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“And when it comes to mathematics, you must realize that this is the human
mind at the extreme limit of its capacity.” (H. Robbins)
“. . .so reduce the use of the brain and calculate!” (E. W. Dijkstra)
“The fact that a brain can do it seems to suggest that the difficulties [of trying
with a machine] may not really be so bad as they now seem.” (A. Turing)
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background and partly to correct the conventional wisdom that couples computers with
applied mathematics and blackboards with pure mathematics.

1.2 Birch and Swinnerton-Dyer conjecture

I believe that the Birch and Swinnerton-Dyer conjecture is the deepest conjecture ever
to be formulated with the help of a computer [BSD65]. The Clay Institute has offered a
one-million dollar prize to anyone who settles it.

Let E be an elliptic curve defined by an equation y2 = x3 + ax + b over the field of
rational numbers. Motivated by related quantities in Siegel’s work on quadratic forms,
Birch and Swinnerton-Dyer set out to estimate the quantity

∏
Np/p, (1)

where Np is the number of rational points on E modulo p, and the product extends
over primes p ≤ P [Bir02]. Performing experiments on the EDSAC II computer at
the Computer laboratory at Cambridge University during the years 1958–1962, they
observed that as P increases, the products (1) grow asymptotically in P as

c(E) logr P,

for some constant c, where r is the Mordell-Weil rank of E; that is, the maximum
number of independent points of infinite order in the group E(Q) of rational points.
Following the suggestions of Cassels and Davenport, they reformulated this numerical
asymptotic law in terms of the zeta function L(E, s) of the elliptic curve. Thanks to the
work of Wiles and subsequent extensions of that work, it is known that L(E, s) is an
entire function of the complex variable s. The Birch and Swinnerton-Dyer conjecture
asserts that the rank r of an elliptic curve over Q is equal to the order of the zero of
L(E, s) at s = 1.

A major (computer-free) recent theorem establishes that the Birch and Swinnerton-
Dyer conjecture holds for a positive proportion of all elliptic curves over Q [BS10].
This result, although truly spectacular, is mildly misleading in the sense that the elliptic
curves of high rank rarely occur but pose the greatest difficulties.

1.3 Sato-Tate

The Sato-Tate conjecture is another major conjecture about elliptic curves that was
discovered by computer. If E is an elliptic curve with rational coefficients

y2 = x3 + ax + b,

then the number of solutions modulo a prime number p (including the point at infinity)
has the form

1 + p − 2
√

p cos θp.

for some real number 0 ≤ θp ≤ π. In 1962, Sato, Nagashima, and Namba made cal-
culations of θp on a Hitachi HIPAC 103 computer to understand how these numbers
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The number of points Np modulo a prime number p

(including the point at infinity) on an elliptic curve over Q has
the form

1 + p− 2
√

p cos θp.

for some real number 0 ≤ θp ≤ π.
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simple groups that do not fall into natural infinite families. For example, Lyons (1972)
predicted the existence of a sporadic group of order

28 · 37 · 56 · 7 · 11 · 31 · 37 · 67.

In 1973, Sims proved the existence of this group in a long unpublished manuscript that
relied on many specialized computer programs. By 1999 , the calculations had become
standardized in group theory packages, such as GAP and Magma [HS99]. Eventually,
computer-free existence and uniqueness proofs were found [MC02], [AS92].

Another problem in finite group theory with a computational slant is the inverse
Galois problem: is every subgroup of the symmetric group S n the Galois group of a
polynomial of degree n with rational coefficients? In the 1980s Malle and Matzat used
computers to realize many groups as Galois groups [MM99], but with an infinite list of
finite groups to choose from, non-computational ideas have been more fruitful, such as
Hilbert irreducibility, rigidity, and automorphic representations [KLS08].

Euler conjectured (1769) that a fourth power cannot be the sum of three positive
fourth powers, that a fifth power cannot be the sum of four positive fifth powers, and
so forth. In 1966, a computer search [LP66] on a CDC 6600 mainframe uncovered a
counterexample

275 + 845 + 1105 + 1335 = 1445,

which can be checked by hand (I dare you). The two-sentence announcement of this
counterexample qualifies as one of the shortest mathematical publications of all times.
Twenty years later, a more subtle computer search gave another counterexample [Elk88]:

26824404 + 153656394 + 187967604 = 206156734.

The Catalan conjecture (1844) asserts that the only solution to the equation

xm − yn = 1,

in positive integers x, y,m, n with exponents m, n greater than 1 is the obvious

32 − 23 = 1.

That is, 8 and 9 are the only consecutive positive perfect powers. By the late 1970s,
Baker’s methods in diophantine analysis had reduced the problem to an astronomically
large and hopelessly infeasible finite computer search. Mihăilescu’s proof (2002) of the
Catalan conjecture made light use of computers (a one-minute calculation), and later
the computer calculations were entirely eliminated [Mih04], [Met03].

Bailey, Borwein, and Plouffe found an algorithm for calculating the nth binary digit
of π directly: it jumps straight to the nth digit without first calculating any of the earlier
digits. They understood that to design such an algorithm, they would need an infinite
series for π in which powers of 2 controlled the denominators. They did not know of any
such formula, and made a computer search (using the PSLQ lattice reduction algorithm)
for any series of the desired form. Their search unearthed a numerical identity

π =
∞∑

n=0

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

) (
1

16

)n
,

which was then rigorously proved and used to implement their binary-digits algorithm.
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Lorenz (1963) encountered chaos as he ran weather
simulations on a Royal McBee LGP-30 computer. Tucker has
solved Smale’s fourteenth problem (strange attractors in the
Lorenz equations) by computer, recognized by the Moore
Prize (2002) and the EMS Prize (2004)
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Fig. 5. An optimal sphere packing is obtained by placing one sphere in each three-
dimensional honeycomb cell (image source [RhD11]).

has been written about Appel and Haken’s computer solution to this problem that it is
pointless to repeat it here [AHK77]. Let it suffice to cite a popular account [Wil02], a
sociological perspective [Mac01], the second generation proof [RSST97], and the cul-
minating formal verification [Gon08].

1.9 projective planes
A finite projective plane of order n > 1 is defined to be a set of n2 + n + 1 lines and
n2 + n + 1 points with the following properties:

1. Every line contains n + 1 points;
2. Every point is on n + 1 lines;
3. Every two distinct lines have exactly one point of intersection;
4. Every two distinct points lie on exactly one line.

Fig. 6. The Fano plane is a finite projective plane of order 2 (image source [Fa111]).

The definition is an abstraction of properties that evidently hold for P2(Fq), the pro-
jective plane over a finite field Fq, with q = n, for any prime power q. In particular, a

9

finite projective plane exists whenever n is a positive power of a prime number (Fig-
ure 6).

The conjecture is that every finite projective plane of order n > 1 is a prime power.
The smallest integers n > 1 that are not prime powers are

6, 10, 12, 14, 15, . . .

The brute force approach to this conjecture is to eliminate each of these possibilities
in turn. The case n = 6 was settled in 1938. Building on a number of theoretical ad-
vances [MST73], Lam eliminated the case n = 10 in 1989, in one of the most difficult
computer proofs in history [LTS89]. This calculation was executed over a period of
years on multiple machines and eventually totaled about 2000 hours of Cray-1A time.

Unlike the computer proof of the four-color theorem, the projective plane proof has
never received independent verification. Because of the possibilities of programming
errors and soft errors (see Section 3.5), Lam is unwilling to call his result a proof. He
writes, “From personal experience, it is extremely easy to make programming mistakes.
We have taken many precautions, . . .Yet, I want to emphasize that this is only an ex-
perimental result and it desperately needs an independent verification, or better still, a
theoretical explanation” [Lam91].

Recent speculation at Math Overflow holds that the next case, n = 12, remains
solidly out of computational reach [Hor10].

1.10 hyperbolic manifolds

Computers have helped to resolve a number of open conjectures about hyperbolic man-
ifolds (defined as complete Riemannian manifolds with constant negative sectional cur-
vature −1), including the proof that the space of hyperbolic metrics on a closed hyper-
bolic 3-manifold is contractible [GMT03], [Gab10].

