Conference on Discrete Geometry and Optimization

Toronto, September 201 I

Exploiting Polyhedral Symmetries in Social Choice Theory

Achill Schürmann
(University of Rostock)

arXiv:II09.I545

Conference on Discrete Geometry and Optimization

Toronto, September 201 I

Exploiting Polyhedral Symmetries in Social Choice Theory and elsewhere

Achill Schürmann
(University of Rostock)

arXiv:II09.I545

Symmetric Polyhedra

Symmetric Polyhedra

Symmetric Polyhedra

Symmetric Polyhedra

Symmetric Polyhedra

Symmetric Polyhedra

Fire

Air

Social Choice Theory

individual choices

collective choice

Social Choice Theory

individual choices

collective choice

a	b	c	b	a	
$>$	$>$	$>$	$>$	$>$	
b	c	a	c	c	$\bullet \bullet$
$>$	$>$	$>$	$>$	$>$	
c	a	b	a	b	

Social Choice Theory

individual choices

collective choice

a	b	c	b	a
$>$	$>$	$>$	$>$	$>$
b	c	a	c	c
$>$	$>$	$>$	$>$	$>$
c	a	b	a	b

Social Choice Theory

individual choices

collective choice

a	b	c	b	a
$>$	$>$	$>$	$>$	$>$
b	c	a	c	c
$>$	$>$	$>$	$>$	$>$
c	a	b	a	b

a
$>$
b
$>$
c

Social Choice Theory

individual choices

collective choice

a	b	c	b	a
$>$	$>$	$>$	$>$	$>$
b	c	a	c	c
$>$	$>$	$>$	$>$	$>$
c	a	b	a	b

Arrows Impossibility Theorem

Kenneth Arrow
(Nobel prize 1972)

Arrows Impossibility Theorem

THM: There is no fair voting system.

Kenneth Arrow
(Nobel prize 1972)

Arrows Impossibility Theorem

THM: There is no voting system, which is (for at least three choices)

- not a dictatorship

Kenneth Arrow
(Nobel prize 1972)

Arrows Impossibility Theorem

THM: There is no voting system, which is (for at least three choices)

- not a dictatorship
- respecting binary preferences made by all

Arrows Impossibility Theorem

THM: There is no voting system, which is (for at least three choices)

- not a dictatorship
- respecting binary preferences made by all

Kenneth Arrow
(Nobel prize 1972)

- monotone (preference is not lowered if individual preferences increase)

Arrows Impossibility Theorem

THM: There is no voting system, which is (for at least three choices)

- not a dictatorship
- respecting binary preferences made by all

Kenneth Arrow
(Nobel prize 1972)

- monotone (preference is not lowered if individual preferences increase)
- independent of irrelevant alternatives

Arrows Impossibility Theorem

THM: There is no voting system, which is (for at least three choices)

- not a dictatorship
- respecting binary preferences made by all

Kenneth Arrow
(Nobel prize 1972)

- monotone (preference is not lowered if individual preferences increase)
- independent of irrelevant alternatives
(preference between a and b depends only on individual preferences between a and b)

Arrows Impossibility Theorem

THM: There is no voting system, which is (for at least three choices)

- not a dictatorship
- respecting binary preferences made by all
- monotone (preference is not lowered if individual preferences increase)
- independent of irrelevant alternatives
(preference between a and b depends only on individual preferences between a and b)

Arrows Impossibility Theorem

THM: There is no voting system, which is (for at least three choices)

- not a dictatorship
- respecting binary preferences made by all
- monotone (preference is not lowered if individual preferences increase)
- independent of irrelevant alternatives
(preference between a and b depends only on individual preferences between a and b)

Arrows Impossibility Theorem

THM: There is no voting system, which is (for at least three choices)

- not a dictatorship
- respecting binary preferences made by all
- monotone (preference is not lowered if individual preferences increase)
- independent of irrelevant alternatives
(preference between a and b depends only on individual preferences between a and b)

Arrows Impossibility Theorem

THM: There is no voting system, which is (for at least three choices)

- not a dictatorship
- respecting binary preferences made by all
- monotone (preference is not lowered if individual preferences increase)
- independent of irrelevant alternatives
(preference between a and b depends only on individual preferences between a and b)

Condorcet paradox

Condorcet paradox

collective choice can be intransitive!

Marquis de Condorcet
(1743-I793)

Condorcet paradox

collective choice can be intransitive!

Marquis de Condorcet
(1743-I793)

Condorcet paradox

collective choice can be intransitive!

Marquis de Condorcet
(1743-1793)

THUS: There may be no "pairwise winner"! (Condorcet winner)

Polyhedral Model

Polyhedral Model

- Impartial Anonymous Culture (IAC) assumption: every voting situation is equally likely

Polyhedral Model

- Impartial Anonymous Culture (IAC) assumption: every voting situation is equally likely
- for three candidates a, b and c, let
n_{ab} number of voters with choice $\mathrm{a}>\mathrm{b}>\mathrm{c}$
n_{ac} number of voters with choice $\mathrm{a}>\mathrm{c}>\mathrm{b}$
$n_{\text {ba }}$ number of voters with choice $\mathrm{b}>\mathrm{a}>\mathrm{c}$

Polyhedral Model

- Impartial Anonymous Culture (IAC) assumption: every voting situation is equally likely
- for three candidates a, b and c, let
n_{ab} number of voters with choice $\mathrm{a}>\mathrm{b}>\mathrm{c}$
n_{ac} number of voters with choice $\mathrm{a}>\mathrm{c}>\mathrm{b}$
$n_{\text {ba }}$ number of voters with choice $\mathrm{b}>\mathrm{a}>\mathrm{c}$
$\left(n_{\mathrm{ab}}, n_{\mathrm{ac}}, n_{\mathrm{ba}}, n_{\mathrm{bc}}, n_{\mathrm{ca}}, n_{\mathrm{cb}}\right)$ describes a voting situation

