Fejes Toth at Fields

“And when it comes to mathematics, you must realize that this is the human
mind at the extreme limit of its capacity.” (H. Robbins)

“...s0 reduce the use of the brain and calculate!”” (E. W. Dijkstra)

“The fact that a brain can do it seems to suggest that the difficulties [of trying
with a machine | may not really be so bad as they now seem.” (A. Turing)
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Birch and Swinnerton-Dyer
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Let E be an elliptic curve defined by an equation y> = x> + ax + b over the field of
rational numbers. Motivated by related quantities in Siegel’s work on quadratic forms,
Birch and Swinnerton-Dyer set out to estimate the quantity

[ [~orp (1)

where N, is the number of rational points on £ modulo p, and the product extends
over primes p < P [Bir02]. Performing experiments on the EDSAC II computer at
the Computer laboratory at Cambridge University during the years 1958-1962, they
observed that as P increases, the products (1) grow asymptotically in P as

c(E)log" P,

for some constant ¢, where r i1s the Mordell-Weil rank of E; that i1s, the maximum
number of independent points of infinite order in the group E(Q) of rational points.




Sato-Nagashima-Namba (1962)
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(

1+p—2/pcosb,.

r some real number 0 < 6, < 7.
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Euler conjectured (1769) that a fourth power cannot be the sum of three positive
fourth powers, that a fifth power cannot be the sum of four positive fifth powers, and
so forth. In 1966, a computer search [LP66] on a CDC 6600 mainframe uncovered a

counterexample
27° +84° + 110° + 133° = 144>,

which can be checked by hand (I dare you). The two-sentence announcement of this
counterexample qualifies as one of the shortest mathematical publications of all times.
Twenty years later, a more subtle computer search gave another counterexample [Elk88]:

2682440* + 15365639* + 18796760* = 20615673*.
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28.37.56.7.11.31-37-67.

In 1973, Sims proved the existence of this group in a long unpublished manuscript that
relied on many specialized computer programs. By 1999 | the calculations had become
standardized in group theory packages, such as GAP and Magma [HS99]. Eventually,
computer-free existence and uniqueness proofs were found [MCO02], [AS92].
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The Catalan conjecture (1844) asserts that the only solution to the equation
Xt =yt=1
in positive integers x, y, m, n with exponents m, n greater than 1 is the obvious
3?-2=1.

That is, 8 and 9 are the only consecutive positive perfect powers. By the late 1970s,
Baker’s methods in diophantine analysis had reduced the problem to an astronomically
large and hopelessly infeasible finite computer search. Mihailescu’s proof (2002) of the
Catalan conjecture made light use of computers (a one-minute calculation), and later
the computer calculations were entirely eliminated [Mih04], [Met03].
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Bailey, Borwein, and Plouffe found an algorithm for calculating the nth binary digit
of & directly: it jumps straight to the nth digit without first calculating any of the earlier
digits. They understood that to design such an algorithm, they would need an infinite
series for 7 in which powers of 2 controlled the denominators. They did not know of any
such formula, and made a computer search (using the PSLQ lattice reduction algorithm)
for any series of the desired form. Their search unearthed a numerical identity

=y 4 2 1 1 1Y
- Zi\8n+1 8n+4 8n+5 8n+6/\16)°




Lorenz attractor
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Lorenz (1963) encountered chaos as he ran weather
simulations on a Royal McBee LGP-30 computer. Tucker has
solved Smale’s fourteenth problem (strange attractors in the

Lorenz equations) by computer, recognized by the Moore
Prize (2002) and the EMS Prize (2004)

9
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A finite projective plane of order n > 1 is defined to be a set of n> + n + 1 lines and
n*> + n + 1 points with the following properties:

1. Every line contains n + 1 points;

2. Every point is on n + 1 lines;

3. Every two distinct lines have exactly one point of intersection;
4. Every two distinct points lie on exactly one line.

The smallest integers n > 1 that are not prime powers are

6, 10, 12, 14, 15, ...

The brute force approach to this conjecture is to eliminate each of these possibilities
in turn. The case n = 6 was settled in 1938. Building on a number of theoretical ad-
vances [MST73], Lam eliminated the case n = 10 in 1989, in one of the most difficult
computer proofs in history [LTS89]. This calculation was executed over a period of
years on multiple machines and eventually totaled about 2000 hours of Cray-1A time.