1.11 chaos theory and strange attractors

The theory of chaos has been one of the great success stories of twentieth century math-
ematics and science. Turing1 expressed the notion of chaos with these words, “quite
small errors in the initial conditions can have an overwhelming effect at a later time.
The displacement of a single electron by a billionth of a centimetre at one moment
might make the difference between a man being killed by an avalanche a year later,
or escaping” [Tur50]. Later, the metaphor became a butterfly that stirs up a tornado in
Texas by flapping its wings in Brazil.

Thirteen years later, Lorenz encountered chaos as he ran weather simulations on a
Royal McBee LGP-30 computer [Lor63]. When he reran an earlier numerical solution
with what he thought to be identical initial data, he obtained wildly different results.
He eventually traced the divergent results to a slight discrepancy in initial conditions
caused by rounding in the printout. The Lorenz oscillator is the simplified form of
Lorenz’s original ordinary differential equations.

1 For early history, see [Wol02, p. 971]. Turing vainly hoped that digital computers might be
insulated from the effects of chaos.
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402 GREGORY F. LAWLER, ODED SCHRAMM, AND WENDELIN WERNER

Figure 1. Simulation of a planar Brownian path

it had been established that the dimension of the frontier, cut points, and pio-
neer points are 2 − ξ(2, 0), 2 − ξ(1, 1), and 2 − ξ(1, 0), respectively. Duplantier
and Kwon [4] were the first to conjecture the values ξ(1, 1) = 5/4, ξ(1, 0) = 1/4
using ideas from conformal field theory. Duplantier has also developed another
non-rigorous approach to these results based on “quantum gravity” (see e.g. [3]).
For a more complete list of references and background, see e.g. [9].

2. Intersection exponents

Let B1, B2, . . . , Bj+k be independent planar Brownian motions with uni-
formly distributed starting points on the unit circle. Let T l

R denote the first
time at which Bl reaches the circle of radius R, and let ωj

R = Bj [0, T j
R]. The

intersection exponent ξ(j, k) is defined by the relation

P
[
(ω1

R ∪ · · · ∪ ωj
R) ∩ (ωj+1

R ∪ · · · ∪ ωj+k
R ) = ∅

]
≈ R−ξ(j,k), R → ∞,

where f ≈ g means lim(log f/ log g) = 1. Using subadditivity, it is not hard to
see that there are constants ξ(j, k) satisfying this relation. Let

ZR = ZR(ω1
R, . . . , ωj

R) := P[ (ω1
R ∪ · · · ∪ ωj

R) ∩ ωj+1
R = ∅ | ω1

R, . . . , ωj
R ].

Then

E[Zk
R] ≈ R−ξ(j,k), R → ∞.(2.1)

In the latter formulation, there is no need to restrict to integer k; this defines
ξ(j, λ) for all λ > 0. The existence of these exponents is also very easy to

“The notion that these conjectures might have been reached by
pure thought – with no picture – is simply inconceivable.. . . I
had my programmer draw a very big sample [Brownian]
motion and proceeded to play with it.” – Mandelbrot

6
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FIG. 1: (color online) Dense packings with up to 16 tetrahedra in the unit cell. The densest dimer

packing is observed for N = 4, 8, 12, 16.
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By 2007, a computer had completed the character table of E8.
Since there are infinitely many irreducible characters and each
character is an analytic function on (a dense open subset of)
the group, it is not clear without much further explanation
what it might even mean for a computer to output the full
character table as a 60 gigabyte file.

7

The Atlas project brings the computer to bear on some
abstract parts of mathematics that have been traditionally
largely beyond the reach of concrete computational
description, including infinite dimensional representations of
Lie groups, intersection cohomology and perverse sheaves.
Vogan’s account of this computational project was awarded
the 2011 Conant Prize of the AMS.
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1.5 Rogers-Ramanujan identities

The famous Rogers-Ramanujan identities

1 +
∞∑

k=1

qk2+ak

(1 − q)(1 − q2) · · · (1 − qk)
=

∞∏

j=0

1
(1 − q5 j+a+1)(1 − q5 j−a+4)

, a = 0, 1.

can now be proved by an almost entirely mechanical procedure from Jacobi’s triple
product identity and the q-WZ algorithm of Wilf and Zeilberger that checks identi-
ties of q-hypergeometric finite sums [Pau94]. Knuth’s foreword to a book on the WZ
method opens, “Science is what we understand well enough to explain to a computer.
Art is everything else we do.” Through the WZ method, many summation identities
have become a science [PWZ96].

1.6 packing tetrahedra

Aristotle erroneously believed that regular tetrahedra tile space: “It is agreed that there
are only three plane figures which can fill a space, the triangle, the square, and the
hexagon, and only two solids, the pyramid and the cube” [AriBC]. However, centuries
later, when the dihedral angle of the regular tetrahedron was calculated:

arccos(1/3) ≈ 1.23 < 1.25664 ≈ 2π/5,

it was realized that a small gap is left when five regular tetrahedra are grouped around a
common edge (Figure 3). In 1900, in his famous list of problems, Hilbert asked “How
can one arrange most densely in space an infinite number of equal solids of given form,
e.g., spheres with given radii or regular tetrahedra . . . ?”

Fig. 3. Regular tetrahedra fail to tile space (image source [Doy11]).

Aristotle notwithstanding, until recently, no arrangements of regular tetrahedra with
high density were known to exist. In 2000, Betke and Henk developed an efficient com-
puter algorithm to find the densest lattice packing of a general convex body [BH00].
This opened the door to experimentation [CT06]. In rapid succession came new record-
breaking arrangements of tetrahedra, culminating in what is now conjectured to be the
best possible [CEG10]. (See Figure 4.) Although Chen had the panache to hand out
Dungeons and Dragons tetrahedral dice to the audience for a hands-on modeling session
during her thesis defense, the best arrangement was found using Monte Carlo experi-
ments. In the numerical simulations, a finite number of tetrahedra are randomly placed
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Zeilberger says I shouldn’t waste time “dotting i’s
for the sake of a Princeton professor.”

“There are so many open problems left to do, Tom,
so don’t waste your time trying to find a ”formal proof”
version to Kepler. . . Let’s be happy with the current stan-
dards of rigor in informal human mathematical dis-
course, and use computers with that level.” (Zeilberger
opinion 94)

For me, the reasons for turning to formal proof are
much more complex. Simply put, we cannot build skyscrap-
ers out of adobe bricks (that is, informal discourse and
ordinary programming tools).

The use of computers in mathematics is a done deal.
That day has already dawned. The Kepler conjecture
reached the limits of what can be done without better
computational tools. It is up to us now to build the des-
perately needed reinforced steel to support our struc-
tures.

9-1
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3 Issues of Trust

We all have first-hand experience of the bugs and glitches of software. We exchange sto-
ries when computers run amok. Science recently reported the story of a textbook “The
Making of a Fly” that was on sale at Amazon for more than 23 million dollars [Sci11].
The skyrocketing price was triggered by an automated bidding war between two sellers,
who let their algorithms run unsupervised. The textbook’s author, Berkeley professor
Peter Lawrence, said he hoped that the price would reach “a billion.” An overpriced
textbook on the fly is harmless, except for students who have it as a required text.

But what about the Flash Crash on Wall Street that brought a 600 point plunge in the
Dow Jones in just 5 minutes at 2:41 pm on May 6, 2010? According to the New York
Times [NYT10], the flash crash started when a mutual fund used a computer algorithm
“to sell $4.1 billion in futures contracts.” The algorithm was designed to sell “without
regard to price or time.. . .[A]s the computers of the high-frequency traders traded [fu-
tures] contracts back and forth, a ‘hot potato’ effect was created.” When computerized
traders backed away from the unstable markets, share prices of major companies fluc-
tuated even more wildly. “Over 20,000 trades across more than 300 securities were ex-
ecuted at prices more than 60% away from their values just moments before” [SEC10]
Throughout the crash, computers followed algorithms to a T, to the havoc of the global
economy.

3.1 mathematical error

Why use computers to verify mathematics? The simple answer is that carefully imple-
mented proof checkers make fewer errors than mathematicians (excepting J.-P. Serre).

