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Condorcet paradox

Marquis de Condorcet
(1743-1793)

collective choice can be intransitive!

THUS:   There may be no “pairwise winner”!
(Condorcet winner)

> > > ...>
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N

N

N

(nab, nac, nba, nbc, nca, ncb) describes a voting situation
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Counting Lattice Points

• Candidate a is a Condorcet winner if

( a beats b )nab + nac + nca > nba + nbc + ncb

and ( a beats c )nab + nac + nba > nca + ncb + nbc

(1)

(2)

That is:   (nab, nac, nba, nbc, nca, ncb) ∈ Z6
≥0

is in the polyhedron

PN =

�
n ∈ R6 | N =

�

xy

nxy, nxy ≥ 0 and (1), (2)

�
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Ehrhart theory

• “Reinvented” in Social Choice Theory by 
Chua and Huang (2000)

• Parallelity of Approach discovered in 2006
   (by Lepelley et al. and  Wilson / Pritchard)

Eugène Ehrhart
(1906-2000)

Ex: P1 = conv{e1, . . . , ed} ⇒ #(PN ∩ Zd) =
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Likeliness of Condorcet paradox

Quasi-polynomial for #(PN ∩ Z6) can be obtained

using  barvinok  or  latte

( Number of voting situations with N voters and candidate a as Condorcet winner )

1− 3
q-poly�N+5

5

�
Likeliness of 
Condorcet 

Paradox

For large elections              :

1− 3 1/384
1/120 = 1

16 = 0.0625

(N → ∞)
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• Condorcet winner, but Plurality loser

Other paradoxes and voting situations

• Plurality vs. Plurality Runoff
( a wins plurality over b )nab + nac > nba + nbc

nba + nbc > nca + ncb

nab + nac + nca < nba + nbc + ncb

( b wins plurality over c )

( b beats a )

nab + nac + nca > nba + nbc + ncb

nab + nac + nba > nca + ncb + nbc

( a beats b )
( a beats c )

( b wins plurality )nba + nbc > nab + nac , nca + ncb

Likeliness for large elections              :

Likeliness for large elections              :

71

576
= 0.12326 . . .

16

135
= 0.1185 . . .

(N → ∞)

(N → ∞)
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Four candidates? Or even more??

 hardly any exact probabilities are known! 

• for 4 candidates 24 variables are used in polyhedral model 

=>  polyhedral computations are too difficult

IDEA: Reduce dimension by exploiting symmetry !

...

(“most of the time”, due to LattE integrale, July 2011) 
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Large elections with four candidates

• No Condorcet winner exists (Condorcet paradox)
331

2048
= 0.1616 . . .lim

N→∞
Prob(N) =

( by integrating polynomial of degree 16 over a 7-dimensional polytope )

William V. Gehrlein

Your results particularly got my attention when I finally 
realized that you had obtained limiting representations 
for four candidates.  This is a significant step forward, 
and you are not the only person who has been trying to 
produce such results.  However, I believe that you are 
the first to successfully accomplish this.  The only four 
candidate result that I am aware of is cited in your paper, 
and I only managed to obtain that by using a trick.

In an email of Sep. 7th 2011:



• Condorcet Efficiency of Plurality

lim
N→∞

Prob(N) =

New results with four candidates

( by integrating polynomial of degree 11 over a 13-dimensional polytope )

10658098255011916449318509

14352135440302080000000000
= 0.74261 . . .



• Condorcet Efficiency of Plurality

lim
N→∞

Prob(N) =

2988379676768359

12173449145352192
= 0.24548 . . .