Polyhedral Model

- Impartial Anonymous Culture (IAC) assumption: every voting situation is equally likely
- for three candidates a, b and c, let
n_{ab} number of voters with choice $\mathrm{a}>\mathrm{b}>\mathrm{c}$
n_{ac} number of voters with choice $\mathrm{a}>\mathrm{c}>\mathrm{b}$
$n_{\text {ba }}$ number of voters with choice $\mathrm{b}>\mathrm{a}>\mathrm{c}$
$\left(n_{\mathrm{ab}}, n_{\mathrm{ac}}, n_{\mathrm{ba}}, n_{\mathrm{bc}}, n_{\mathrm{ca}}, n_{\mathrm{cb}}\right)$ describes a voting situation $N=n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{ca}}+n_{\mathrm{cb}}$
is total number of voters

Polyhedral Model

- Impartial Anonymous Culture (IAC) assumption: every voting situation is equally likely
- for three candidates a, b and c, let
n_{ab} number of voters with choice $\mathrm{a}>\mathrm{b}>\mathrm{c}$
n_{ac} number of voters with choice $\mathrm{a}>\mathrm{c}>\mathrm{b}$
$n_{\text {ba }}$ number of voters with choice $\mathrm{b}>\mathrm{a}>\mathrm{c}$
$\left(n_{\mathrm{ab}}, n_{\mathrm{ac}}, n_{\mathrm{ba}}, n_{\mathrm{bc}}, n_{\mathrm{ca}}, n_{\mathrm{cb}}\right)$ describes a voting situation

$$
N=n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{ca}}+n_{\mathrm{cb}}
$$

is total number of voters

Counting Lattice Points

Counting Lattice Points

- Candidate a is a Condorcet winner if

Counting Lattice Points

- Candidate a is a Condorcet winner if

$$
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} \quad(\mathrm{a} \text { beats } \mathbf{b})
$$

Counting Lattice Points

- Candidate a is a Condorcet winner if

$$
\begin{aligned}
& n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} \\
\text { and } & (\text { a beats } \mathrm{b}) \\
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}} & (\text { a beats } \mathrm{c})
\end{aligned}
$$

Counting Lattice Points

- Candidate a is a Condorcet winner if
(1) $\quad n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} \quad$ (a beats b$)$
(2) and $n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}} \quad$ (a beats c$)$

That is: $\quad\left(n_{\mathrm{ab}}, n_{\mathrm{ac}}, n_{\mathrm{ba}}, n_{\mathrm{bc}}, n_{\mathrm{ca}}, n_{\mathrm{cb}}\right) \in \mathbb{Z}_{\geq 0}^{6}$
is in the polyhedron
$P_{N}=\left\{n \in \mathbb{R}^{6} \mid N=\sum_{\mathrm{xy}} n_{x y}, n_{x y} \geq 0\right.$ and $\left.(1),(2)\right\}$

Ehrhart theory

$$
\#\left(P_{N} \cap \mathbb{Z}^{d}\right)=a_{d-1} N^{d-1}+\ldots+a_{1} N+a_{0}
$$

Ehrhart theory

$$
\#\left(P_{N} \cap \mathbb{Z}^{d}\right)=a_{d-1} N^{d-1}+\ldots+a_{1} N+a_{0}
$$

Eugène Ehrhart (1906-2000)

Ehrhart theory

$$
\#\left(P_{N} \cap \mathbb{Z}^{d}\right)=a_{d-1} N^{d-1}+\ldots+a_{1} N+a_{0}
$$

- P_{1} integral \Rightarrow polynomial

Eugène Ehrhart (1906-2000)

Ehrhart theory

$$
\#\left(P_{N} \cap \mathbb{Z}^{d}\right)=a_{d-1} N^{d-1}+\ldots+a_{1} N+a_{0}
$$

- P_{1} integral \Rightarrow polynomial

Eugène Ehrhart (1906-2000)
$\mathrm{Ex}: P_{1}=\operatorname{conv}\left\{e_{1}, \ldots, e_{d}\right\} \quad \Rightarrow \quad \#\left(P_{N} \cap \mathbb{Z}^{d}\right)=\binom{N+d-1}{d-1}$

Ehrhart theory

$$
\#\left(P_{N} \cap \mathbb{Z}^{d}\right)=a_{d-1} N^{d-1}+\ldots+a_{1} N+a_{0}
$$

- P_{1} integral \Rightarrow polynomial

Eugène Ehrhart (1906-2000)

Ex: $P_{1}=\operatorname{conv}\left\{e_{1}, \ldots, e_{d}\right\} \quad \Rightarrow \quad \#\left(P_{N} \cap \mathbb{Z}^{d}\right)=\binom{N+d-1}{d-1}$

- P_{1} rational \Rightarrow quasi-polynomial

Ehrhart theory

$$
\#\left(P_{N} \cap \mathbb{Z}^{d}\right)=\underbrace{a_{d-1}}_{\operatorname{vol}_{d-1}\left(P_{1}\right)} N^{d-1}+\ldots+a_{1} N+a_{0}
$$

- P_{1} integral \Rightarrow polynomial

Eugène Ehrhart (1906-2000)
$\mathrm{Ex}: P_{1}=\operatorname{conv}\left\{e_{1}, \ldots, e_{d}\right\} \quad \Rightarrow \quad \#\left(P_{N} \cap \mathbb{Z}^{d}\right)=\binom{N+d-1}{d-1}$