Mandelbrot’s 4/3 conjecture
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“The notion that these conjectures might have been reached by
pure thought — with no picture — is simply inconceivable... .1
had my programmer draw a very big sample [Brownian]
motion and proceeded to play with it.” — Mandelbrot

402 GREGORY F. LAWLER, ODED SCHRAMM, AND WENDELIN WERNER

FIGURE 1. Simulation of a planar Brownian path

it had been established that the dimension of the frontier, cut points, and pio-
neer points are 2 — £(2,0),2 — £(1,1), and 2 — £(1,0), respectively. Duplantier
and Kwon [4] were the first to conjecture the values £(1,1) = 5/4,£(1,0) = 1/4
using ideajJ om conformal field theory. Duplantier has also developed another
non-rigorotu§approach to these results based on “quantum gravity” (see e.g. [3]).
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Chen-Engel-Glotzer packings
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400-year anniversary of the Kepler
conjecture (1611)

~
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The Costa surface
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Kissing numbers
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The E8 lattice and Lie group
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Q—Q—g—O—Q—Q—O




By 2007, a computer had completed the character table of Es. Fejes Toth
Since there are infinitely many irreducible characters and each

character is an analytic function on (a dense open subset of)

the group, it is not clear without much further explanation

what it might even mean for a computer to output the full

character table as a 60 gigabyte file.

The Atlas project brings the computer to bear on some
abstract parts of mathematics that have been traditionally
largely beyond the reach of concrete computational

description, including infinite dimensional representations of

Lie groups, intersection cohomology and perverse sheaves.
Vogan’s account of this computational project was awarded
the 2011 Conant Prize of the AMS.




Double -bubble problem
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Rogers-Ramanujan identities via g-WZ
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The famous Rogers-Ramanujan identities
> k2+ak *© 1

Z q)(l _ 2) (1 _ k) = l—[ (1 _ 5]+a+1)(1 _ 5] a+4)

k=1

a=20,1.




Zeilberger says I shouldn’t waste time “dotting 1’s
for the sake of a Princeton professor.”

“There are so many open problems left to do, Tom,
so don’t waste your time trying to find a ”formal proof”
version to Kepler. . . Let’s be happy with the current stan-
dards of rigor in informal human mathematical dis-
course, and use computers with that level.” (Zeilberger
opinion 94)

For me, the reasons for turning to formal proof are
much more complex. Simply put, we cannot build skyscrap-
ers out of adobe bricks (that is, informal discourse and
ordinary programming tools).

The use of computers in mathematics is a done deal.
That day has already dawned. The Kepler conjecture
reached the limits of what can be done without better
computational tools. It is up to us now to build the des-
perately needed reinforced steel to support our struc-
tures.
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We have reckless trust in computers
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But what about the Flash Crash on Wall Street that brought a 600 point plunge in the
Dow Jones in just 5 minutes at 2:41 pm on May 6, 2010? According to the New York
Times [NYT10], the flash crash started when a mutual fund used a computer algorithm
“to sell $4.1 billion in futures contracts.” The algorithm was designed to sell “without
regard to price or time....[A]s the computers of the high-frequency traders traded [fu-
tures] contracts back and forth, a ‘hot potato’ effect was created.” When computerized
traders backed away from the unstable markets, share prices of major companies fluc-
tuated even more wildly. “Over 20,000 trades across more than 300 securities were ex-
ecuted at prices more than 60% away from their values just moments before” [SEC10]
Throughout the crash, computers followed algorithms to a T, to the havoc of the global
economy.
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Theorem

Proof System

Formalizer

Traditional Proof

First Incompleteness
Quadratic Reciprocity
Fundamental - of Calculus
Fundamental - of Algebra
Fundamental - of Algebra
Four Color

Prime Number

Jordan Curve

Brouwer Fixed Point
Flyspeck 1

Cauchy Residue

Prime Number

Boyer-Moore
Boyer-Moore
HOL Light
Mizar

Coq

Coq

Isabelle

HOL Light
HOL Light
Isabelle

HOL Light
HOL Light

Shankar
Russinoff
Harrison
Milewski
Geuvers et al.
Gonthier
Avigad et al.
Hales
Harrison
Bauer-Nipkow
Harrison
Harrison

Godel
Eisenstein
Henstock
Brynski
Kneser
Robertson et al.
Selberg-Erdos
Thomassen
Kuhn

