Spheric analogs of fullerenes

Michel DEZA and Mathieu DUTOUR SIKIRIC

Ecole Normale Superieure, Paris, and Rudjer Boskovic Institute, Zagreb
September 2011, Fields Institute

Overview

(1) 8 families of standard $(\{a, b\}, k)$-spheres
(2) Connectedness of $(\{a, b\}, k)$-spheres
(3) Listing of $(\{a, b\}, k)$-spheres with small p_{b}

4 8 standard families: four smallest members
(5) Symmetry groups of $(\{a, b\}, k)$-spheres
(6) Goldberg-Coxeter construction
(7) Parameterizing $(\{a, b\}, k)$-spheres
8) Railroads and tight $(\{a, b\}, k)$-spheres
(9) Tight pure $(\{a, b\}, k)$-spheres
(10) Other analogs of fullerenes: c-disks
(11) Icosahedrites
(12) Standard $(\{a, b\}, k)$-maps on surfaces
(13) Beyond surfaces

I. 8 families of standard ($\{a, b\}, k)$-spheres

(R, k)-spheres: $C_{i}=2 k-i(k-2)$ of i-gons

- Fix $R \subset \mathbb{N}$, an (R, k)-sphere is a k-regular, $k \geq 3$, map on \mathbb{S}^{2} whose faces are i-gons, $i \in R$. Let $m=\min$ and $M=\max _{i \in R}$.
- Let v, e and $f=\sum_{i} p_{i}$ be the numbers of vertices, edges and faces of S, where p_{i} is the number of i-gonal faces. Clearly, $k v=2 e=\sum_{i} i p_{i}$ and the Euler formula $v-e+f=2$ become $4 k=\sum_{i} p_{i} C_{i}$, where $C_{i}=2 k-i(k-2)$ is curvature of i-gons.
- i-gon is elliptic, parabolic, hyperbolic if $i<\frac{2 k}{k-2},=\frac{2 k}{k-2},>\frac{2 k}{k-2}$, i.e., $C_{i}>0,=0,<0$, i.e., $\frac{1}{k}+\frac{1}{i}>\frac{1}{2}$, $=\frac{1}{2},<\frac{1}{2}$.
- So, $m<\frac{2 k}{k-2}$. For $m \geq 3$, it implies $3 \leq m, k \leq 5$, i.e. 5 Platonic pairs of parameters $(m, k)=(3,3),(4,3),(3,4),(5,3),(3,5)$.
- If $M<\frac{2 k}{k-2}\left(\min _{i \in R} C_{i}>0\right)$, then $M \leq 5, k=3$ or $M \leq 3, k \in\{4,5\}$ So, for $m \geq 3$, they are only Octahedron, Icosahedron and 11 (\{3, 4, 5\}, 3)-spheres: 8 dual deltahedra, Cube and its truncations on 1 or 2 opposite vertices (Durer octahedron).

Standard (R, k)-spheres

- An (R, k)-sphere is standard if $M=\frac{2 k}{k-2}$, i.e. $\min _{i \in R} C_{i}=0$. So, $(M, k)=(6,3),(4,4),(3,6)$ (Euclidean parameter pairs). Exclusion of hyperbolic faces simplifies enumeration, while the number p_{M} of parabolic faces not being restricted, there is an infinity of such (R, k)-spheres.
- The number of such v-vertex (R, k)-spheres with $|R|=2$ increases polynomially with v; their set is countable. Such spheres admit parametrization and description in terms of rings of (Gaussian if $k=4$ and Eisenstein if $k=3,6$) integers. All 8 series of such spheres will be considered in detail.
- Remaining (R, k)-spheres (with $M>\frac{2 k}{k-2}$) not admit above, in general. The number of such v-vertex $(\{3,4\}, 5)$-spheres grows at least exponentially with v; their set is a continuum.

8 families of standard ($\{a, b\}, k)$-spheres

- An $(\{a, b\}, k)$-sphere is an (R, k)-sphere with $R=\{a, b\}$, $1 \leq a<b$. It has $v=\frac{1}{k}\left(a p_{a}+b p_{b}\right)$ vertices.
- Such standard sphere has $b=\frac{2 k}{k-2}$; so, $(b, k)=$ $(6,3),(4,4),(3,6)$ and Euler formula become

$$
\begin{array}{rlrlr}
12 & =\sum_{i}(6-i) p_{i} & & \text { if } & \\
8 & =3 \\
8 & =\sum_{i}(4-i) p_{i} & & \text { if } & k=4 \\
6 & =\sum_{i}(3-i) p_{i} & & \text { if } & \\
k=6
\end{array}
$$

- Further, $p_{a}=\frac{2 b}{b-a}$ and all possible (a, p_{a}) are:
$(5,12),(4,6),(3,4),(2,3)$ for $(b, k)=(6,3)$;
$(3,8),(2,4)$ for $(b, k)=(4,4)$;
$(2,6),(1,3)$ for $(b, k)=(3,6)$.
- Those 8 families can be seen as spheric analogs of the regular plane partitions $\left\{6^{3}\right\},\left\{4^{4}\right\},\left\{3^{6}\right\}$ with p_{a} a-gonal "defects", disclinations added to get the curvature of the sphere \mathbb{S}^{2}.