- P_{1} rational \Rightarrow quasi-polynomial

Ehrhart theory

$$
\#\left(P_{N} \cap \mathbb{Z}^{d}\right)=\underbrace{a_{d-1}}_{\operatorname{vol}_{d-1}\left(P_{1}\right)} N^{d-1}+\ldots+a_{1} N+a_{0}
$$

- P_{1} integral \Rightarrow polynomial

Eugène Ehrhart (1906-2000)
$\mathrm{Ex}: P_{1}=\operatorname{conv}\left\{e_{1}, \ldots, e_{d}\right\} \quad \Rightarrow \quad \#\left(P_{N} \cap \mathbb{Z}^{d}\right)=\binom{N+d-1}{d-1}$

- P_{1} rational \Rightarrow quasi-polynomial
- "Reinvented" in Social Choice Theory by Chua and Huang (2000)

Ehrhart theory

$$
\#\left(P_{N} \cap \mathbb{Z}^{d}\right)=\underbrace{a_{d-1}}_{\operatorname{vol}_{d-1}\left(P_{1}\right)} N^{d-1}+\ldots+a_{1} N+a_{0}
$$

- P_{1} integral \Rightarrow polynomial

Eugène Ehrhart (1906-2000)
$\mathrm{Ex}: P_{1}=\operatorname{conv}\left\{e_{1}, \ldots, e_{d}\right\} \quad \Rightarrow \quad \#\left(P_{N} \cap \mathbb{Z}^{d}\right)=\binom{N+d-1}{d-1}$

- P_{1} rational \Rightarrow quasi-polynomial
- "Reinvented" in Social Choice Theory by Chua and Huang (2000)
- Parallelity of Approach discovered in 2006 (by Lepelley et al. and Wilson / Pritchard)

Likeliness of Condorcet paradox

Likeliness of Condorcet paradox

Quasi-polynomial for $\#\left(P_{N} \cap \mathbb{Z}^{6}\right)$ can be obtained using barvinok or latte

Likeliness of Condorcet paradox

Quasi-polynomial for $\#\left(P_{N} \cap \mathbb{Z}^{6}\right)$ can be obtained using barvinok or latte

$$
\begin{aligned}
& 1 / 384 * N^{\wedge} 5 \\
+ & (-1 / 64 *\{(1 / 2 * N+0)\}+3 / 64) * N^{\wedge} 4 \\
+ & (-19 / 96 *\{(1 / 2 * N+0)\}+31 / 96) * N^{\wedge} 3 \\
+ & (-29 / 32 *\{(1 / 2 * N+0)\}+17 / 16) * N^{\wedge} 2 \\
+ & (-343 / 192 *\{(1 / 2 * N+0)\}+5 / 3) * N \\
+ & (-83 / 64 *\{(1 / 2 * N+0)\}+1)
\end{aligned}
$$

(Number of voting situations with N voters and candidate a as Condorcet winner)

Likeliness of Condorcet paradox

Quasi-polynomial for $\#\left(P_{N} \cap \mathbb{Z}^{6}\right)$ can be obtained using barvinok or latte

$$
\begin{aligned}
& 1 / 384 * N^{\wedge} 5 \\
+ & (-1 / 64 *\{(1 / 2 * N+0)\}+3 / 64) * N^{\wedge} 4 \\
+ & (-19 / 96 *\{(1 / 2 * N+0)\}+31 / 96) * N^{\wedge} 3 \\
+ & (-29 / 32 *\{(1 / 2 * N+0)\}+17 / 16) * N^{\wedge} 2 \\
+ & (-343 / 192 *\{(1 / 2 * N+0)\}+5 / 3) * N \\
+ & (-83 / 64 *\{(1 / 2 * N+0)\}+1)
\end{aligned}
$$

(Number of voting situations with N voters and candidate a as Condorcet winner)

Likeliness of
Condorcet Paradox

$$
1-3 \frac{\text { q-poly }}{\binom{N+5}{5}}
$$

Likeliness of Condorcet paradox

Quasi-polynomial for $\#\left(P_{N} \cap \mathbb{Z}^{6}\right)$ can be obtained using barvinok or latte

$$
\begin{aligned}
& 1 / 384 * N^{\wedge} 5 \\
+ & (-1 / 64 *\{(1 / 2 * N+0)\}+3 / 64) * N^{\wedge} 4 \\
+ & (-19 / 96 *\{(1 / 2 * N+0)\}+31 / 96) * N^{\wedge} 3 \\
+ & (-29 / 32 *\{(1 / 2 * N+0)\}+17 / 16) * N^{\wedge} 2 \\
+ & (-343 / 192 *\{(1 / 2 * N+0)\}+5 / 3) * N \\
+ & (-83 / 64 *\{(1 / 2 * N+0)\}+1)
\end{aligned}
$$

(Number of voting situations with N voters and candidate a as Condorcet winner)

Likeliness of
Condorcet Paradox

$$
1-3 \frac{\text { q-poly }}{\binom{N+5}{5}}
$$

For large elections $(N \rightarrow \infty)$:

$$
1-3 \frac{1 / 384}{1 / 120}=\frac{1}{16}=0.0625
$$

Other paradoxes and voting situations

Other paradoxes and voting situations

- Condorcet winner, but Plurality loser

Other paradoxes and voting situations

- Condorcet winner, but Plurality loser

$$
\begin{array}{ll}
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} & (\text { a beats } \mathrm{b}) \\
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}} & (\text { a beats } \mathrm{c})
\end{array}
$$

Other paradoxes and voting situations

- Condorcet winner, but Plurality loser

$$
\begin{aligned}
& n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} \\
& n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}} \\
& n_{\mathrm{ba}}+n_{\mathrm{bc}}>n_{\mathrm{ab}}+n_{\mathrm{ac}}, n_{\mathrm{ca}}+n_{\mathrm{cb}}
\end{aligned}
$$