Incorrect proofs of correct statements are so abundant that they are impossible to
catalogue. Kempe’s claimed proof of the four-color theorem stood for more than a
decade before Heawood refuted it [Mac01, p. 115]. “More than a thousand false proofs
[of Fermat’s Last Theorem] were published between 1908 and 1912 alone” [Cor10].
Ralph Boas, former executive editor of Math Reviews, once remarked that proofs are
wrong “half the time” [Aus08]. Many published theorems are like the hanging chad
ballots of the 2000 U.S. presidential election, with scrawls too ambivalent for a clear
yea or nay. Euclid gave us a method, but even he erred in the proof of the very first
proposition of the Elements when he assumed without proof that two circles, each pass-
ing through the other’s center, must intersect. The concept that is needed to repair the
gap in Euclid’s reasoning is an intermediate value theorem. This defect was not reme-
died until Hilbert’s ‘Foundations of Geometry.’ One mathematician even proposed to
me that a new journal is needed that unlike the others only publishes reliable results.

Examples of widely accepted proofs of false or unprovable statements show that
our methods of proof-checking are far from perfect. Lagrange thought he had a proof
of the parallel postulate, but had enough doubt in his argument to withhold it from
publication. In some cases, entire schools have become sloppy, such as the Italian
school of algebraic geometry or real analysis before the revolution in rigor towards
the end of the nineteenth century. Plemelj’s 1908 accepted solution to Hilbert’s 21st
problem on the monodromy of linear differential equations was refuted in 1989 by
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Year Theorem Proof System Formalizer Traditional Proof

1986 First Incompleteness Boyer-Moore Shankar Gödel
1990 Quadratic Reciprocity Boyer-Moore Russinoff Eisenstein
1996 Fundamental - of Calculus HOL Light Harrison Henstock
2000 Fundamental - of Algebra Mizar Milewski Brynski
2000 Fundamental - of Algebra Coq Geuvers et al. Kneser
2004 Four Color Coq Gonthier Robertson et al.
2004 Prime Number Isabelle Avigad et al. Selberg-Erdös
2005 Jordan Curve HOL Light Hales Thomassen
2005 Brouwer Fixed Point HOL Light Harrison Kuhn
2006 Flyspeck I Isabelle Bauer-Nipkow Hales
2007 Cauchy Residue HOL Light Harrison classical
2008 Prime Number HOL Light Harrison analytic proof

Fig. 16. Examples of Formal Proofs

its small trustworthy kernel, Coq for its powerful type system, Mizar for its extensive
libraries, and Isabelle/HOL for its support and usability.

small proof kernel. If a proof assistant is used to check the correctness of proofs,
who checks the correctness of the proof assistant itself? De Bruijn proposed that the
computer code implementing a proof assistant should be short – something that can
be checked by hand. For example, the kernel of the proof assistant HOL Light is just
430 lines of very readable computer code. The architecture of the system is such that
if these 430 lines are bug free then it is incapable5 of generating a theorem that hasn’t
been properly proved.

automating calculations. Mathematical argument involves both calculation and proof.
The foundations of logic often specify in detail what constitutes a mathematical proof (a
sequence of logical inferences from the axioms), but downgrade calculation to second-
class status, requiring every single calculation to undergo a cumbersome translation into
logic. Some proof assistants allow reflection or the Poincaré principle, which admits as
proof the output from a verified algorithm (bypassing the expansive translation into
logic of each separate execution of the algorithm) [Poi52, p. 4], [Bar07].

constructive logic. The law of excluded middle φ ∨ ¬φ is accepted in classical logic,
but rejected in constructive logic. A proof assistant may be constructive or classical.
A box (A Mathematical Gem) shows how HOL Light becomes classical through the
introduction of an axiom of choice.

5 I exaggerate. Section 3 goes into detail about trust in computers.
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3 Issues of Trust

We all have first-hand experience of the bugs and glitches of software. We exchange sto-
ries when computers run amok. Science recently reported the story of a textbook “The
Making of a Fly” that was on sale at Amazon for more than 23 million dollars [Sci11].
The skyrocketing price was triggered by an automated bidding war between two sellers,
who let their algorithms run unsupervised. The textbook’s author, Berkeley professor
Peter Lawrence, said he hoped that the price would reach “a billion.”

An overpriced textbook on the fly is harmless, except for students who have it as a
required text. But what about the Flash Crash on Wall Street that brought a 600 point
plunge in the Dow Jones in just 5 minutes at 2:41 pm on May 6, 2010? According to the
New York Times [NYT10], the flash crash started when a mutual fund used a computer
algorithm “to sell $4.1 billion in futures contracts.” The algorithm was designed to sell
“without regard to price or time.. . .[A]s the computers of the high-frequency traders
traded [futures] contracts back and forth, a ‘hot potato’ effect was created.” When com-
puterized traders backed away from the unstable markets, share prices of major compa-
nies fluctuated even more wildly. “Over 20,000 trades across more than 300 securities
were executed at prices more than 60% away from their values just moments before”
[SEC10] Throughout the crash, computers followed algorithms to a T, to the havoc of
the global economy.

3.1 mathematical error

Why use computers to verify mathematics? The simple answer is that carefully imple-
mented proof checkers make fewer errors than mathematicians (excepting J.-P. Serre).

Incorrect proofs of correct statements are so abundant that they are impossible to
catalogue. Kempe’s claimed proof of the four-color theorem stood for more than a
decade before Heawood refuted it [Mac01, p. 115]. “More than a thousand false proofs
[of Fermat’s Last Theorem] were published between 1908 and 1912 alone” [Cor10].
Ralph Boas, former executive editor of Math Reviews, once remarked that proofs are
wrong “half the time” [Aus08]. Many published theorems are like the hanging chad
ballots of the 2000 U.S. presidential election, with scrawls too ambivalent for a clear
yea or nay. Euclid gave us a method, but even he erred in the proof of the very first
proposition of the Elements when he assumed without proof that two circles, each pass-
ing through the other’s center, must intersect. The concept that is needed to repair the
gap in Euclid’s reasoning is an intermediate value theorem. This defect was not reme-
died until Hilbert’s ‘Foundations of Geometry.’ One mathematician even proposed to
me that a new journal is needed that unlike the others only publishes reliable results.

Examples of widely accepted proofs of false or unprovable statements show that
our methods of proof-checking are far from perfect. Lagrange thought he had a proof
of the parallel postulate, but had enough doubt in his argument to withhold it from
publication. In some cases, entire schools have become sloppy, such as the Italian
school of algebraic geometry or real analysis before the revolution in rigor towards
the end of the nineteenth century. Plemelj’s 1908 accepted solution to Hilbert’s 21st
problem on the monodromy of linear differential equations was refuted in 1989 by
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Theorems that are calculations or enumerations are
especially prone to error. Feynman laments, “I don’t
notice in the morass of things that something, a lit-
tle limit or sign, goes wrong.. . . I have mathematically
proven to myself so many things that aren’t true.” Else-
where, Feynman describes two teams of physicists who
carried out a two-year calculation of the electron mag-
netic moment and independently arrived at the same
predicted value. When experiment disagreed with pre-
diction, the discrepancy was eventually traced to an
arithmetic error made by the physicists, whose calcu-
lations were not so independent as originally believed.
Pontryagin and Rokhlin erred in computing stable ho-
motopy groups of spheres. Little’s tables of knots from
1885 contains duplicate entries that went undetected
until 1974. In enumerative geometry, in 1848, Steiner
counted 7776 plane conics tangent to 5 general plane
conics, when there are actually only 3264.

9-2
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To what extent can we trust theorems certified by a proof
assistant such as HOL Light? There are various aspects to this
question. Is the underlying logic of the system consistent?
Are there any programming errors in the implementation of
the system? Can a devious user find ways to create bogus
theorems that circumvent logic? Are the underlying
compilers, operating system, and hardware reliable?

10
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• Is the underlying logic of the system consistent? YES

• Are there any programming errors in the implementation
of the system? NO

• Can a devious user find ways to create bogus theorems
that circumvent logic? YES

• Are the underlying compilers, operating system, and
hardware reliable? SOMEWHAT

11
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• Strings are mutable.

• Object magic defeats the type system.