Hales
classical
analytic proof
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Incorrect proofs of correct statements are so abundant that they are impossible to
catalogue. Kempe’s claimed proof of the four-color theorem stood for more than a
decade before Heawood refuted it [MacO1, p. 115]. “More than a thousand false proofs
[of Fermat’s Last Theorem] were published between 1908 and 1912 alone” [Corl0].
Ralph Boas, former executive editor of Math Reviews, once remarked that proofs are
wrong “half the time” [Aus0O8]. Many published theorems are like the hanging chad




Pseudo rhombic cuboctahedron
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Theorems that are calculations or enumerations are
especially prone to error. Feynman laments, “I don’t
notice in the morass of things that something, a lit-
tle limit or sign, goes wrong....I have mathematically
proven to myself so many things that aren’t true.” Else-
where, Feynman describes two teams of physicists who
carried out a two-year calculation of the electron mag-
netic moment and independently arrived at the same
predicted value. When experiment disagreed with pre-
diction, the discrepancy was eventually traced to an
arithmetic error made by the physicists, whose calcu-
lations were not so independent as originally believed.
Pontryagin and Rokhlin erred in computing stable ho-
motopy groups of spheres. Little’s tables of knots from
1885 contains duplicate entries that went undetected
until 1974. In enumerative geometry, in 1848, Steiner
counted 7776 plane conics tangent to 5 general plane
conics, when there are actually only 3264.
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In HOL Light we trust
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To what extent can we trust theorems certified by a proof
assistant such as HOL Light? There are various aspects to this
question. Is the underlying logic of the system consistent?
Are there any programming errors in the implementation of
the system? Can a devious user find ways to create bogus
theorems that circumvent logic? Are the underlying
compilers, operating system, and hardware reliable?
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Is the underlying logic of the system consistent? YES

Are there any programming errors in the implementation
of the system? NO

Can a devious user find ways to create bogus theorems
that circumvent logic? YES

Are the underlying compilers, operating system, and
hardware reliable? SOMEWHAT
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e Strings are mutable.
e Object magic defeats the type system.

e There are further Pollack inconsistencies: Substitute a
variable with name ‘n<0 A 0’ fortindn.t < nto
obtain a visual inconsistency dn.n < 0 A 0 < n.
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As an example, we will calculate the expected number of soft errors in one of the
mathematical calculations of Section 1.17. The Atlas Project calculation of the Eg char-
acter table was a 77 hour calculation that required 64 gigabytes RAM [Ats]. Soft errors
rates are generally measured in units of failures-in-time (FIT). One FIT is defined as
one error per 10° hours of operation. If we assume a soft error rate of 10 FIT per Mbit,
(which is a typical rate for a modern memory device operating at sea level'® [Tez04]),
then we would expect there to be about 39 soft errors in memory during the calculation:

10° FIT 10? errors
I Mbit OUTS = 109 hours Mbit 16):77 hours errors




The Feit-Thompson theorem
(Gonthier style)
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Structure finGroupType Type := FinGroupType {
element :> finType;
1 : element;
-1 . element — element;
* : element — element — element;
unitP : Vx, 1*xx=x;
invP : Vx, xlxx=1;
mulP : Vx1 X2 X3, Xi *(XQ*X’_),):(Xl*Xz)*X?,




Future Challenges...
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At this level, there is an abundant supply of mathematical theorems to choose from.
A Dutch research agenda lists the formalization of Fermat’s Last Theorem as the first
in a list of “Ten Challenging Research Problems for Computer Science.” [Ber05]. Hes-
selink predicts that this one formalization project alone will take about “fifty years, with
a very wide margin.” Small pieces of the proof of Fermat, such as class field theory, the
Langlands-Tunnell theorem, or the arithmetic theory of elliptic curves would be a fitting
starting point. The aim is to develop technologies until formal verification of theorems
becomes routine at the level of Atiyah-Singer index theorem, Perelman’s proof of the
Poincaré conjecture, the Green-Tao theorem on primes in arithmetic progression, or
Ng6’s proof of the fundamental lemma.




The Language of Mathematics
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Ganesalingam’s thesis is the most significant linguistic study
of the language of mathematics to date. Ganesalingam was
awarded the 2011 Beth Prize for the best dissertation in Logic,
Language, or Information.

infix (e.g. +),

postfix (e.g. factorial !),
prefix (cos).
subscripted infix operators (z +,, y),
multi-symboled operators | : |,

prefixed words (R-module),

text within formulas {(a, b) | a is a factor of b},
unusual script placement “G,

chained relations a < b < c,

ellipses 1 +2 + .- +n,

contracted forms z,y € N,

exposed formulas (“for all x > 0,...”).