• Plurality vs. Plurality Runoff

lim
N→∞

Prob(N) =

( by integrating polynomial of degree 18 over a 5-dimensional polytope )

New results with four candidates

( by integrating polynomial of degree 11 over a 13-dimensional polytope )

10658098255011916449318509

14352135440302080000000000
= 0.74261 . . .
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counting lattice points with polynomial weights 
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The next generation Ehrhart theory
Counting with polynomial weights

Want:
• Methods exploiting general polyhedral symmetry groups 

Baldoni, Berline, Vergne, 2009

• Two new methods: 

• via local Euler-Maclaurin formula 

• via rational generating functions 

• “experimental” implementation 

      available in barvinok

• available soon in LattE integrale



Exploiting Symmetry 
in other

Polyhedral Computations?
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Representation Conversion

• The contact polytope of the Leech lattice, preprint at arXiv:0906.1427

up to symmetry
Recent computational successes:  
(with Mathieu Dutour Sikirić and Frank Vallentin)

• Classification of eight dimensional perfect forms, Electron. Res. Announc. AMS, 13 (2007) 

• 1 orbit with 196,560 vertices in 24 dimensions
• 1,197,362,269,604,214,277,200 many facets in 232 orbits

• Complexity and algorithms for computing Voronoi cells of lattices, Math. Comp., 78 (2009)

• computation of vertices for many different Voronoi cells of lattices
• verified that Leech Lattice cell has 307 vertex orbits (Conway, Borcherds, et. al.)

• 1 orbit with 120 vertices in 35 dimensions
• 25,075,566,937,584 facets in 83092 orbits
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A New C++ Tool 

• helps to compute linear automorphism groups 

• converts polyhedral representations using

       Recursive Decomposition Methods (Incidence/Adjacency)
(also used by Christof/Reinelt, Deza/Fukuda/Pasechnik, ... )

(?)
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Symmetry Groups

• Combinatorial,  Linear,  or Geometric  Symmetries

DEF: A linear automorphism of {v1, . . . ,vm}⊂ Rn is a

regular matrix A ∈ Rn×n with Avi = vσ(i) for some σ ∈ Sm

trivial
trivial

C6 �C2 C6 �C2 C6 �C2
C6 �C2 C6 �C2

C6 �C2C2 �C2
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=> use NAUTY by Brendan McKay
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Adjacency Decomposition Method

• Find initial orbit(s) / representing vertice(s) 

• For each new orbit representative 

• enumerate neighboring vertices 

• add as orbit representative if in a new orbit 

Representation conversion problem

(up to symmetry)

BOTTLENECK:   Stabilizer and In-Orbit computations  

=> Need of efficient data structures and algorithms for
permutation groups: BSGS, (partition) backtracking

(for vertex enumeration)
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Ingredient I:
Permutation Group Algorithms

Vision:

• Create “integrated algorithms” combining tools of

   Polyhedral Combinatorics and Computational Group Theory

• BSGS and (partition) backtrack 
could be provided by GAP,  MAGMA or SAGE

• We use the callable C++ library PermLib
       • open source (new BSD license)

• with compact API to access core functionality

• can replace NAUTY
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Ingredient II: 
Established Representation Conversion Tools

WHAT ABOUT  Symmetry Exploiting Methods  ?

incrementally adding inequalities and recomputing vertices at every step

 

• cddlib by Komei Fukuda  (Double Description Method)

pivoting using “Simplex Pivots”    

• lrslib by David Avis  (Lexicographic Reverse Search)

• with David Bremner we work(ed) on

• pivoting methods up to symmetry

• incremental methods using fundamental domains
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Example I:  Abhinav’s Polytope

~> computing all classes of elliptic divisors on ...

Getting the group:

Getting vertices up to symmetry :

arxiv:1105.1715
[Kum11]
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Example II:  Paco’s Prismatoid

~>  neato  ~>

(Graphviz)



 
What else?
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Exploiting Symmetries in LPs and IPs

• For LPs one can intersect feasible polyhedron 

               with invariant linear subspace

(not possible for IPs)

• For IPs several new approaches have been proposed  

=>  see survey “Symmetry in Integer Linear Programming” by François Margot (2010)



using invariant linear subspace

Exploiting Polyhedral 
Symmetries in IPs
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Exploiting Polyhedral Symmetries

• in Polyhedral Representation Conversions

Thomas• in Integer Programming and MILPs

• in Lattice Point Counting

ToDo
• Create efficient computational tools / use more math!

• Integrate tools from Computational Group Theory



Thanks!
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