• There are further Pollack inconsistencies: Substitute a
variable with name ‘n<0 ∧ 0’ for t in ∃n. t < n to
obtain a visual inconsistency ∃n. n < 0 ∧ 0 < n.

12
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Some take the view that nothing short of absolute certainty in mathematics gives
an adequate basis for science. Poincaré was less exacting14, only demanding the im-
precision of calculation not to exceed experimental error. As Harrison reminds us, “a
foundational death spiral adds little value” [Har10].

3.5 soft errors

Mathematicians often bring up the “cosmic ray argument” against the use of computers
in math. Let’s look at the underlying science.

A soft error in a computer is a transient error that cannot be attributed to permanent
hardware defects nor to bugs in software. Hard errors – errors that can be attributed
to a lasting hardware failure – also occur, but at rates that are ten times smaller than
soft errors [MW04]. Soft errors come from many sources. A typical soft error is caused
by cosmic rays, or rather by the shower of energetic neutrons they produce through
interactions in the earth’s atmosphere. A nucleus of an atom in the hardware can capture
one of these energetic neutrons and throw off an alpha particle, which strikes a memory
circuit and changes the value stored in memory. To the end user, a soft error appears as
a gremlin, a seemingly inexplicable random error that disappears when the computer is
rebooted and the program runs again.

As an example, we will calculate the expected number of soft errors in one of the
mathematical calculations of Section 1.17. The Atlas Project calculation of the E8 char-
acter table was a 77 hour calculation that required 64 gigabytes RAM [Ats]. Soft errors
rates are generally measured in units of failures-in-time (FIT). One FIT is defined as
one error per 109 hours of operation. If we assume a soft error rate of 103 FIT per Mbit,
(which is a typical rate for a modern memory device operating at sea level15 [Tez04]),
then we would expect there to be about 39 soft errors in memory during the calculation:

103 FIT
1 Mbit

·64 GB·77 hours =
103 errors

109 hours Mbit
·(64 · 8 · 103 Mbit)·77 hours ≈ 39.4 errors.

This example shows that soft errors can be a realistic concern in mathematical calcula-
tions.

In software that has been thoroughly debugged, soft errors become the most signif-
icant source of error in computation. Although there are numerous ways to reduce soft
errors with methods such as error-correcting codes, hardware redesign carries an eco-
nomic cost. In fact, soft errors are on the rise through miniaturization: a smaller circuit
generally has a lower capacitance and responds to less energetic alpha particles than a
larger circuit.

Soft errors are depressing news in the ultra-reliable world of proof assistants. Alpha
particles rain on perfect and imperfect software alike. In fact, because the number of
soft errors is proportional to the execution time of a calculation, by being slow and

14 “Il est donc inutile de demander au calcul plus de précision qu’aux observations; mais on ne
doit pas non plus lui en demander moins” [Poi92].

15 The soft error rate is remarkably sensitive to elevation; a calculation in Denver produces about
three times more soft errors than the same calculation on identical hardware in Boston.
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Structure finGroupType Type := FinGroupType {
element :> finType;

1 : element;
−1 : element → element;
* : element → element → element;

unitP : ∀ x, 1 ∗ x = x;
invP : ∀ x, x−1 ∗ x = 1;
mulP : ∀ x1 x2 x3, x1 ∗ (x2 ∗ x3) = (x1 ∗ x2) ∗ x3

}.

Fig. 20. The structure for finite groups [GMR07].

2.8 homotopy type theory

The simple type theory of HOL Light is adequate for real analysis, where relatively few
types are needed – one can go quite far with natural numbers, real numbers, booleans,
functions between these types, and a few functionals. However, the dependent type
theory of Coq is better equipped than HOL Light for the hierarchy of structures from
groups to rings of abstract algebra. But even Coq’s type theory is showing signs of strain
in dealing with abstract algebra. For instance, an unpleasant limitation of Coq’s theory
of types is that it lacks the theorem of extensionality for functions: if two functions take
the same value for every argument, it does not follow that the two functions are equal.9
The gymnastics to solve the problem of function extensionality in the context of the
Feit-Thompson theorem are found in [GMR07].

A lack of a theorem of extensionality for functions is an indication that equality in
type theory may be misconceived. Recently, homotopy type theory has exploded onto
the scene, which turns to homotopy theory and higher categories as models of type the-
ory [HTT11]. It is quite natural to interpret a dependent type (viewed as a family of
types parametrized by a second type) topologically as a fibration (viewed as a family of
fibers parametrized by a base space) [AW09]. Voevodsky took the homotopical notions
of equality and equivalence and translated them back into type theory, obtaining the
univalence axiom of type theory, which posits what types are equivalent [Voe11]. One
consequence of the univalence axiom is the theorem of extensionality for functions. An-
other promising sign for computer theorem-proving applications is that the univalence
axiom appears to preserve the computable aspects of type theory (unlike for instance,
the axiom of choice which makes non-computable choices) [LH]. We may hope that
some day there may be a back infusion of type-theoretic proofs into homotopy theory.

2.9 language of mathematics

Ganesalingam’s thesis is the most significant linguistic study of the language of math-
ematics to date [Gan09], [Gan10]. Ganesalingam was awarded the 2011 Beth Prize for
the best dissertation in Logic, Language, or Information. Although this research is still
at an early stage, it suggests that the mechanical translation of mathematical prose into

9 HOL Light avoids this problem by positing extensionality as a mathematical axioms.
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ical styles suited to the medium, with proofs that variously look like a computer-aided
design session, a functional program, or gmail. The most pressing concern is to reduce
the skilled labor it takes a user to construct a formal proof from a pristine mathematical
text.

The other concerns of proof transformation should be spun off as separate research
activities: refactored proofs, proof scripts optimized for execution time, translations
into other proof assistants, natural language translations, natural language abstracts,
probabilistically checkable proofs, searchable metadata extracts, and proof mining.

For a long time, proof formalization technology was unable to advance beyond the
mathematics of the 19th century, picking classical gems such as the Jordan curve the-
orem, the prime number theorem, or Dirichlet’s theorem on primes in arithmetic pro-
gressions. With the Feit-Thompson theorem, formalization has risen to a new level, by
taking on the work of a Field’s medalist.

At this level, there is an abundant supply of mathematical theorems to choose from.
A Dutch research agenda lists the formalization of Fermat’s Last Theorem as the first
in a list of “Ten Challenging Research Problems for Computer Science.” [Ber05]. Hes-
selink predicts that this one formalization project alone will take about “fifty years, with
a very wide margin.” Small pieces of the proof of Fermat, such as class field theory, the
Langlands-Tunnell theorem, or the arithmetic theory of elliptic curves would be a fitting
starting point. The aim is to develop technologies until formal verification of theorems
becomes routine at the level of Atiyah-Singer index theorem, Perelman’s proof of the
Poincaré conjecture, the Green-Tao theorem on primes in arithmetic progression, or
Ngô’s proof of the fundamental lemma.

Starting from the early days of Newell, Shaw, and Simon’s experiments, researchers
have dreamed of a general-purpose mechanical problem solver. Generations later, af-
ter untold trials, it remains an unwavering dream. I will end this section with one of
the many proposals for a general problem solving algorithm. Kurzweil breaks general
problem solving into three phases:

1. State your problem in precise terms.
2. Map out the contours of the solution space by traversing it recursively, within the

limits of available computational resources.
3. Unleash an evolutionary algorithm to configure a neural net to tackle the remaining

leaves of the tree.

He concludes, “And if all of this doesn’t work, then you have a difficult problem in-
deed” [Kur99]. Yes, indeed we do! Some day, energy and persistence will conquer.
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Ganesalingam’s thesis is the most significant linguistic study
of the language of mathematics to date. Ganesalingam was
awarded the 2011 Beth Prize for the best dissertation in Logic,
Language, or Information.

13

• infix (e.g. +),

• postfix (e.g. factorial !),

• prefix (cos).

• subscripted infix operators (x +n y),

• multi-symboled operators [ : ],

• prefixed words (R-module),

• text within formulas {(a, b) | a is a factor of b},

• unusual script placement LG,

• chained relations a < b < c,

• ellipses 1 + 2 + · · · + n,

• contracted forms x, y ∈ N,

• exposed formulas (“for all x > 0, . . . ”).

