A short proof that 4-prismatoids have width at most 4

Tamon Stephen

joint work with Francisco Santos and Hugh Thomas

The Fields Institute September 20th, 2011

Outline

• The Diameter of a Polytope and Hirsch's Conjecture.

Spindles and Prismatoids.

• The Width of 4-prismatoids.

Conclusions.

Polytopes

Polytopes are the intersection of finitely many half-spaces in \mathbb{R}^d ; they can also be viewed as the convex hull of finitely many extreme points or vertices.

- These vertices are attached by 1-dimension edges which are the "exterior" line segments of the polytope.
- The vertices and edges of a polytope thus form a graph, which is sometimes called the skeleton of the polytope.
- Polytopes appear, for instance, as the feasible regions of linear programs. Linear programs are one of the most widely used applied mathematical models.

Image: Wikipedia

The Simplex Algorithm

The most famous algorithm for linear programming is the simplex method of Dantzig (1947).

- Its outline is very simple: after finding some vertex, it tries to improve the current solution by pivoting, that is, moving along an edge to an adjacent vertex in a way that improves the objective function.
- When no improvement is possible, the optimum has been reached.
- The simplex algorithm is incredibly effective in practice.
- There are several challenges in analyzing the worst-case (theoretical) behaviour of the simplex method.

Image: Journal of Combinatorial Optimization

4 D > 4 B > 4 E > -

Diameter of a Polytope

- The simplex algorithm finds a path in the skeleton graph of a polytope from the starting vertex to the optimal vertex.
- For a pivoting algorithm to solve a problem efficiently, there must be a short path available between the starting and optimal vertices.
- Given any two vertices of a polytope, we define the distance between them to be the length of the shortest path between them in the graph.
- Then we can define the diameter of a polytope to be the maximum distance between two of its vertices.

For example, a three dimensional cube has diameter 3.

Image: Draw23.com

The Hirsch conjecture

- Given a d-dimensional polytope, we can describe it as being bounded by a set of (d-1)-dimensional sides called facets. In a linear program these will be (some of) the half-spaces listed in the description of the problem.
- It is possible to build a polytope with arbitrarily large diameter by making a polytope with many facets.
- Question: Can we build a polytope with large diameter using only a small number of facets?
- Let n be the number of facets of a d-dimensional polytope P.
- In 1957 Hirsch conjectured that the diameter of P is at most n-d.
- Last summer Santos announced a counter-example to the Hirsch conjecture.

◆ロ > ◆ 回 > ◆ き > ◆ き * り へ ○

Outline of Santos' construction

- Santos' proof contains two key ingredients.
- The first is the construction of a special 5-dimensional polytope called a "spindle" whose two special vertices that are relatively far apart.
- The second is to repeatedly (38 times) modify the spindle by an operation that at each step increases the dimension, number of facets and diameter of the polytope by one.
- It also roughly doubles the number of vertices.
- The result is a 43-dimensional non-Hirsch polytope with 86 facets and diameter (at least) 44. It also has around 2⁴⁰ vertices.
- Subsequent refinements have produced examples in dimension as low as 20 (by Matschke, Santos and Weibel).

Spindles

- A spindle is a polytope with two distinguished vertices u and v such that every facet contains exactly one of them.
- A spindle can be viewed as the result of intersecting two polyhedral cones that contain each other's origin.
- The length of a spindle is the minimum number of steps it takes to go from u to v.
- In 3 dimensions, spindles will have length 3, unless a pair of rays of the cone collide (which would drop it to 2).
- ullet Given a d-dimensional spindle of length at least (d+1), Santos' methods can be used to build a counter-example to the Hirsch conjecture.
- The initial construction was a 5-dimensional spindle of length 6 with 48 facets and 322 vertices.
- Subsequent improvements give a 5-dimensional spindle of length 6 with only 25 vertices.

(□) (□) (필) (필) (필)

Spindles and Prismatoids

- Any polytope P has a dual polar polytope P' where the vertices of P correspond to the facets of P' and vice-versa.
- Rather than work with spindles directly, it is more intuitive to work with their duals, called prismatoids.
- Examples: In dimension *d* the cross-polytope (octahedron) is a particularly simple spindle, while the cube is a particularly simple prismatoid.
- Prismatoids have two distinguished facets Q^+ and Q^- and each vertex lies on either Q^+ or Q^- .
- In the prismatoid setting, moving from vertex to vertex along an edge is replaced by moving between facets that share a codimension 2 boundary.
- Santos constructs a 5-prismatoid of width 6 using a pair of geodesic maps on the 3-sphere.

4-prismatoids

- The construction of the maps on 3-sphere is based on a pair of geodesic maps (graphs) that exist on the 2-torus.
- In fact, if we could get such a pair of geodesic maps on the 2-sphere, rather than the 2-torus, we could build a 4-prismatoid of length 5.
- The question of whether such a 4-prismatoid exists is a natural one that was left open in Santos' original work.
- It requires topological techniques, as the maps do exist on the torus.
- We give two proofs that such a 4-prismatoid cannot exist, one via simply-connectedness, and one via Euler characteristic.
- Both are short and fairly elementary. We present here the Euler characteristic proof.