(a beats b)
(a beats c)
(b wins plurality)

Other paradoxes and voting situations

- Condorcet winner, but Plurality loser

$$
\begin{array}{lr}
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} & (\mathrm{a} \text { beats b) } \\
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}} & (\text { a beats } \mathrm{c}) \\
n_{\mathrm{ba}}+n_{\mathrm{bc}}>n_{\mathrm{ab}}+n_{\mathrm{ac}}, n_{\mathrm{ca}}+n_{\mathrm{cb}} & (\mathrm{~b} \text { wins plurality })
\end{array}
$$

Likeliness for large elections $(N \rightarrow \infty): \frac{16}{135}=0.1185 \ldots$

Other paradoxes and voting situations

- Condorcet winner, but Plurality loser

$$
\begin{array}{lr}
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} & (\mathrm{a} \text { beats b }) \\
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}} & (\text { a beats } \mathrm{c}) \\
n_{\mathrm{ba}}+n_{\mathrm{bc}}>n_{\mathrm{ab}}+n_{\mathrm{ac}}, n_{\mathrm{ca}}+n_{\mathrm{cb}} & (\mathrm{~b} \text { wins plurality })
\end{array}
$$

$$
\text { Likeliness for large elections }(N \rightarrow \infty): \frac{16}{135}=0.1185 \ldots
$$

- Plurality vs. Plurality Runoff

Other paradoxes and voting situations

- Condorcet winner, but Plurality loser

$$
\begin{array}{lr}
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} & (\mathrm{a} \text { beats b }) \\
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}} & (\text { a beats } \mathrm{c}) \\
n_{\mathrm{ba}}+n_{\mathrm{bc}}>n_{\mathrm{ab}}+n_{\mathrm{ac}}, n_{\mathrm{ca}}+n_{\mathrm{cb}} & (\mathrm{~b} \text { wins plurality })
\end{array}
$$

$$
\text { Likeliness for large elections }(N \rightarrow \infty): \frac{16}{135}=0.1185 \ldots
$$

- Plurality vs. Plurality Runoff

$$
\begin{array}{lr}
n_{\mathrm{ab}}+n_{\mathrm{ac}}>n_{\mathrm{ba}}+n_{\mathrm{bc}} & (\mathrm{a} \text { wins plurality over } \mathrm{b}) \\
n_{\mathrm{ba}}+n_{\mathrm{bc}}>n_{\mathrm{ca}}+n_{\mathrm{cb}} & (\mathrm{~b} \text { wins plurality over } \mathrm{c}) \\
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}<n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} & (\mathrm{~b} \text { beats } \mathrm{a})
\end{array}
$$

Other paradoxes and voting situations

- Condorcet winner, but Plurality loser

$$
\begin{array}{lr}
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} & (\mathrm{a} \text { beats b) } \\
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}} & (\text { a beats } \mathrm{c}) \\
n_{\mathrm{ba}}+n_{\mathrm{bc}}>n_{\mathrm{ab}}+n_{\mathrm{ac}}, n_{\mathrm{ca}}+n_{\mathrm{cb}} & (\mathrm{~b} \text { wins plurality })
\end{array}
$$

Likeliness for large elections $(N \rightarrow \infty): \frac{16}{135}=0.1185 \ldots$

- Plurality vs. Plurality Runoff

$$
\begin{array}{lr}
n_{\mathrm{ab}}+n_{\mathrm{ac}}>n_{\mathrm{ba}}+n_{\mathrm{bc}} & (\mathrm{a} \text { wins plurality over } \mathrm{b}) \\
n_{\mathrm{ba}}+n_{\mathrm{bc}}>n_{\mathrm{ca}}+n_{\mathrm{cb}} & (\mathrm{~b} \text { wins plurality over } \mathrm{c}) \\
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}<n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} & (\mathrm{~b} \text { beats } \mathrm{a})
\end{array}
$$

$$
\text { Likeliness for large elections }(N \rightarrow \infty): \frac{71}{576}=0.12326 \ldots
$$

Four candidates? Or

Four candidates? Or

Four candidates? Or

hardly any exact probabilitie

Four candidates? Or

hardly any exact probabilitie

- for 4 candidates 24 variables are used in polynearal mocel

Four candidates? Or

hardly any exact probabilitie

- for 4 candidates 24 variables are used in polynearal mocel
=> polyhedral computations are too difficult

Four candidates? Or

hardly any exact probabilitie

- for 4 candidates 24 variables are used in polynearal mocel
=> polyhedral computations are too difficult ("most of the time", due to LattE integrale, July 20II)

Four candidates? Or

hardly any exact probabilitie

- for 4 candidates 24 variables are used in polynearal mocel
=> polyhedral computations are too difficult ("most of the time", due to LattE integrale, July 20II)

IDEA: Reduce dimension by exploiting symmetry !