14
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ably sized set L′′ is then passed to the metis tactic7 in Isabelle/HOL, which constructs
a formal proof L′′ =⇒ g from scratch.

Böhme and Nipkow took 1240 proof goals that appear in several diverse theories
of the Isabelle/HOL system and ran sledgehammer on all of them [BN10]. The results
are astounding. The success rate (of obtaining fully reconstructed formal proofs) when
three different first-order provers run for two-minutes each was 48%. The proofs of
these same goals by hand might represent years of human labor, now fully automated
through a single new tool.

Sledgehammer has led to a new style of theorem proving, in which the user is pri-
marily responsible for stating the goals. In the final proof script, there is no explicit men-
tion of sledgehammer. Metis proves the goals, with sledgehammer operating silently in
the background to feed metis with whatever theorems it needs. For example, a typical
proof script might contain lines such as [Pau10]

hence “x ⊆ space M”
by (metis sets into space lambda system sets)

The first line is the goal that the user types. The second line has been automatically
inserted into the proof script by the system, with the relevant theorems sets, into
etc. selected by Sledgehammer.

2.5 computation in proof assistants.

One annoyance of formal proof systems is difficulty in locating the relevant theorems
in a proof assistant such as HOL Light, which at last count had about 14, 000 theorems
and nearly a thousand procedures for proof construction. Larger developments, such as
Mizar, have about twice as many theorems. Good search tools have somewhat relieved
the burden of locating theorems in the libraries. However, as the formal proof systems
continue to grow, it becomes ever more important to find ways to use theorems without
mentioning them by name.

As an example of a feature which commendably reduces the burden of memoriz-
ing long lists of theorem names, I mention the REAL RING command in HOL Light,
which is capable of proving any system of equalities and inequalities that holds over an
arbitrary integral domain. For example, I can give a one-line formal proof of an isogeny
(x1, y1) $→ (x2, y2) of elliptic curves: if we have a point on the first elliptic curve:

y2
1 = 1 + ax2

1 + bx4
1,

x2y1 = x1,

y2y2
1 = (1 − b4

1),
y1 ! 0

then (x2, y2) lies on a second elliptic curve

y2
2 = 1 + a′x2

2 + b′x4
2,

7 Metis is a program that automates first-order reasoning in Isabelle/HOL [Met].
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In1 := (3 + 4 DIV 2) EXP 3 * 5 MOD 3
Out1 := 250
In2 := vector [&2; &2] - vector [&1; &0] + vec 1
Out2 := vector [&2; &3]
In3 := diff (diff (\x. &3 * sin (&2 * x) + &7 + exp (exp x)))
Out3 := \x. exp x pow 2 * exp (exp x) + exp x * exp (exp x) + -- &12 * sin (&2 * x)
In4 := N (exp (&1)) 10
Out4 := #2.7182818284 + ... (exp (&1)) 10 F
In5 := 3 divides 6 /\ EVEN 12
Out5 := T
In6 := Re ((Cx (&3) + Cx (&2) * ii) / (Cx (-- &2) + Cx (&7) * ii))
Out6 := &8 / &53

Fig. 19. Interaction with a formally verified computer algebra system [KW07].

2.7 formalization of finite group theory

The Feit-Thompson theorem, or odd-order theorem, is one of the most significant theo-
rems of the twentieth century. (For his work, Thompson was awarded the three highest
honors in the mathematical world: the Fields Medal, the Abel Prize, and the Wolf Prize.)
The Feit-Thompson theorem states that every finite simple group has even order, except
for cyclic groups of prime order. The proof, which runs about 250 pages, is extremely
technical. The Feit-Thompson theorem launched the endeavor to classify all finite sim-
ple groups, a monumental undertaking that consumed an entire generation of group
theorists.

Gonthier’s team is formalizing the proof of Feit-Thompson [GMR07]. To me as
a mathematician, nothing else that has been done by the formal proof community
compares in splendor to the formalization of this theorem. Finally, we are doing real
mathematics! As of January 2011, the project was about half complete and progressing
rapidly, having completed the formalization of [BG94] but not yet [Pet00].

The structures of abstract algebra – groups, rings, modules, algebras, algebraically
closed fields and so forth – have all been laid out formally in the Coq proof assistant.
Analogous algebraic hierarchies appear in systems such as OpenAxiom, MathScheme,
and Isabelle; and while some of these hierarchies are elaborate, none have delved so
deeply as the development for Feit-Thompson. It gets multiple abstract structures to
work coherently together in a formal setting. “The problem is not much in capturing
the semantics of each individual construct but rather in having all the concepts working
together well” [GMR07].

The definition of a finite group in Coq is similar to the textbook definition, expressed
in types and structures (Figure 20). It declares a finite type called element that is the
group carrier or domain. The rest of the structure specifies a left-unit element 1, a left-
inverse −1 and an associative binary operation (∗).

Other aspects of Gonthier’s recent work can be found at [Gon11], [GGMR09],
[BGBP08]. Along different lines, a particularly elegant organization of abstract alge-
bra and category theory is obtained with type classes [SvdW11].
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traditionally largely beyond the reach of concrete computational description, including
infinite dimensional representations of Lie groups, intersection cohomology and per-
verse sheaves. Vogan’s account of this computational project was awarded the 2011
Conant Prize of the AMS [Vog07].

While on the topic of computation and representation theory, I cannot resist a di-
gression into the P versus NP problem, the most fundamental unsolved problem in
mathematics. In my opinion, attempts to prove P versus NP from the axioms of ZFC are
ultimately as ill-fated as Hilbert’s program in the foundations of math (which nonethe-
less spurred valuable partial results such as the decision procedures of Presburger and
Tarski), but if I were to place faith anywhere, it would be in Mulmuley’s program in
geometric complexity theory. The program invokes geometric invariant theory and rep-
resentation theoretic invariants to tease apart complexity classes: if the irreducible con-
stituents of modules canonically associated with two complexity classes are different,
then the two complexity classes are distinct. In this approach, the determinant and per-
manent of a matrix are chosen as the paradigms of what is easy and hard to compute,
opening up complexity theory to a rich algebro-geometric structure [Mul11], [For09].

1.18 future computer proofs

Certain problems are natural candidates for computer proof: the Kelvin problem by
the enumeration of the combinatorial topology of possible counterexamples; the search
for a counterexample to the two-dimensional Jacobian conjecture through the minimal
model program [Bor09]; resolution of singularities in positive characteristic through an
automated search for numerical quantities that decrease under suitable blowup; exis-
tence of a projective plane of order 12 by constraint satisfaction programming; the opti-
mality proof of the best known packing of regular tetrahedra in three dimensions [CEG10];
and the Reinhardt conjecture through nonlinear optimization [Hal11]. But proceed with
caution! Checking on our zeal for brute computation, computer-generated patterns can
sometimes fail miserably. For example, Stanley’s sequence:

⌈
2

21/n − 1

⌉
−
⌊

2n
log 2

⌋
, n = 1, 2, 3, . . .

starts out as the zero sequence, but remarkably first gives a nonzero value when n
reaches 777, 451, 915, 729, 368 and then again when n = 140, 894, 092, 055, 857, 794.

At the close of this first section, we confess that a survey mathematics in the age
of the Turing machine is a reckless undertaking, particularly if it almost completely
neglects software products and essential mathematical algorithms – the Euclidean al-
gorithm, Newton’s method, Gaussian elimination, fast Fourier transform, simplex algo-
rithm, sorting, Schönhage-Strassen, and many more. A starting point for the exploration
of mathematical software is KNOPPIX/Math, a bootable DVD with over a hundred free
mathematical software products (Table 15) [Ham08]. Sage alone has involved over 200
developers and includes dozens of other packages, providing an open-source Python
scripted alternative to computer algebra systems such as Maple and Mathematica.
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• The Kepler conjecture asserts that the densest packing of
congruent balls in R3 is achieved by the familiar
“cannonball” arrangement.

• The Kepler Conjecture was formulated in the booklet
“The six-cornered snowflake,” presented as a gift on New
Year’s day 1611 to Kepler’s patron Lord Wacker von
Wackenfels.