Automating proof assistants:
Harrison’s Groebner basis in HOL Light
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y2 =1 +ax] + bxj,

X2Y1 = X1,
yayp = (1 = b,
yi #0
then (x», y») lies on a second elliptic curve

y% =1+ a’x% + b’xé,




Computer algebra within
proof assistants (Kaliszyk and Wiedijk)
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(3 + 4 DIV 2) EXP 3 * 5 MOD 3

250

vector [&2; &2] - vector [&1l; &O] + vec 1

vector [&2; &3]

diff (diff (\x. &3 * sin (&2 * x) + &7 + exp (exp x)))

\X. exp X pow 2 * exp (exp Xx) + exp x * exp (exp x) + -- &12 * sin (&2 * x)
N (exp (&1)) 10

#2.7182818284 + ... (exp (&1)) 10 F

3 divides 6 /\ EVEN 12

T

Re ((Cx (&3) + Cx (&2) * ii) / (Cx (-- &2) + Cx (&7) * ii))
&8 / &53




The Stanley sequence
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2 2n
ER T

starts out as the zero sequence, but remarkably first gives a nonzero value when n
reaches 777,451,915,729, 368 and then again when n = 140, 894, 092, 055, 857, 794.




Wednesday: dodecahedral conjecture

Friday: Fejes Toth’s contact conjecture
Fejes Toth|at Fields




e The Kepler conjecture asserts that the densest packing of

congruent balls in R? is achieved by the familiar

“cannonball” arrangement.

The Kepler Conjecture was formulated in the booklet
“The six-cornered snowflake,” presented as a gift on New
Year’s day 1611 to Kepler’s patron Lord Wacker von
Wackenfels.




Kepler 2011

Kepler asks why a snowflake has six sides. This leads to
honeycombs, pomegranates, and then sphere packings.




e The first proof was presented (by Ferguson and H. in
1998) and published in 2006.

e A project called Flyspeck seeks to give a formal proof of

the theorem, which involves a computer verification of

every single logical inference in the proof, all the way
back to the fundamental axioms of mathematics.

e The Flyspeck project 1s about 80% complete.




General comments on formalization:

e Computers have become the medium of choice for the
foundations of mathematics.

e Research on formalization might profit from greater
participation from mathematicians.

e Two valuable activities are Bourbakization and the Rising|

Sea.

e (Almost all of my formalization work has gone into the
Bourbakization of the proof of the Kepler conjecture.)




The Flyspeck project (expected to take about 20 work years)
is about 75% — 80% complete. The project has four parts:

1. The text part of the proof is contained in an unpublished
manuscript “Dense Sphere Packings: a formal blueprint.”
Formalization is being done by a team of researchers
(Harrison, Nguyen Quang Truong, Solovyev, Hoang Le
Truong, Tran Nam Trung, and several others).

. The first computer program (plane graph generation) was
formalized by G. Bauer and T. Nipkow.

. The second computer program (linear programming) is

nearly formalized by S. Obua and A. Solovyev.

. The third computer program (nonlinear inequality
proving) is work in progress.







The Bourbakization of a web of conjectures related to the
Kepler conjecture. . . First conjecture: a variation on Fejes
Toth’s kissing problem estimate (1953). Let 14
nonoverlapping balls of diameter 1 be given with centers P,
1 =20,...,13. Let

a=T/V27 ~ 1.347

13
Z PyP; > 12+ a ~ 13.347?
1=1

Kepler




Here is a variant. Let

ho=h <},
L(h) =4 =t "=
0 h > ho.
where hy = 1.26.

Conjecture 1 (L12). Let Py, ..., Py be the centers of N
nonoverlapping balls. Set h;, = Py P;. Then

N
> L(hy) <12.
1=1

(If N = 13 and hy is increased to a, then it becomes Fejes
Toth’s kissing number conjecture from 1953.)
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Conjecture 2 (Kepler (1611)). The densest packing of
congruent balls in R3 is attained (non-uniquely) by the

face-centerd cubic packing.