Grouping of variables

Grouping of variables

$$
\begin{aligned}
& n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} \\
& n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}} \\
& N=n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}+n_{\mathrm{ca}}+n_{\mathrm{bc}}+n_{\mathrm{cb}}
\end{aligned}
$$

Grouping of variables

$$
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}}
$$

$$
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}}
$$

$$
N=n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}+n_{\mathrm{ca}}+n_{\mathrm{bc}}+n_{\mathrm{cb}}
$$

Grouping of variables

$$
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}}
$$

$$
n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}}
$$

$$
N=n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}+n_{\mathrm{ca}}+n_{\mathrm{bc}}+n_{\mathrm{cb}}
$$

$$
n_{\mathrm{a}}
$$

$$
n_{\mathrm{R}}
$$

Grouping of variables

Grouping of variables

$\left(n_{\mathrm{a}}, n_{\mathrm{ba}}, n_{\mathrm{ca}}, n_{\mathrm{R}}\right)$ describes $\left(n_{\mathrm{a}}+1\right)\left(n_{\mathrm{R}}+1\right)$ voting situations
(former lattice points)

Grouping of variables

$$
n_{\mathrm{a}}
$$

n_{R}
$\left(n_{\mathrm{a}}, n_{\mathrm{ba}}, n_{\mathrm{ca}}, n_{\mathrm{R}}\right)$ describes $\left(n_{\mathrm{a}}+1\right)\left(n_{\mathrm{R}}+1\right)$ voting situations
(former lattice points)

THUS: the polytope decomposes into fibers of simplotopes (cross products of simplices)

Grouping of variables

n_{R}
$\left(n_{\mathrm{a}}, n_{\mathrm{ba}}, n_{\mathrm{ca}}, n_{\mathrm{R}}\right)$ describes $\left(n_{\mathrm{a}}+1\right)\left(n_{\mathrm{R}}+1\right)$ voting situations
(former lattice points)

THUS: the polytope decomposes into fibers of simplotopes (cross products of simplices)

Exploiting symmetry via integration

Exploiting symmetry via integration

$$
\operatorname{Prob}(N)=\frac{\left|L_{N} \cap P \cap \mathbb{Z}^{d}\right|}{\left|L_{N} \cap S \cap \mathbb{Z}^{d}\right|}
$$

Exploiting symmetry via integration

$$
\operatorname{Prob}(N)=\frac{\left|L_{N} \cap P \cap \mathbb{Z}^{d}\right|}{\left|L_{N} \cap S \cap \mathbb{Z}^{d}\right|} \quad L_{N}=\left\{x \in \mathbb{R}^{d}: \sum_{i} x_{i}=N\right\}
$$

P, S homogeneous polyhedral cones

Exploiting symmetry via integration

$$
\operatorname{Prob}(N)=\frac{\left|L_{N} \cap P \cap \mathbb{Z}^{d}\right|}{\left|L_{N} \cap S \cap \mathbb{Z}^{d}\right|} \quad L_{N}=\left\{x \in \mathbb{R}^{d}: \sum_{i} x_{i}=N\right\}
$$

Exploiting symmetry via integration

$$
\operatorname{Prob}(N)=\frac{\left|L_{N} \cap P \cap \mathbb{Z}^{d}\right|}{\left|L_{N} \cap S \cap \mathbb{Z}^{d}\right|} \quad L_{N}=\left\{x \in \mathbb{R}^{d}: \sum_{i} x_{i}=N\right\}
$$

$$
=\frac{\sum_{n \in L_{N} \cap P \cap \mathbb{Z}^{d}} 1}{\sum 1}
$$

$$
n \in L_{N} \cap S \cap \mathbb{Z}^{d}
$$

Exploiting symmetry via integration

$$
\operatorname{Prob}(N)=\frac{\left|L_{N} \cap P \cap \mathbb{Z}^{d}\right|}{\left|L_{N} \cap S \cap \mathbb{Z}^{d}\right|} \quad L_{N}=\left\{x \in \mathbb{R}^{d}: \sum_{i} x_{i}=N\right\}
$$

Exploiting symmetry via integration

$$
\operatorname{Prob}(N)=\frac{\left|L_{N} \cap P \cap \mathbb{Z}^{d}\right|}{\left|L_{N} \cap S \cap \mathbb{Z}^{d}\right|} \quad L_{N}=\left\{x \in \mathbb{R}^{d}: \sum_{i} x_{i}=N\right\}
$$

$\lim _{N \rightarrow \infty} \operatorname{Prob}(N)=\lim _{N \rightarrow \infty} \frac{\left|L_{1} \cap P \cap(\mathbb{Z} / N)^{d}\right|}{\left|L_{1} \cap S \cap(\mathbb{Z} / N)^{d}\right|}$

Exploiting symmetry via integration

$$
\operatorname{Prob}(N)=\frac{\left|L_{N} \cap P \cap \mathbb{Z}^{d}\right|}{\left|L_{N} \cap S \cap \mathbb{Z}^{d}\right|} \quad L_{N}=\left\{x \in \mathbb{R}^{d}: \sum_{i} x_{i}=N\right\}
$$

P, S homogeneous polyhedral cones

$$
\lim _{N \rightarrow \infty} \operatorname{Prob}(N)=\lim _{N \rightarrow \infty} \frac{\left|L_{1} \cap P \cap(\mathbb{Z} / N)^{d}\right|}{\left|L_{1} \cap S \cap(\mathbb{Z} / N)^{d}\right|}=\frac{\int_{L_{1} \cap P^{\prime}} \mid t-\operatorname{poly}(x) d x}{\int_{L_{1} \cap S^{\prime}} \mid t-\operatorname{poly}(x) d x}
$$

Large elections with four candidates

Large elections with four candidates

- No Condorcet winner exists (Condorcet paradox)

$$
\lim _{N \rightarrow \infty} \operatorname{Prob}(N)=\frac{331}{2048}=0.1616 \ldots
$$

(by integrating polynomial of degree 16 over a 7-dimensional polytope)

Large elections with four candidates

- No Condorcet winner exists (Condorcet paradox)
$\lim _{N \rightarrow \infty} \operatorname{Prob}(N)=\frac{331}{2048}=0.1616 \ldots$
(by integrating polynomial of degree 16 over a 7 -dimensional polytope)

William V. Gehrlein

In an email of Sep. 7th 201 I:
Your results particularly got my attention when I finally realized that you had obtained limiting representations for four candidates. This is a significant step forward, and you are not the only person who has been trying to produce such results. However, I believe that you are the first to successfully accomplish this. The only four candidate result that I am aware of is cited in your paper, and I only managed to obtain that by using a trick.