2
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Kepler asks why a snowflake has six sides. This leads to
honeycombs, pomegranates, and then sphere packings.

3

 

Kepler 2011

42



• The first proof was presented (by Ferguson and H. in
1998) and published in 2006.

• A project called Flyspeck seeks to give a formal proof of
the theorem, which involves a computer verification of
every single logical inference in the proof, all the way
back to the fundamental axioms of mathematics.

• The Flyspeck project is about 80% complete.

4
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General comments on formalization:

• Computers have become the medium of choice for the
foundations of mathematics.

• Research on formalization might profit from greater
participation from mathematicians.

• Two valuable activities are Bourbakization and the Rising
Sea.

• (Almost all of my formalization work has gone into the
Bourbakization of the proof of the Kepler conjecture.)

5
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The Flyspeck project (expected to take about 20 work years)
is about 75% – 80% complete. The project has four parts:

1. The text part of the proof is contained in an unpublished
manuscript “Dense Sphere Packings: a formal blueprint.”
Formalization is being done by a team of researchers
(Harrison, Nguyen Quang Truong, Solovyev, Hoang Le
Truong, Tran Nam Trung, and several others).

2. The first computer program (plane graph generation) was
formalized by G. Bauer and T. Nipkow.

3. The second computer program (linear programming) is
nearly formalized by S. Obua and A. Solovyev.

4. The third computer program (nonlinear inequality
proving) is work in progress.

6
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The Bourbakization of a web of conjectures related to the
Kepler conjecture. . . First conjecture: a variation on Fejes
Tóth’s kissing problem estimate (1953). Let 14
nonoverlapping balls of diameter 1 be given with centers Pi,
i = 0, . . . , 13. Let

a = 7/
√

27 ≈ 1.347

Is
13∑

i=1

P0Pi ≥ 12 + a ≈ 13.347?

7
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Here is a variant. Let

L(h) =






h0−h
h0−1 h ≤ h0

0 h ≥ h0.

where h0 = 1.26.
Conjecture 1 (L12). Let P0, . . . , PN be the centers of N

nonoverlapping balls. Set hi = P0Pi. Then

N∑

i=1

L(hi) ≤ 12.

(If N = 13 and h0 is increased to a, then it becomes Fejes
Tóth’s kissing number conjecture from 1953.)

8
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Conjecture 2 (Kepler (1611)). The densest packing of
congruent balls in R3 is attained (non-uniquely) by the
face-centerd cubic packing.

9
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Conjecture 3 (Fejes Tóth’s full contact conjecture (1969)).
In 3-space a packing of equal balls such that each enclosed
ball is touched by 12 others consists of hexagonal layers.

(The corresponding problem in the plane is trivial. If each unit
disk in the plane touches 6 others then it must be the regular
hexagonal packing of disks.)

10
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Conjecture 4 (K. Bezdek’s strong dodecahedral conjecture
(2000)). In every packing of congruent balls in R3, the
surface area of every Voronoi cell is at least that of the
(circumscribing) regular dodecahedron.

(The strong dodecahedral conjecture implies the weak
dodecahedral conjecture, which was proved by S.
McLaughlin in 1998, and published last year.)

11
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Theorem 1. The L12 conjecture (the variant of FT’s kissing
number estimate from 1953) implies all of the other
conjectures:

1. L12 implies the Kepler conjecture.

2. L12 implies FT’s full contact conjecture.

3. L12 implies the strong dodecahedral conjecture.

12
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• The proof of this theorem relies on computer.

• About 500 automatically proved nonlinear inequalities
are involved.

• The inequalities are specified in a formal proof system
(HOL Light).

• From the formal specification, computer code is
automatically generated that checks them numerically (by
a gradient descent algorithm) and then checks them
rigorously (by interval arithmetic).

• (The interval arithmetic has still not been formalized.
This is biggest part of the remaining 20% – 25% of the
flyspeck project.)

• The amount of computer code has been reduced from
187K lines of code to well under 10K.

13
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What is the status of inequality L12?

• I have an incomplete proof of L12.

• The only missing piece of L12 are 1 additional nonlinear
inequalities that are currently being verified by computer.
This remaining inequality is similar to but slightly more
difficult than the other 500.

• What this means is that I am reasonably confident that I
can make an announcement of every one of the
conjectures sometime within the coming month.

14
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Observations:

• The proof that L12 implies Kepler is adapted from a
recent paper by C. Marchal that M12 implies Kepler.

• The proof of L12 (modulo the 1 inequality) is adapted
from the 1998 proof of the Kepler conjecture.

• The Flyspeck project is formalizing L12 and (L12
implies Kepler).

• We would have none of these new theorems without the
impetus from formal mathematics to push us towards a
radical simplification of the original long computer proof.

15
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The Flyspeck project (expected to take about 20 work years)
is about 75% – 80% complete. The project has four parts:

1. The text part of the proof is contained in an unpublished
manuscript “Dense Sphere Packings: a formal blueprint.”
Formalization is being done by a team of researchers
(Harrison, Nguyen Quang Truong, Solovyev, Hoang Le
Truong, Tran Nam Trung, and several others).

2. The first computer program (plane graph generation) was
formalized by G. Bauer and T. Nipkow.

3. The second computer program (linear programming) is
nearly formalized by S. Obua and A. Solovyev.

4. The third computer program (nonlinear inequality
proving) is work in progress.

6



Graph Generation:

• The formalization of the computer program that classifies
planar graphs was the first success of the Flyspeck project
(G. Bauer and T. Nipkow)

• Nipkow visited Pittsburgh in August to update the formal
proof so that it reflects the revised proof of the Kepler
conjecture.

• The computer programs makes the classification up to
plane graph isomorphism of all planars graphs with
specific properties. There are about 25K such graphs.

• In doing so, he uncovered a bug in my original code (that
went unexercised in the original proof). The bug was an
uninitialized structure that gets used in symmetry
reductions.

16
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Linear programming
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Obua’s Thesis

• Does the “basic linear programs”

• Uses an external floating-point module

• Most of the compute time goes into graph combinatorics

• Obua worked out the linear programming issues

(checking certificates inside the proof assistant,

compensating for floating point errors).
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A P P E N D I X B

Results of Running the Basic LPs

In this appendix we list our results of running our methods on the archive of
tame graphs. For each tame graph, we assumed that it forms a graph system. By
generating the corresponding basic linear program and trying to prove it infeasible
we tried to show that this assumption was false. Our results are presented in tables
of the following format:

# Inconsistent Time

The ’#’ column contains the number of the tame graph that has been examined.
The numbering is chosen to correspond to the order of the tame graphs listed in [22].
A tame graph is in class n if all of its faces have at most n edges and there is at least
one face with n edges. Class 3 ranges from #1 to #20, class 4 from #21 to #943, class
5 from #944 to #2488, class 6 from #2489 to #2726, class 7 from #2727 to #2749, and
class 8 from #2750 to #2771.

The ’Inconsistent’ column says ’Yes’ if we have successfully shown the infeasi-
bility of the basic linear program induced by the tame graph, and therefore shown
the inconsistency of the corresponding graph system. If it says ’?’, we only know
that our methods failed on this graph.

Finally, the ’Time’ column tells us how many minutes the examination of the
tame graph lasted. We used the SML mode of the HOL Computing Library. Each
tame graph has been examined by its own Isabelle process. Each Isabelle process
ran on a dedicated processor of a cluster of 32 four processor 2.4GHz Opteron 850
machines with 8 GB RAM per machine. The quickest process needed 8.4 minutes,
the slowest 67. The examination of all tame graphs took about 7.5 hours of cluster
runtime. This corresponds to about 40 days on a single processor machine.

