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Polytopes

Polytopes are the intersection of finitely
many half-spaces in R

d ; they can also be
viewed as the convex hull of finitely many
extreme points or vertices.

These vertices are attached by 1-dimension edges which are
the “exterior” line segments of the polytope.

The vertices and edges of a polytope thus form a graph, which
is sometimes called the skeleton of the polytope.

Polytopes appear, for instance, as the feasible regions of linear
programs. Linear programs are one of the most widely used
applied mathematical models.

Tamon Stephen 4-prismatoids 3

Image: Wikipedia



The Simplex Algorithm

The most famous algorithm
for linear programming is the
simplex method of Dantzig
(1947).

Its outline is very simple: after finding some vertex, it tries to
improve the current solution by pivoting, that is, moving along
an edge to an adjacent vertex in a way that improves the
objective function.

When no improvement is possible, the optimum has been
reached.

The simplex algorithm is incredibly effective in practice.

There are several challenges in analyzing the worst-case
(theoretical) behaviour of the simplex method.
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Diameter of a Polytope

The simplex algorithm finds a path in the skeleton graph of a
polytope from the starting vertex to the optimal vertex.

For a pivoting algorithm to solve a problem efficiently, there
must be a short path available between the starting and
optimal vertices.

Given any two vertices of a polytope, we define the distance
between them to be the length of the shortest path between
them in the graph.

Then we can define the diameter of a polytope to be the
maximum distance between two of its vertices.

For example, a three
dimensional cube has
diameter 3.
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The Hirsch conjecture

Given a d -dimensional polytope, we can describe it as being
bounded by a set of (d − 1)-dimensional sides called facets. In
a linear program these will be (some of) the half-spaces listed
in the description of the problem.

It is possible to build a polytope with arbitrarily large diameter
by making a polytope with many facets.

Question: Can we build a polytope with large diameter using
only a small number of facets?

Let n be the number of facets of a d -dimensional polytope P .

In 1957 Hirsch conjectured that the diameter of P is at most
n − d .

Last summer Santos announced a counter-example to the
Hirsch conjecture.
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Outline of Santos’ construction

Santos’ proof contains two key ingredients.

The first is the construction of a special 5-dimensional
polytope called a “spindle” whose two special vertices that are
relatively far apart.

The second is to repeatedly (38 times) modify the spindle by
an operation that at each step increases the dimension,
number of facets and diameter of the polytope by one.

It also roughly doubles the number of vertices.

The result is a 43-dimensional non-Hirsch polytope with 86
facets and diameter (at least) 44. It also has around 240

vertices.

Subsequent refinements have produced examples in dimension
as low as 20 (by Matschke, Santos and Weibel).
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Spindles

A spindle is a polytope with two distinguished vertices u and v

such that every facet contains exactly one of them.

A spindle can be viewed as the result of intersecting two
polyhedral cones that contain each other’s origin.

The length of a spindle is the minimum number of steps it
takes to go from u to v .

In 3 dimensions, spindles will have length 3, unless a pair of
rays of the cone collide (which would drop it to 2).

Given a d -dimensional spindle of length at least (d + 1),
Santos’ methods can be used to build a counter-example to
the Hirsch conjecture.

The initial construction was a 5-dimensional spindle of length
6 with 48 facets and 322 vertices.

Subsequent improvements give a 5-dimensional spindle of
length 6 with only 25 vertices.
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Spindles and Prismatoids

Any polytope P has a dual polar polytope P ′ where the
vertices of P correspond to the facets of P ′ and vice-versa.

Rather than work with spindles directly, it is more intuitive to
work with their duals, called prismatoids.

Examples: In dimension d the cross-polytope (octahedron) is a
particularly simple spindle, while the cube is a particularly
simple prismatoid.

Prismatoids have two distinguished facets Q+ and Q− and
each vertex lies on either Q+ or Q−.

In the prismatoid setting, moving from vertex to vertex along
an edge is replaced by moving between facets that share a
codimension 2 boundary.

Santos constructs a 5-prismatoid of width 6 using a pair of
geodesic maps on the 3-sphere.
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4-prismatoids

The construction of the maps on 3-sphere is based on a pair of
geodesic maps (graphs) that exist on the 2-torus.

In fact, if we could get such a pair of geodesic maps on the
2-sphere, rather than the 2-torus, we could build a
4-prismatoid of length 5.

The question of whether such a 4-prismatoid exists is a natural
one that was left open in Santos’ original work.

It requires topological techniques, as the maps do exist on the
torus.

We give two proofs that such a 4-prismatoid cannot exist, one
via simply-connectedness, and one via Euler characteristic.

