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Polytopes

Polytopes are the intersection of finitely
many half-spaces in RY; they can also be
viewed as the convex hull of finitely many
extreme points or vertices.

@ These vertices are attached by 1-dimension edges which are
the “exterior” line segments of the polytope.

@ The vertices and edges of a polytope thus form a graph, which
is sometimes called the skeleton of the polytope.

@ Polytopes appear, for instance, as the feasible regions of linear
programs. Linear programs are one of the most widely used
applied mathematical models.

Image: Wikipedia
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The Simplex Algorithm

The most famous algorithm
for linear programming is the
simplex method of Dantzig
(1947).

@ lts outline is very simple: after finding some vertex, it tries to
improve the current solution by pivoting, that is, moving along
an edge to an adjacent vertex in a way that improves the
objective function.

@ When no improvement is possible, the optimum has been
reached.

@ The simplex algorithm is incredibly effective in practice.

@ There are several challenges in analyzing the worst-case
(theoretical) behaviour of the simplex method.

Image: Journal of Combinatorial Optimization
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Diameter of a Polytope

@ The simplex algorithm finds a path in the skeleton graph of a
polytope from the starting vertex to the optimal vertex.

@ For a pivoting algorithm to solve a problem efficiently, there
must be a short path available between the starting and
optimal vertices.

@ Given any two vertices of a polytope, we define the distance
between them to be the length of the shortest path between
them in the graph.

@ Then we can define the diameter of a polytope to be the
maximum distance between two of its vertices.

For example, a three ~—
dimensional cube has \l
diameter 3. w— g:—zfv23.com
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The Hirsch conjecture

@ Given a d-dimensional polytope, we can describe it as being
bounded by a set of (d — 1)-dimensional sides called facets. In
a linear program these will be (some of) the half-spaces listed
in the description of the problem.

@ |t is possible to build a polytope with arbitrarily large diameter
by making a polytope with many facets.

@ Question: Can we build a polytope with large diameter using
only a small number of facets?

@ Let n be the number of facets of a d-dimensional polytope P.

@ In 1957 Hirsch conjectured that the diameter of P is at most
n—d.

@ Last summer Santos announced a counter-example to the
Hirsch conjecture.
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Outline of Santos’ construction

@ Santos’ proof contains two key ingredients.

@ The first is the construction of a special 5-dimensional
polytope called a “spindle” whose two special vertices that are
relatively far apart.

@ The second is to repeatedly (38 times) modify the spindle by
an operation that at each step increases the dimension,
number of facets and diameter of the polytope by one.

@ It also roughly doubles the number of vertices.

@ The result is a 43-dimensional non-Hirsch polytope with 86
facets and diameter (at least) 44. It also has around 240
vertices.

@ Subsequent refinements have produced examples in dimension
as low as 20 (by Matschke, Santos and Weibel).
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@ A spindle is a polytope with two distinguished vertices u and v
such that every facet contains exactly one of them.

@ A spindle can be viewed as the result of intersecting two
polyhedral cones that contain each other's origin.

@ The length of a spindle is the minimum number of steps it
takes to go from u to v.

@ In 3 dimensions, spindles will have length 3, unless a pair of
rays of the cone collide (which would drop it to 2).

@ Given a d-dimensional spindle of length at least (d + 1),
Santos’ methods can be used to build a counter-example to
the Hirsch conjecture.

@ The initial construction was a 5-dimensional spindle of length
6 with 48 facets and 322 vertices.

@ Subsequent improvements give a 5-dimensional spindle of

length 6 with only 25 vertices.
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Spindles and Prismatoids

@ Any polytope P has a dual polar polytope P’ where the
vertices of P correspond to the facets of P’ and vice-versa.

@ Rather than work with spindles directly, it is more intuitive to
work with their duals, called prismatoids.

@ Examples: In dimension d the cross-polytope (octahedron) is a
particularly simple spindle, while the cube is a particularly
simple prismatoid.

@ Prismatoids have two distinguished facets Q™ and @~ and
each vertex lies on either QT or Q.

@ In the prismatoid setting, moving from vertex to vertex along
an edge is replaced by moving between facets that share a
codimension 2 boundary.

@ Santos constructs a 5-prismatoid of width 6 using a pair of
geodesic maps on the 3-sphere.

] [l =
Tamon Stephen 4-prismatoids 9

"
!
N)
pe)
i)



@ The construction of the maps on 3-sphere is based on a pair of
geodesic maps (graphs) that exist on the 2-torus.

@ In fact, if we could get such a pair of geodesic maps on the
2-sphere, rather than the 2-torus, we could build a
4-prismatoid of length 5.

@ The question of whether such a 4-prismatoid exists is a natural
one that was left open in Santos’ original work.

@ It requires topological techniques, as the maps do exist on the
torus.