New results with four candidates

- Condorcet Efficiency of Plurality
$\lim _{N \rightarrow \infty} \operatorname{Prob}(N)=\frac{10658098255011916449318509}{14352135440302080000000000}=0.74261 \ldots$
(by integrating polynomial of degree 11 over a 13-dimensional polytope)

New results with four candidates

- Condorcet Efficiency of Plurality
$\lim _{N \rightarrow \infty} \operatorname{Prob}(N)=\frac{10658098255011916449318509}{14352135440302080000000000}=0.74261 \ldots$
(by integrating polynomial of degree 11 over a 13-dimensional polytope)
- Plurality vs. Plurality Runoff
$\lim _{N \rightarrow \infty} \operatorname{Prob}(N)=\frac{2988379676768359}{12173449145352192}=0.24548 \ldots$
(by integrating polynomial of degree 18 over a 5 -dimensional polytope)

WANT: generalization of Ehrhart theory, counting lattice points with polynomial weights

The next generation Ehrhart theory Counting with polynomial weights

The next generation Ehrhart theory Counting with polynomial weights

- Two new methods:
- via rational generating functions

Baldoni, Berline,Vergne, 2009

- via local Euler-Maclaurin formula

The next generation Ehrhart theory Counting with polynomial weights

- Two new methods:
- via rational generating functions

Baldoni, Berline,Vergne, 2009

- via local Euler-Maclaurin formula
- "experimental" implementation available in barvinok

The next generation Ehrhart theory Counting with polynomial weights

- Two new methods:
- via rational generating functions
- via local Euler-Maclaurin formula
- "experimental" implementation available in barvinok
- available soon in LattE integrale

Baldoni, Berline,Vergne, 2009

The next generation Ehrhart theory Counting with polynomial weights

- Two new methods:
- via rational generating functions
- via local Euler-Maclaurin formula
- "experimental" implementation available in barvinok
- available soon in LattE integrale

Baldoni, Berline,Vergne, 2009

Exploiting Symmetry in other

Polyhedral Computations?

Representation Conversion

 up to symmetry
Representation Conversion

up to symmetry

Recent computational successes:

(with Mathieu Dutour Sikirić and Frank Vallentin)

- Classification of eight dimensional perfect forms, Electron. Res.Announc.AMS, I3 (2007)

Representation Conversion

up to symmetry

Recent computational successes:

(with Mathieu Dutour Sikirić and Frank Vallentin)

- Classification of eight dimensional perfect forms, Electron. Res.Announc.AMS, I3 (2007)
- I orbit with 120 vertices in 35 dimensions
- $25,075,566,937,584$ facets in 83092 orbits

Representation Conversion

up to symmetry

Recent computational successes:
 (with Mathieu Dutour Sikirić and Frank Vallentin)

- Classification of eight dimensional perfect forms, Electron. Res.Announc.AMS, I3 (2007)
- I orbit with 120 vertices in 35 dimensions
- $25,075,566,937,584$ facets in 83092 orbits
- Complexity and algorithms for computing Voronoi cells of lattices, Math. Comp., 78 (2009)
- computation of vertices for many different Voronoi cells of lattices
- verified that Leech Lattice cell has 307 vertex orbits (Conway, Borcherds, et. al.)

Representation Conversion

up to symmetry

Recent computational successes:
 (with Mathieu Dutour Sikirić and Frank Vallentin)

- Classification of eight dimensional perfect forms, Electron. Res.Announc.AMS, I3 (2007)
- I orbit with 120 vertices in 35 dimensions
- $25,075,566,937,584$ facets in 83092 orbits
- Complexity and algorithms for computing Voronoi cells of lattices, Math. Comp., 78 (2009)
- computation of vertices for many different Voronoi cells of lattices
- verified that Leech Lattice cell has 307 vertex orbits (Conway, Borcherds, et. al.)
- The contact polytope of the Leech lattice, preprint at arXiv:0906.I427
- I orbit with 196,560 vertices in 24 dimensions
- I,I97,362,269,604,2I4,277,200 many facets in 232 orbits

A New C++ Tool

A New C++ Tool

- helps to compute linear automorphism groups

A New C++ Tool

- helps to compute linear automorphism groups
- converts polyhedral representations using

Recursive Decomposition Methods (Incidence/Adjacency)
(also used by Christof/Reinelt, Deza/Fukuda/Pasechnik, ...)

A New C++ Tool

- helps to compute linear automorphism groups
- converts polyhedral representations using

Recursive Decomposition Methods (Incidence/Adjacency) (also used by Christof/Reinelt, Deza/Fukuda/Pasechnik, ...)

EX: 4-dim. cube

Input	n-1
Output	0

A New C++ Tool

- helps to compute linear automorphism groups

- converts polyhedral representations using

Recursive Decomposition Methods (Incidence/Adjacency) (also used by Christof/Reinelt, Deza/Fukuda/Pasechnik, ...)