Conjecture 3 (Fejes T6th’s full contact conjecture (1969)).
In 3-space a packing of equal balls such that each enclosed

ball is touched by 12 others consists of hexagonal layers.

(The corresponding problem in the plane is trivial. If each unit

disk in the plane touches 6 others then it must be the regular

hexagonal packing of disks.)




Conjecture 4 (K. Bezdek’s strong dodecahedral conjecture

(2000)). In every packing of congruent balls in R3, the

surface area of every Voronoi cell is at least that of the

(circumscribing) regular dodecahedron.

(The strong dodecahedral conjecture implies the weak
dodecahedral conjecture, which was proved by S.
McLaughlin in 1998, and published last year.)




Theorem 1. The L12 conjecture (the variant of FT’s kissing
number estimate from 1953 ) implies all of the other

conjectures.:

1. LI12 implies the Kepler conjecture.

2. L12 implies FT’s full contact conjecture.

3. L12 implies the strong dodecahedral conjecture.




e The proof of this theorem relies on computer.

e About 500 automatically proved nonlinear inequalities
are involved.

The inequalities are specified in a formal proof system
(HOL Light).

From the formal specification, computer code is
automatically generated that checks them numerically (by
a gradient descent algorithm) and then checks them
rigorously (by interval arithmetic).

(The interval arithmetic has still not been formalized.
This is biggest part of the remaining 20% — 25% of the
flyspeck project.)

The amount of computer code has been reduced from
187K lines of code to well under 10K.




What is the status of inequality L.12?
e [ have an incomplete proof of L.12.

e The only missing piece of L12 are 1 additional nonlinear
inequalities that are currently being verified by computer.

This remaining inequality is similar to but slightly more
difficult than the other 500.

e What this means is that I am reasonably confident that I
can make an announcement of every one of the
conjectures sometime within the coming month.




Observations:

e The proof that .12 implies Kepler is adapted from a
recent paper by C. Marchal that M12 implies Kepler.

e The proof of L12 (modulo the 1 inequality) is adapted
from the 1998 proof of the Kepler conjecture.

e The Flyspeck project is formalizing .12 and (L12

implies Kepler).

e We would have none of these new theorems without the
impetus from formal mathematics to push us towards a
radical simplification of the original long computer proof.




The Flyspeck project (expected to take about 20 work years)
is about 75% — 80% complete. The project has four parts:

1. The text part of the proof is contained in an unpublished
manuscript “Dense Sphere Packings: a formal blueprint.”
Formalization is being done by a team of researchers
(Harrison, Nguyen Quang Truong, Solovyev, Hoang Le
Truong, Tran Nam Trung, and several others).

. The first computer program (plane graph generation) was
formalized by G. Bauer and T. Nipkow.

. The second computer program (linear programming) is

nearly formalized by S. Obua and A. Solovyev.

. The third computer program (nonlinear inequality
proving) is work in progress.




Graph Generation:

e The formalization of the computer program that classifies
planar graphs was the first success of the Flyspeck project
(G. Bauer and T. Nipkow)

Nipkow visited Pittsburgh in August to update the formal

proof so that it reflects the revised proof of the Kepler
conjecture.

The computer programs makes the classification up to
plane graph isomorphism of all planars graphs with
specific properties. There are about 25K such graphs.

In doing so, he uncovered a bug in my original code (that
went unexercised in the original proof). The bug was an
uninitialized structure that gets used in symmetry
reductions.










Obua’s Thesis

e Does the “basic linear programs”

e Uses an external floating-point module

e Most of the compute time goes into graph combinatorics

e Obua worked out the linear programming issues
(checking certificates inside the proof assistant,
compensating for floating point errors).




Benchmarks from Obua’s Thesis.

Kepler

Finally, the "Time’ column tells us how many minutes the examination of the
tame graph lasted. We used the SML mode of the HOL Computing Library. Each
tame graph has been examined by its own Isabelle process. Each Isabelle process
ran on a dedicated processor of a cluster of 32 four processor 2.4GHz Opteron 850
machines with 8 GB RAM per machine. The quickest process needed 8.4 minutes,
the slowest 67. The examination of all tame graphs took about 7.5 hours of cluster
runtime. This corresponds to about 40 days on a single processor machine.

We were able to prove the inconsistency of 2565 of the graph systems, and failed
on 206. This yields a success rate of about 92.5%.

source: Obua’s thesis




Benchmarks
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2010 Reworking of the LPs

Floating Point Issues
e The combinatorics have been eliminated.

e A typical problem has 200 variables, 2000 constraints,
100, 000 linear programs.