We were able to prove the inconsistency of 2565 of the graph systems, and failed
on 206. This yields a success rate of about 92.5%.

source: Obua’s thesis
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80 Appendix B — Results of Running the Basic LPs

# Inconsistent Time
1 Yes 15.4
2 Yes 21.9
3 Yes 17.6
4 Yes 39.8
5 Yes 19.4
6 Yes 23.1
7 Yes 26.9
8 Yes 24.3
9 Yes 41.5

10 Yes 40.7
11 Yes 37.7
12 Yes 30.4
13 Yes 30.9
14 Yes 47.3
15 Yes 53.5
16 Yes 66.8
17 Yes 56.1
18 ? 47.3
19 Yes 15.9
20 Yes 12.7
21 Yes 20.0
22 Yes 20.8
23 Yes 22.9
24 Yes 23.6
25 Yes 24.3
26 Yes 21.0
27 Yes 21.6
28 Yes 18.0
29 Yes 18.6
30 Yes 21.6
31 Yes 20.6
32 Yes 22.5
33 Yes 19.8
34 Yes 20.6
35 Yes 21.9
36 ? 19.8
37 Yes 21.6
38 Yes 21.6
39 Yes 23.9
40 Yes 22.9
41 Yes 19.2
42 Yes 25.8
43 Yes 22.7
44 Yes 23.0
45 Yes 19.7
46 Yes 27.4
47 Yes 18.2
48 Yes 21.3
49 Yes 22.4
50 Yes 22.0
51 Yes 20.9
52 Yes 18.2
53 Yes 18.8
54 Yes 20.0
55 Yes 20.3
56 Yes 20.9
57 Yes 18.5
58 Yes 19.9
59 Yes 18.0
60 Yes 17.3
61 ? 19.4
62 ? 19.2
63 Yes 19.7
64 Yes 23.4
65 Yes 19.4
66 Yes 23.4
67 Yes 22.8
68 Yes 19.7
69 Yes 23.5
70 Yes 24.0
71 Yes 24.7
72 Yes 19.8
73 Yes 21.6
74 Yes 25.9
75 Yes 27.1
76 Yes 17.6
77 Yes 28.7
78 ? 26.1
79 Yes 23.3
80 Yes 18.3
81 ? 28.3
82 Yes 22.2
83 Yes 25.4
84 Yes 18.8
85 Yes 25.4
86 Yes 26.0
87 Yes 21.9
88 Yes 25.0
89 ? 26.9
90 ? 27.5
91 ? 19.4
92 Yes 23.5
93 Yes 26.0
94 Yes 25.3
95 Yes 40.4
96 Yes 25.1
97 Yes 22.6
98 Yes 18.7
99 Yes 22.2

100 Yes 18.0

# Inconsistent Time
101 Yes 18.7
102 Yes 19.9
103 Yes 24.0
104 Yes 18.1
105 Yes 23.8
106 Yes 25.0
107 Yes 21.1
108 Yes 18.4
109 Yes 24.2
110 Yes 25.6
111 Yes 18.8
112 Yes 23.6
113 Yes 26.0
114 Yes 19.4
115 Yes 18.1
116 Yes 23.4
117 Yes 18.3
118 Yes 29.3
119 Yes 23.7
120 Yes 17.8
121 Yes 22.9
122 Yes 23.9
123 Yes 25.9
124 Yes 25.6
125 Yes 23.5
126 Yes 26.0
127 Yes 26.7
128 Yes 24.5
129 Yes 20.4
130 Yes 20.4
131 Yes 18.4
132 Yes 28.1
133 ? 19.8
134 Yes 27.2
135 Yes 26.2
136 Yes 21.3
137 Yes 24.7
138 ? 20.6
139 Yes 19.3
140 ? 19.7
141 Yes 22.8
142 Yes 27.7
143 ? 18.5
144 Yes 22.4
145 ? 21.0
146 ? 19.6
147 Yes 31.5
148 Yes 17.7
149 Yes 18.7
150 Yes 21.7
151 Yes 21.7
152 Yes 26.0
153 Yes 28.2
154 Yes 21.2
155 Yes 24.6
156 Yes 23.2
157 Yes 23.6
158 ? 20.1
159 Yes 29.4
160 Yes 19.8
161 Yes 17.8
162 Yes 21.2
163 Yes 19.9
164 Yes 26.8
165 ? 28.0
166 Yes 25.2
167 Yes 25.2
168 Yes 28.3
169 Yes 27.4
170 Yes 27.9
171 Yes 17.9
172 Yes 32.4
173 Yes 17.8
174 Yes 18.0
175 ? 22.0
176 Yes 25.6
177 Yes 22.9
178 Yes 25.8
179 Yes 17.8
180 Yes 22.2
181 Yes 24.6
182 Yes 28.5
183 Yes 20.4
184 Yes 21.9
185 Yes 23.1
186 Yes 25.8
187 Yes 30.3
188 Yes 28.4
189 Yes 27.0
190 Yes 18.3
191 Yes 25.9
192 Yes 20.4
193 Yes 24.7
194 Yes 30.7
195 Yes 27.6
196 Yes 25.6
197 ? 23.6
198 Yes 20.5
199 Yes 19.8
200 Yes 20.8

# Inconsistent Time
201 Yes 21.4
202 Yes 24.1
203 Yes 18.2
204 Yes 30.0
205 Yes 26.1
206 Yes 27.2
207 Yes 26.1
208 Yes 31.8
209 Yes 25.1
210 Yes 28.3
211 Yes 25.8
212 Yes 27.7
213 Yes 22.3
214 Yes 21.0
215 Yes 29.4
216 Yes 29.9
217 Yes 26.6
218 Yes 29.5
219 Yes 26.4
220 Yes 26.4
221 Yes 27.0
222 Yes 35.0
223 Yes 31.7
224 Yes 29.1
225 Yes 21.2
226 Yes 24.1
227 Yes 25.2
228 Yes 32.6
229 Yes 22.7
230 Yes 27.0
231 Yes 26.8
232 Yes 28.7
233 Yes 28.8
234 Yes 32.3
235 Yes 29.1
236 Yes 28.6
237 Yes 26.7
238 Yes 31.1
239 Yes 30.0
240 Yes 30.8
241 Yes 35.9
242 Yes 21.8
243 Yes 30.4
244 Yes 17.6
245 Yes 23.1
246 Yes 28.1
247 Yes 27.5
248 Yes 31.7
249 Yes 27.2
250 Yes 30.5
251 Yes 24.3
252 Yes 21.3
253 Yes 18.9
254 Yes 22.4
255 Yes 18.2
256 ? 22.8
257 Yes 17.8
258 Yes 19.0
259 Yes 26.9
260 Yes 18.9
261 Yes 24.4
262 Yes 26.4
263 Yes 21.7
264 Yes 26.9
265 Yes 29.1
266 Yes 25.5
267 Yes 24.0
268 Yes 23.9
269 Yes 22.8
270 Yes 17.6
271 Yes 27.0
272 Yes 22.2
273 Yes 19.5
274 Yes 22.9
275 Yes 25.6
276 Yes 26.6
277 Yes 25.4
278 Yes 27.8
279 Yes 27.8
280 Yes 25.3
281 Yes 27.2
282 Yes 28.5
283 Yes 23.5
284 Yes 25.4
285 Yes 27.2
286 Yes 28.1
287 Yes 30.4
288 Yes 24.8
289 Yes 22.7
290 Yes 25.9
291 Yes 28.5
292 Yes 30.3
293 Yes 22.7
294 Yes 24.9
295 Yes 30.1
296 Yes 23.5
297 Yes 23.7
298 Yes 22.7
299 Yes 28.0
300 Yes 28.7