@ We give two proofs that such a 4-prismatoid cannot exist, one
via simply-connectedness, and one via Euler characteristic.

@ Both are short and fairly elementary. We present here the
Euler characteristic proof.
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From 4 dimensions to 3

A well known construction in polytopes is
the Schlegel diagram: one face of the
polytope is enlarged and the remainder of
the polytope is projected onto that face.

@ This has the effect of replacing a d-dimensional polytope by a
(d — 1)-dimensional polytope that is subdivided into
(d — 1)-dimensional cells representing the facets of the original
polytope.

@ In this case we will project onto the facet QT, with Q~
becoming an interior cell.

@ The question then is how many (d — 2)-dimensional facets of
the resulting complex must be crossed to go from the outside
Q™ to the inside Q.

Image: Wikipedia
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Further processing

@ We observe that it is enough to prove it for triangulated cell
complexes. Since this is 3-dimensional, the “triangles” are
tetrahedra (simplices).

@ Since all vertices lie on QT or @, the tetrahedra come in 3
flavours: they can have either one, two or three vertices on
Q*. We think of colouring these blue, white and red
respectively.

@ All we have to prove is that there is some white tetrahedron
that shares a 2-dimensional face with both a red and a blue
tetrahedron.

@ As a preprocessing step, we glob together groups of adjacent
blue or red tetrahedra.
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From 3 dimensions to 2

@ Now we look at a “middle slice” of the complex, given by a
(topological) sphere that lies strictly between @t and Q™.

@ This sphere is divided in 2-dimensional cells by the tetrahedra.

@ White tetrahedra become quadrilaterals, while blue and red
ones become triangles. However, they may have an arbitrary
shape after globbing.

@ Here is a possible portion of a middle slice:
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A pair of graphs

@ Each edge in the middle slice is a section of a face of a white
tetrahedron that has an edge on either Q™ or @, but not
both.

@ By colouring these edges red and blue depending on whether
the face has an edge on Q" or Q~, we see that the graph
formed by the vertices and edges on the slice is the refinement
of transversal red and blue graphs embedded in the sphere.

@ This gives us a purely combinatorial question about embedding
pairs of transversal graphs.

@ Each white face alternates between red and blue edges as we
go around its perimeter.
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The Euler characteristic

@ We proceed by evaluating the Euler characteristic locally at
each vertex.

@ Recall the Euler characteristic in 2 dimensions is V-E+F,
i.e. the number of vertices — the number of edges + the
number of faces.

@ The Euler characteristic of any polytope is 2.

@ We compute at each vertex v, the quantity f(v) by summing:
+1 (—3)x the number of edges incident on the vertex, and
>< the number of white faces incident on the vertex.

@ Observe that > f(v) + b = x(S) where b is the number of
red and blue faces and x(S) = 2 is the Euler characteristic of
the sphere: vertices and white face contribute +1 to the sum,
while edges contribute —1.
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Non-positivity of f

@ Claim: For any v, we have that f(v) <O0.

@ Proof: Walk around v alternating between edges contributing
—% and faces contributing at most %.

@ If we see at least 4 faces, this is sufficient to cancel the +1
from the vertex.

@ We might see only 3 faces, in which case one of them is not
white and contributes 0 rather than —i—%. This follows from the
alternation of the edges, and again allows us to cancel the +1
from the vertex.

@ We still need to show that there are sufficient v with f(v) <0
to cancel the b term.
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Special vertices

@ To do this, we show that each red or blue face must contain at
least two special vertices which either lie on a second red or
blue face, or lie on at least 4 white faces.

@ Assume not. Then decomposing the red or blue face into its
constituent triangles, we see they all intersect @~ in the same

line segment. But this line segment then loops around and
intersects itself.

@ Each special vertex contributes at most —1/2 to )~ f(v).

@ We assign special vertices to blue and red faces to show that if
we have b blue and red faces, we have a total contribution of
—b from special vertices.

@ The illustrated complex from the torus has > f(v) = —b.
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@ There is a second proof that uses simply connectedness
directly.

@ The idea is to find a cycle in the refined graph that does not
bound a face.

degeneracies.

@ This proof is more fully topological, i.e. it works for any pair of
transversal graphs embedded in the sphere that avoid some
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Conclusions and Remarks

@ We prove that 4-prismatoids have length at most 4.

@ This rules out one very particular avenue for possible
low-dimensional non-Hirsch polytopes.

@ Constructing low-dimensional non-Hirsch polytopes remains an
interesting open question.

@ An important outstanding question is the Polynomial Hirsch
Conjecture: whether there is any polynomial upper bound (in
n and d) for the diameter of a polytope.

@ Kalai and Santos propose adapting this approach to get a
polynomial upper bound for the diameter of a polytope by
looking at pairs of maps on S¢ and their common refinement.
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Thank YOu!
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