By LP theory, only 200 constraints are active on a
problem with 200 variables.

The matrix 1s sparse.

Most cases need a single digit of precision.




2010 Reworking of the LPs

The current approach
e The linear programming is done in GLPK.

e There is an AMPL model that is indpendent of the
hypermap. (It is the same model for all 25, 000
hypermaps.)

e There is a OCAML generated AMPL data file for each
linear program.




2010 Reworking of the LPs

Subdivision

e Subdivision of a problem that is already linear causes a
needless blowup in the number of cases.

e An intelligent scheme for subdivision of the problem
should be based on the location of the nonlinearities.




2010 Reworking of the LPs
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2010 Reworking of the LPs

Our approach is to compute all of the dihedral angles (based
on optimal edge lengths returned by the linear program) and
compare them to the linearized dihedral angles.

The angles are ranked by the size of the error.

Each angle is attached a weight, according to the number of
subdivisions that have already occurred at that angle.

The angle with the largest weight error is used for

subdivision.

Kepler




2010 Reworking of the LPs

The number of subdivisions is limited by the specifications of
the model. It is independent of the hypermap.

It all of the weights are zero, then no further subdivision is
possible. A new inequality must be designed and added to the
system.




2010 Reworking of the LPs

Adding new inequalities
e Several programs are used (all automated).

e A mathematica procedure based on heuristics is used to
generate a candidate inequality.

The inequality is shipped to cfsqp for testing by nonlinear
optimization methods.

A formal specification is automatically generated in HOL
Light.

The AMPL model is automatically updated with the new
inequality. (The inequality 1s added to all linear
programs.)




2010 Reworking of the LPs

This work was all informal, but done with formalization
in mind.

At this point A. Solovyev took over the project and began
to formalize the linear programming.

He implemented linear program checking inside HOL
Light.

He optimized real arithmetic calculations inside HOL
Light.

He can now make a formal verification of a large-scale
linear program in about 3 seconds. (Read/write
operations rather than real arithmetic dominate the times.)

Compare Obua’s benchmarks of about 20 minutes per LP,
even when performing real arithmetic outside the proof
assistant.




Nonlinear inequalities

The Flyspeck project (expected to take about 20 work years)
is about 75% — 80% complete. The project has four parts:

1. The text part of the proof is contained in an unpublished
manuscript “Dense Sphere Packings: a formal blueprint.”
Formalization is being done by a team of researchers
(Harrison, Nguyen Quang Truong, Solovyev, Hoang Le
Truong, Tran Nam Trung, and several others).

. The first computer program (plane graph generation) was
formalized by G. Bauer and T. Nipkow.

. The second computer program (linear programming) is
nearly formalized by S. Obua and A. Solovyev.

. The third computer program (nonlinear inequality
proving) is work in progress.




Nonlinear inequalities

Since September, I have been working on the informal
proof of a collection of about 500 nonlinear inequalities.

Testing of inequalities is done with a gradient descent
program, developed at U. Maryland.

Interval arithmetic verification is done by code developed
for the 1998 proof of the Kepler conjecture. (A few
thousand lines)

The C++ code to test and verify each inequality is
automatically generated from the formal specification. It
automatically converts inequalities into an optimized
form, splits piecewise analytic functions into analytic
pieces, ...

There are other programs for informal proofs of nonlinear
inequalities by Ferguson, McLaughlin, and Zumkeller.




Nonlinear inequalities

What were the challenges over recent months?

e The collection of nonlinear inequalities is heterogeneous.
It took some work to make automated code generation to
work uniformly on this collection.

All but the last step of the automated code generation is
done inside HOL Light. In particular, all of the major
transformations are formally justified.

Many of the nonlinear inequalities have naturally
occurring instabilities: 1/0, 0/0, V0, piecewise
continuity. They have all been transformed into C'*°
functions.

The code can now deal with some sharp inequalities with
interior extreme points. (The problem of equality.)




Nonlinear inequalities

Towards a formal verification of the nonlinear inequalities

e Soon this will be the only remaining piece of the
Flyspeck project. It was always expected to be the most
difficult part.

e The next step will to be to run a test case inside HOL,
using the real interval arithmetic for HOL that A.
Solovyev is developing.




Thank You!

Kepler 2011




