ to $\sum_{v} f(v)$.
- We assign special vertices to blue and red faces to show that if we have b blue and red faces, we have a total contribution of $-b$ from special vertices.
- The illustrated complex from the torus has $\sum_{v} f(v)=-b$.

Second proof

- There is a second proof that uses simply connectedness directly.
- The idea is to find a cycle in the refined graph that does not bound a face.
- This proof is more fully topological, i.e. it works for any pair of transversal graphs embedded in the sphere that avoid some degeneracies.

Conclusions and Remarks

- We prove that 4 -prismatoids have length at most 4.
- This rules out one very particular avenue for possible low-dimensional non-Hirsch polytopes.
- Constructing low-dimensional non-Hirsch polytopes remains an interesting open question.
- An important outstanding question is the Polynomial Hirsch Conjecture: whether there is any polynomial upper bound (in n and d) for the diameter of a polytope.
- Kalai and Santos propose adapting this approach to get a polynomial upper bound for the diameter of a polytope by looking at pairs of maps on \mathbb{S}^{d} and their common refinement.

Thank you!