# Inconsistent Time
301 Yes 26.4
302 Yes 28.4
303 Yes 27.0
304 Yes 26.7
305 Yes 30.9
306 Yes 20.1
307 Yes 24.7
308 Yes 32.6
309 Yes 21.0
310 Yes 36.2
311 Yes 32.9
312 Yes 31.1
313 Yes 30.0
314 Yes 32.3
315 Yes 36.4
316 Yes 17.9
317 Yes 17.6
318 Yes 22.1
319 Yes 18.2
320 Yes 19.3
321 Yes 22.8
322 Yes 16.0
323 Yes 20.0
324 Yes 22.6
325 Yes 18.9
326 Yes 17.7
327 Yes 20.9
328 Yes 16.1
329 Yes 17.8
330 Yes 20.7
331 Yes 20.4
332 Yes 27.3
333 Yes 19.1
334 Yes 21.2
335 Yes 19.9
336 Yes 18.0
337 Yes 18.7
338 Yes 19.7
339 Yes 18.3
340 Yes 18.8
341 Yes 21.3
342 Yes 18.2
343 Yes 17.6
344 Yes 17.8
345 Yes 21.5
346 Yes 18.7
347 Yes 18.8
348 Yes 20.3
349 Yes 25.6
350 Yes 27.3
351 Yes 22.6
352 Yes 21.5
353 Yes 25.0
354 Yes 25.2
355 Yes 28.4
356 Yes 20.0
357 Yes 19.5
358 Yes 18.8
359 Yes 23.8
360 Yes 16.8
361 Yes 17.8
362 Yes 18.7
363 Yes 17.3
364 Yes 19.9
365 Yes 19.1
366 Yes 19.3
367 Yes 16.1
368 Yes 19.4
369 ? 24.5
370 Yes 18.3
371 Yes 18.2
372 Yes 19.1
373 Yes 19.7
374 Yes 18.0
375 Yes 21.6
376 Yes 18.2
377 Yes 19.8
378 Yes 19.4
379 Yes 20.3
380 Yes 20.9
381 Yes 23.5
382 Yes 20.5
383 Yes 22.8
384 Yes 18.7
385 Yes 31.9
386 Yes 22.8
387 Yes 25.5
388 Yes 21.2
389 Yes 19.2
390 Yes 25.6
391 Yes 26.5
392 Yes 25.1
393 Yes 21.0
394 Yes 25.2
395 Yes 23.4
396 Yes 18.8
397 Yes 24.9
398 Yes 25.3
399 Yes 24.1
400 Yes 24.2

# Inconsistent Time
401 Yes 24.9
402 Yes 26.7
403 Yes 24.1
404 Yes 21.5
405 Yes 25.3
406 Yes 27.0
407 Yes 27.3
408 Yes 19.1
409 Yes 23.5
410 Yes 19.6
411 Yes 31.9
412 Yes 23.2
413 Yes 24.0
414 Yes 25.2
415 Yes 23.5
416 Yes 23.2
417 Yes 20.6
418 Yes 21.7
419 Yes 22.7
420 Yes 22.1
421 Yes 19.0
422 Yes 22.5
423 Yes 22.1
424 Yes 25.4
425 Yes 24.0
426 Yes 20.3
427 Yes 25.0
428 Yes 20.9
429 Yes 24.2
430 Yes 22.8
431 Yes 24.0
432 Yes 19.8
433 Yes 20.1
434 Yes 23.8
435 Yes 18.5
436 Yes 24.9
437 Yes 25.6
438 Yes 23.6
439 Yes 20.8
440 Yes 19.1
441 Yes 21.4
442 Yes 18.8
443 Yes 20.2
444 Yes 18.7
445 Yes 19.8
446 Yes 19.7
447 Yes 24.7
448 Yes 24.2
449 Yes 27.3
450 Yes 26.9
451 Yes 24.2
452 Yes 23.0
453 Yes 26.1
454 Yes 20.3
455 Yes 21.2
456 Yes 27.5
457 Yes 25.3
458 Yes 25.0
459 Yes 23.6
460 Yes 23.3
461 Yes 27.2
462 Yes 25.1
463 Yes 20.8
464 Yes 29.2
465 Yes 27.6
466 Yes 35.8
467 Yes 23.8
468 Yes 19.9
469 Yes 17.9
470 Yes 25.2
471 Yes 28.3
472 Yes 25.7
473 Yes 24.6
474 Yes 27.3
475 Yes 24.2
476 Yes 25.6
477 Yes 25.1
478 Yes 24.5
479 Yes 19.1
480 Yes 19.0
481 Yes 23.0
482 Yes 19.5
483 Yes 18.3
484 Yes 15.1
485 Yes 15.2
486 Yes 16.8
487 Yes 18.7
488 Yes 16.6
489 Yes 15.4
490 Yes 16.1
491 Yes 17.2
492 Yes 16.9
493 Yes 16.7
494 Yes 14.1
495 Yes 14.2
496 Yes 18.0
497 Yes 17.8
498 Yes 15.9
499 Yes 18.2
500 Yes 19.1

source: Obua’s thesis
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Floating Point Issues

• The combinatorics have been eliminated.

• A typical problem has 200 variables, 2000 constraints,

100, 000 linear programs.

• By LP theory, only 200 constraints are active on a

problem with 200 variables.

• The matrix is sparse.

• Most cases need a single digit of precision.
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The current approach

• The linear programming is done in GLPK.

• There is an AMPL model that is indpendent of the

hypermap. (It is the same model for all 25, 000

hypermaps.)

• There is a OCAML generated AMPL data file for each

linear program.
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Subdivision

• Subdivision of a problem that is already linear causes a

needless blowup in the number of cases.

• An intelligent scheme for subdivision of the problem

should be based on the location of the nonlinearities.



 

Kepler 2011

2010 Reworking of the LPs

66



 

Kepler 2011

2010 Reworking of the LPs

67

Our approach is to compute all of the dihedral angles (based

on optimal edge lengths returned by the linear program) and

compare them to the linearized dihedral angles.

The angles are ranked by the size of the error.

Each angle is attached a weight, according to the number of

subdivisions that have already occurred at that angle.

The angle with the largest weight error is used for

subdivision.
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The number of subdivisions is limited by the specifications of

the model. It is independent of the hypermap.

If all of the weights are zero, then no further subdivision is

possible. A new inequality must be designed and added to the

system.
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Adding new inequalities

• Several programs are used (all automated).

• A mathematica procedure based on heuristics is used to

generate a candidate inequality.

• The inequality is shipped to cfsqp for testing by nonlinear

optimization methods.

• A formal specification is automatically generated in HOL

Light.

• The AMPL model is automatically updated with the new

inequality. (The inequality is added to all linear

programs.)



• This work was all informal, but done with formalization
in mind.

• At this point A. Solovyev took over the project and began
to formalize the linear programming.

• He implemented linear program checking inside HOL
Light.

• He optimized real arithmetic calculations inside HOL
Light.

• He can now make a formal verification of a large-scale
linear program in about 3 seconds. (Read/write
operations rather than real arithmetic dominate the times.)

• Compare Obua’s benchmarks of about 20 minutes per LP,
even when performing real arithmetic outside the proof
assistant.

17
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The Flyspeck project (expected to take about 20 work years)
is about 75% – 80% complete. The project has four parts:

1. The text part of the proof is contained in an unpublished
manuscript “Dense Sphere Packings: a formal blueprint.”
Formalization is being done by a team of researchers
(Harrison, Nguyen Quang Truong, Solovyev, Hoang Le
Truong, Tran Nam Trung, and several others).

2. The first computer program (plane graph generation) was
formalized by G. Bauer and T. Nipkow.

3. The second computer program (linear programming) is
nearly formalized by S. Obua and A. Solovyev.

4. The third computer program (nonlinear inequality
proving) is work in progress.

6



• Since September, I have been working on the informal
proof of a collection of about 500 nonlinear inequalities.

• Testing of inequalities is done with a gradient descent
program, developed at U. Maryland.

• Interval arithmetic verification is done by code developed
for the 1998 proof of the Kepler conjecture. (A few
thousand lines)

• The C++ code to test and verify each inequality is
automatically generated from the formal specification. It
automatically converts inequalities into an optimized
form, splits piecewise analytic functions into analytic
pieces, . . .

• There are other programs for informal proofs of nonlinear
inequalities by Ferguson, McLaughlin, and Zumkeller.

18
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What were the challenges over recent months?

• The collection of nonlinear inequalities is heterogeneous.
It took some work to make automated code generation to
work uniformly on this collection.

• All but the last step of the automated code generation is
done inside HOL Light. In particular, all of the major
transformations are formally justified.

• Many of the nonlinear inequalities have naturally
occurring instabilities: 1/0, 0/0,

√
0, piecewise

continuity. They have all been transformed into C∞

functions.

• The code can now deal with some sharp inequalities with
interior extreme points. (The problem of equality.)

19
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Towards a formal verification of the nonlinear inequalities

• Soon this will be the only remaining piece of the
Flyspeck project. It was always expected to be the most
difficult part.

• The next step will to be to run a test case inside HOL,
using the real interval arithmetic for HOL that A.
Solovyev is developing.

19
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