Both are short and fairly elementary. We present here the
Euler characteristic proof.
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From 4 dimensions to 3

A well known construction in polytopes is
the Schlegel diagram: one face of the
polytope is enlarged and the remainder of
the polytope is projected onto that face.

This has the effect of replacing a d -dimensional polytope by a
(d − 1)-dimensional polytope that is subdivided into
(d − 1)-dimensional cells representing the facets of the original
polytope.

In this case we will project onto the facet Q+, with Q−

becoming an interior cell.

The question then is how many (d − 2)-dimensional facets of
the resulting complex must be crossed to go from the outside
Q+ to the inside Q−.
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Further processing

We observe that it is enough to prove it for triangulated cell
complexes. Since this is 3-dimensional, the “triangles” are
tetrahedra (simplices).

Since all vertices lie on Q+ or Q−, the tetrahedra come in 3
flavours: they can have either one, two or three vertices on
Q+. We think of colouring these blue, white and red
respectively.

All we have to prove is that there is some white tetrahedron
that shares a 2-dimensional face with both a red and a blue
tetrahedron.

As a preprocessing step, we glob together groups of adjacent
blue or red tetrahedra.

Tamon Stephen 4-prismatoids 12



From 3 dimensions to 2

Now we look at a “middle slice” of the complex, given by a
(topological) sphere that lies strictly between Q+ and Q−.

This sphere is divided in 2-dimensional cells by the tetrahedra.

White tetrahedra become quadrilaterals, while blue and red
ones become triangles. However, they may have an arbitrary
shape after globbing.

Here is a possible portion of a middle slice:
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A pair of graphs

Each edge in the middle slice is a section of a face of a white
tetrahedron that has an edge on either Q+ or Q−, but not
both.

By colouring these edges red and blue depending on whether
the face has an edge on Q+ or Q−, we see that the graph
formed by the vertices and edges on the slice is the refinement
of transversal red and blue graphs embedded in the sphere.

This gives us a purely combinatorial question about embedding
pairs of transversal graphs.

Each white face alternates between red and blue edges as we
go around its perimeter.
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The Euler characteristic

We proceed by evaluating the Euler characteristic locally at
each vertex.

Recall the Euler characteristic in 2 dimensions is V-E+F,
i.e. the number of vertices − the number of edges + the
number of faces.

The Euler characteristic of any polytope is 2.

We compute at each vertex v , the quantity f (v) by summing:
+1, (−1

2
)× the number of edges incident on the vertex, and

1
4
× the number of white faces incident on the vertex.

Observe that
∑

v
f (v) + b = χ(S) where b is the number of

red and blue faces and χ(S) = 2 is the Euler characteristic of
the sphere: vertices and white face contribute +1 to the sum,
while edges contribute −1.
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Non-positivity of f

Claim: For any v , we have that f (v) ≤ 0.

Proof: Walk around v alternating between edges contributing
−

1
2

and faces contributing at most 1
4
.

If we see at least 4 faces, this is sufficient to cancel the +1
from the vertex.

We might see only 3 faces, in which case one of them is not
white and contributes 0 rather than +1

4
. This follows from the

alternation of the edges, and again allows us to cancel the +1
from the vertex.

We still need to show that there are sufficient v with f (v) < 0
to cancel the b term.
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Special vertices

To do this, we show that each red or blue face must contain at
least two special vertices which either lie on a second red or
blue face, or lie on at least 4 white faces.

Assume not. Then decomposing the red or blue face into its
constituent triangles, we see they all intersect Q− in the same
line segment. But this line segment then loops around and
intersects itself.

Each special vertex contributes at most −1/2 to
∑

v
f (v).

We assign special vertices to blue and red faces to show that if
we have b blue and red faces, we have a total contribution of
−b from special vertices.

The illustrated complex from the torus has
∑

v
f (v) = −b.
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Second proof

There is a second proof that uses simply connectedness
directly.

The idea is to find a cycle in the refined graph that does not
bound a face.

This proof is more fully topological, i.e. it works for any pair of
transversal graphs embedded in the sphere that avoid some
degeneracies.
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Conclusions and Remarks

We prove that 4-prismatoids have length at most 4.

This rules out one very particular avenue for possible
low-dimensional non-Hirsch polytopes.

Constructing low-dimensional non-Hirsch polytopes remains an
interesting open question.

An important outstanding question is the Polynomial Hirsch
Conjecture: whether there is any polynomial upper bound (in
n and d) for the diameter of a polytope.

Kalai and Santos propose adapting this approach to get a
polynomial upper bound for the diameter of a polytope by
looking at pairs of maps on S

d and their common refinement.
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Thank you!
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