EX: 4-dim. cube

Symmetry Groups

Symmetry Groups

- Combinatorial, Linear, or Geometric Symmetries

Symmetry Groups

- Combinatorial, Linear, or Geometric Symmetries

$C_{6} \rtimes C_{2}$ trivial trivial

$C_{6} \rtimes C_{2}$
$C_{6} \rtimes C_{2}$
$C_{2} \rtimes C_{2}$

$C_{6} \rtimes C_{2}$
$C_{6} \rtimes C_{2}$
$C_{6} \rtimes C_{2}$

Symmetry Groups

- Combinatorial, Linear, or Geometric Symmetries

$C_{6} \rtimes C_{2}$ trivial trivial

$C_{6} \rtimes C_{2}$
$C_{6} \rtimes C_{2}$
$C_{2} \rtimes C_{2}$

$C_{6} \rtimes C_{2}$
$C_{6} \rtimes C_{2}$
$C_{6} \rtimes C_{2}$

DEF: A linear automorphism of $\left\{v_{1}, \ldots, v_{m}\right\} \subset \mathbb{R}^{n}$ is a regular matrix $A \in \mathbb{R}^{n \times n}$ with $A v_{i}=v_{\sigma(i)}$ for some $\sigma \in S_{m}$

Detecting Linear Automorphisms

Detecting Linear Automorphisms

THM: The group of linear automorphisms is equal to the automorphism group of the complete graph K_{m}

$$
\text { with edge labels } v_{i}^{t} Q^{-1} v_{j} \text {, where } Q=\sum_{i=1}^{m} v_{i} v_{i}^{t}
$$

Detecting Linear Automorphisms

THM: The group of linear automorphisms is equal to the automorphism group of the complete graph K_{m} with edge labels $v_{i}^{t} Q^{-1} v_{j}$, where $Q=\sum_{i=1}^{m} v_{i} v_{i}^{t}$

$$
Q=\left(\begin{array}{cc}
4 & -2 \\
-2 & 4
\end{array}\right)
$$

Detecting Linear Automorphisms

THM: The group of linear automorphisms is equal to the automorphism group of the complete graph K_{m} with edge labels $v_{i}^{t} Q^{-1} v_{j}$, where $Q=\sum_{i=1}^{m} v_{i} v_{i}^{t}$

$$
Q=\left(\begin{array}{cc}
4 & -2 \\
-2 & 4
\end{array}\right)
$$

=> use NAUTY by Brendan McKay

Adjacency Decomposition Method

(for vertex enumeration)

Adjacency Decomposition Method

(for vertex enumeration)

- Find initial orbit(s) / representing vertice(s)

Adjacency Decomposition Method

(for vertex enumeration)

- Find initial orbit(s) / representing vertice(s)
- For each new orbit representative
- enumerate neighboring vertices

Adjacency Decomposition Method

 (for vertex enumeration)- Find initial orbit(s) / representing vertice(s)
- For each new orbit representative
- enumerate neighboring vertices
- add as orbit representative if in a new orbit

Adjacency Decomposition Method

 (for vertex enumeration)- Find initial orbit(s) / representing vertice(s)
- For each new orbit representative
- enumerate neighboring vertices (up to symmetry)
- add as orbit representative if in a new orbit

Adjacency Decomposition Method (for vertex enumeration)

- Find initial orbit(s) / representing vertice(s)
- For each new orbit representative
- enumerate neighboring vertices (up to symmetry)
- add as orbit representative if in a new orbit

Representation conversion problem

BOTTLENECK: Stabilizer and In-Orbit computations

Adjacency Decomposition Method

 (for vertex enumeration)- Find initial orbit(s) / representing vertice(s)
- For each new orbit representative
- enumerate neighboring vertices (up to symmetry) - add as orbit representative if in a new orbit

Representation conversion problem

BOTTLENECK: Stabilizer and In-Orbit computations
=> Need of efficient data structures and algorithms for permutation groups: BSGS, (partition) backtracking

Ingredient I: Permutation Group Algorithms

- BSGS and (partition) backtrack could be provided by GAP, MAGMA or SAGE

Ingredient I: Permutation Group Algorithms

- BSGS and (partition) backtrack could be provided by GAP, MAGMA or SAGE
- We use the callable C++ library PermLib
- open source (new BSD license)
- with compact API to access core functionality
- can replace NAUTY

Ingredient I:
 Permutation Group Algorithms

- BSGS and (partition) backtrack could be provided by GAP, MAGMA or SAGE
- We use the callable C++ library PermLib
- open source (new BSD license)
- with compact API to access core functionality
- can replace NAUTY

Vision:

- Create "integrated algorithms" combining tools of

Polyhedral Combinatorics and Computational Group Theory

Ingredient II:
 Established Representation Conversion Tools

Ingredient II:
 Established Representation Conversion Tools

- cddlib by Komei Fukuda (Double Description Method) incrementally adding inequalities and recomputing vertices at every step

Ingredient II:
 Established Representation Conversion Tools

- cddlib by Komei Fukuda (Double Description Method) incrementally adding inequalities and recomputing vertices at every step
- Irslib by David Avis (Lexicographic Reverse Search) pivoting using "Simplex Pivots"

Ingredient II:
 Established Representation Conversion Tools

- cddlib by Komei Fukuda (Double Description Method) incrementally adding inequalities and recomputing vertices at every step
- Irslib by David Avis (Lexicographic Reverse Search) pivoting using "Simplex Pivots"

WHAT ABOUT Symmetry Exploiting Methods ?

Ingredient II:
 Established Representation Conversion Tools

- cddlib by Komei Fukuda (Double Description Method) incrementally adding inequalities and recomputing vertices at every step
- Irslib by David Avis (Lexicographic Reverse Search) pivoting using "Simplex Pivots"

WHAT ABOUT Symmetry Exploiting Methods ?

- with David Bremner we work(ed) on
- pivoting methods up to symmetry

- incremental methods using fundamental domains

Example I: Abhinav's Polytope

[Kum11] Abhinav Kumar, Elliptic fibrations on a generic Jacobian Kummer surface, arxiv:1105.1715

Example I: Abhinav's Polytope

[Kum11] Abhinav Kumar, Elliptic fibrations on a generic Jacobian Kummer surface, arxiv:II05.I7I5
~> computing all classes of elliptic divisors on ...