From 4 dimensions to 3

A well known construction in polytopes is the Schlegel diagram: one face of the polytope is enlarged and the remainder of the polytope is projected onto that face.

- ullet This has the effect of replacing a d-dimensional polytope by a (d-1)-dimensional polytope that is subdivided into (d-1)-dimensional cells representing the facets of the original polytope.
- In this case we will project onto the facet Q⁺, with Q⁻ becoming an interior cell.
- The question then is how many (d-2)-dimensional facets of the resulting complex must be crossed to go from the outside Q^+ to the inside Q^- .

image. Wikipedia

Further processing

Tamon Stephen

- We observe that it is enough to prove it for triangulated cell complexes. Since this is 3-dimensional, the "triangles" are tetrahedra (simplices).
- Since all vertices lie on Q⁺ or Q⁻, the tetrahedra come in 3 flavours: they can have either one, two or three vertices on Q⁺. We think of colouring these blue, white and red respectively.
- All we have to prove is that there is some white tetrahedron that shares a 2-dimensional face with both a red and a blue tetrahedron.
- As a preprocessing step, we glob together groups of adjacent blue or red tetrahedra.

4-prismatoids

From 3 dimensions to 2

- Now we look at a "middle slice" of the complex, given by a (topological) sphere that lies strictly between Q^+ and Q^- .
- This sphere is divided in 2-dimensional cells by the tetrahedra.
- White tetrahedra become quadrilaterals, while blue and red ones become triangles. However, they may have an arbitrary shape after globbing.
- Here is a possible portion of a middle slice:

A pair of graphs

- Each edge in the middle slice is a section of a face of a white tetrahedron that has an edge on either Q^+ or Q^- , but not both.
- By colouring these edges red and blue depending on whether the face has an edge on Q⁺ or Q⁻, we see that the graph formed by the vertices and edges on the slice is the refinement of transversal red and blue graphs embedded in the sphere.
- This gives us a purely combinatorial question about embedding pairs of transversal graphs.
- Each white face alternates between red and blue edges as we go around its perimeter.

The Euler characteristic

- We proceed by evaluating the Euler characteristic locally at each vertex.
- Recall the Euler characteristic in 2 dimensions is V-E+F,
 i.e. the number of vertices the number of edges + the number of faces.
- The Euler characteristic of any polytope is 2.
- We compute at each vertex v, the quantity f(v) by summing: +1, $\left(-\frac{1}{2}\right) \times$ the number of edges incident on the vertex, and $\frac{1}{4} \times$ the number of white faces incident on the vertex.
- Observe that $\sum_{v} f(v) + b = \chi(\mathbb{S})$ where b is the number of red and blue faces and $\chi(\mathbb{S}) = 2$ is the Euler characteristic of the sphere: vertices and white face contribute +1 to the sum, while edges contribute -1.

Non-positivity of f

- Claim: For any v, we have that $f(v) \leq 0$.
- Proof: Walk around v alternating between edges contributing $-\frac{1}{2}$ and faces contributing at most $\frac{1}{4}$.
- If we see at least 4 faces, this is sufficient to cancel the +1 from the vertex.
- We might see only 3 faces, in which case one of them is not white and contributes 0 rather than $+\frac{1}{4}$. This follows from the alternation of the edges, and again allows us to cancel the +1 from the vertex.
- We still need to show that there are sufficient v with f(v) < 0 to cancel the b term.

(ロ) (部) (注) (注) 注 り(0)

Special vertices

- To do this, we show that each red or blue face must contain at least two *special* vertices which either lie on a second red or blue face, or lie on at least 4 white faces.
- Assume not. Then decomposing the red or blue face into its constituent triangles, we see they all intersect Q^- in the same line segment. But this line segment then loops around and intersects itself.
- Each special vertex contributes at most -1/2 to $\sum_{\nu} f(\nu)$.
- We assign special vertices to blue and red faces to show that if we have b blue and red faces, we have a total contribution of -b from special vertices.
- The illustrated complex from the torus has $\sum_{v} f(v) = -b$.

Second proof

- There is a second proof that uses simply connectedness directly.
- The idea is to find a cycle in the refined graph that does not bound a face.
- This proof is more fully topological, i.e. it works for any pair of transversal graphs embedded in the sphere that avoid some degeneracies.

Conclusions and Remarks

- We prove that 4-prismatoids have length at most 4.
- This rules out one very particular avenue for possible low-dimensional non-Hirsch polytopes.
- Constructing low-dimensional non-Hirsch polytopes remains an interesting open question.
- An important outstanding question is the Polynomial Hirsch Conjecture: whether there is any polynomial upper bound (in n and d) for the diameter of a polytope.
- Kalai and Santos propose adapting this approach to get a polynomial upper bound for the diameter of a polytope by looking at pairs of maps on \mathbb{S}^d and their common refinement.

Thank you!