Example I: Abhinav's Polytope

[Kum11] Abhinav Kumar, Elliptic fibrations on a generic Jacobian Kummer surface, arxiv:II05.17I5
~> computing all classes of elliptic divisors on ...

```
H-representation
begin
316 17 integer
01000000000000000
end
```


Example I: Abhinav's Polytope

[Kum11] Abhinav Kumar, Elliptic fibrations on a generic Jacobian Kummer surface, arxiv:II05.1715
~> computing all classes of elliptic divisors on ...

H-representation
begin
31617 integer
01000000000000000
end
Getting the group:
sympol --automorphisms-only input-file

Example I: Abhinav's Polytope

[Kum11] Abhinav Kumar, Elliptic fibrations on a generic Jacobian Kummer surface, arxiv:II05.17I5
$~>$ computing all classes of elliptic divisors on ...

```
H-representation
begin
316 17 integer
01000000000000000
end
```

```
permutation group
9
    3 5,7 9,11 14,13 16,19 21,23 25,27 30,2
4
    33 1749308
```

Getting the group:
sympol --automorphisms-only input-file

Example I: Abhinav's Polytope

[Kum11] Abhinav Kumar, Elliptic fibrations on a generic Jacobian Kummer surface, arxiv:II05.17I5
$\sim>$ computing all classes of elliptic divisors on ...

```
H-representation
begin
316 17 integer
01000000000000000
end
```

```
permutation group
9
    3 5,7 9,11 14,13 16,19 21,23 25,27 30,24
4
    331749308
```

Getting the group:
sympol --automorphisms-only input-file
Getting vertices up to symmetry:
sympol --adm 40 input-file

Example I: Abhinav's Polytope

[Kum11] Abhinav Kumar, Elliptic fibrations on a generic Jacobian Kummer surface, arxiv:II05.17I5
$~>$ computing all classes of elliptic divisors on ...

H-representation begin
31617 integer
01000000000000000
end
Getting the group:
sympol --automorphisms-only
Getting vertices up to symmetry : sympol --adm 40 input-file

```
permutation group
9
    3 5,7 9,11 14,13 16,19 21,23 25,27 30,2
    4
    33 17 49 308
    V-representation
    * UP TO SYMMETRY
    begin
    end
    permutation group
    * order 11520
    * w.r.t. to the original inequalities/verti
```


Example II: Paco's Prismatoid

Example II: Paco’s Prismatoid

Example II: Paco’s Prismatoid

Example II: Paco's Prismatoid

sympol --idm-adm-level 01 --adjacencies input-file

Example II: Paco's Prismatoid

sympol --idm-adm-level 01 --adjacencies input-file

Example II: Paco's Prismatoid

	x_{1}	x_{2}	x_{0}	x_{4}	x_{5}
$\underset{2^{-}}{-}$	${ }^{0}$:	0		-1
${ }^{2}$	${ }_{0}^{0}$	\%	18	${ }^{-18}$	-1 -1 -1
4^{-}	0	0	-18	0	-1
6^{-}	45	0	0	:	-1
7^{6-}	-45	45	0	\bigcirc	-1
g^{-}	0	-45	0	\%	-1
g^{-}	0	0	15	15	-1
10^{-}	0	-	15	-15	-1
$1{ }^{-}$	0	0	-15	15	-1
${ }_{13}^{12}$	$\stackrel{0}{30}$	3	${ }_{-15}^{-15}$	${ }_{-15}^{15}$	-1 -1
14^{-}	-30	30		。	-1
15^{-}	30	-30	0	0	-1
${ }_{17}^{16}$	-30	-30	0	\bigcirc	-1
$17{ }^{-}$	40	\bigcirc	10	0	-1
$\xrightarrow{18}$	${ }_{-40} 40$:	-10	:	-1
20^{-}	-40	。	-10	-	-1
22^{-}	0	40	0	10	-1
${ }^{22-}$	0	40	0	-10	-1
$\frac{23^{-}}{24^{-}}$	(0	-40 -40	${ }_{0}^{0}$	10 -10	$\left.\begin{array}{l}-1 \\ -1\end{array}\right)$

sympol --idm-adm-level 01 --adjacencies input-file
~> neato ~>
(Graphviz)

What else?

Exploiting Symmetries in LPs and IPs

Exploiting Symmetries in LPs and IPs

- For LPs one can intersect feasible polyhedron with invariant linear subspace

Exploiting Symmetries in LPs and IPs

- For LPs one can intersect feasible polyhedron with invariant linear subspace
(not possible for IPs)

Exploiting Symmetries in LPs and IPs

- For LPs one can intersect feasible polyhedron with invariant linear subspace

(not possible for IPs)

- For IPs several new approaches have been proposed

=> see survey "Symmetry in Integer Linear Programming" by François Margot (2010)

Exploiting Polyhedral Symmetries in IPs using invariant linear subspace

Exploiting Polyhedral Symmetries

Exploiting Polyhedral Symmetries

- in Lattice Point Counting

Exploiting Polyhedral Symmetries

- in Lattice Point Counting
- in Polyhedral Representation Conversions

Exploiting Polyhedral Symmetries

- in Lattice Point Counting
- in Polyhedral Representation Conversions
- in Integer Programming and MILPs

Thomas

Exploiting Polyhedral Symmetries

- in Lattice Point Counting
- in Polyhedral Representation Conversions
- in Integer Programming and MILPs

Thomas

Universität Rostock 5 Tradicio et hovovis

ToDo

- Create efficient computational tools / use more math!
- Integrate tools from Computational Group Theory

Thanks!