8 families: existence criterions

Grűnbaum-Motzkin, 1963: criterion for $k=3 \leq a$; Grűnbaum, 1967: for ($\{3,4\}, 4)$-spheres; Grûnbaum-Zaks, 1974: for other cases.

k	(a, b)	smallest one	it exists if and only if	p_{a}	v
3	$(5,6)$	Dodecahedron	$p_{6} \neq 1$	12	$20+2 p_{6}$
3	$(4,6)$	Cube	$p_{6} \neq 1$	6	$8+2 p_{6}$
4	$(3,4)$	Octahedron	$p_{4} \neq 1$	8	$6+p_{4}$
6	$(2,3)$	$6 \times K_{2}$	p_{3} is even	6	$2+\frac{p_{3}}{2}$
3	$(3,6)$	Tetrahedron	p_{6} is even	4	$4+2 p_{6}$
4	$(2,4)$	$4 \times K_{2}$	p_{4} is even	4	$2+p_{4}$
3	$(2,6)$	$3 \times K_{2}$	$p_{6}=\left(k^{2}+k I+l^{2}\right)-1$	3	$2+2 p_{6}$
6	$(1,3)$	Trifolium	$p_{3}=2\left(k^{2}+k l+l^{2}\right)-1$	3	$\frac{1+p_{3}}{2}$
5	$(3,4)$	Icosahedron	$p_{4} \neq 1$	$2 p_{4}+20$	$2 p_{4}+12$

(\{3, 6\}, 3)- (Grűnbaum-Motzkin, 1963) and (\{2, 4\}, 4)-spheres
(Deza-Shtogrin, 2003) admit a simple 2-parametric description.

8 families of standard ($\{a, b\}, k)$-spheres

- Let us denote $(\{a, b\}, k)$-sphere with v vertices by $\{a, b\}_{v}$.
- (\{5,6\},3)- and (\{4, 6\}, 3)-spheres are (geometric) fullerenes and boron nitrides. $\{5,6\}_{60}\left(I_{h}\right)$: a new carbon allotrope C_{60}. $\{5,6\}_{620}(I)=G C_{5,1}\left(\{5,6\}_{20}\right) \approx$ Callaway golf ball $\{5,6\}_{660}$.
- ($\{a, b\}, 4$)-spheres are minimal projections of alternating links, whose components are their central circuits (those going only ahead) and crossings are the verices.
- By smallest member Dodecahedron $\{5,6\}_{20}$, Cube $\{4,6\}_{8}$, Tetrahedron $\{3,6\}_{4}$, Octahedron $\{3,4\}_{6}$ and $3 \times K_{2}\{2,6\}_{2}$, $4 \times K_{2}\{2,4\}_{2}, 6 \times K_{2}\{2,3\}_{2}$, Trifolium $\{1,3\}_{1}$, we call eight families: dodecahedrites, cubites, tetrahedrites, octahedrites and 3-bundelites, 4 -bundelites, 6 -bundelites, trifoliumites.
- b-icosahedrites ((\{3,b\},5)-spheres) are not standard if $b>3$, $p_{b}>0$ since $p_{3}=p_{b}(3 b-10)+20$ and b-gons are hyperbolic.

Digression on Rose of Three Petals

- The polar equation of the rose (or rhodonea) is $r=\cos (n \theta)$. $\{1,3\}_{1}$ models its case $n=3$: quartic (algebraic of degree 4) plane curve Trifolium $\left(x^{2}+y^{2}\right)^{2}=x\left(x^{2}-3 y^{2}\right)$ shown below.
- It models also sextic $\left(x^{2}+y^{2}\right)^{3}=2 x\left(x^{2}-3 y^{2}\right)$ or $r^{3}=2 \cos (3 \theta)$: Kiepert curve $d(x, A) d(x, B) d(x, C)=1$ for reg. triangle $A B C$

Generation of standard $(\{a, b\}, k)$-spheres

- ($\{2,3\}, 6$)-spheres, except $2 \times K_{2}$ and $2 \times K_{3}$, are the duals of ($\{3,4,5,6\}, 3$)-spheres with six new vertices put on edge(s). Exp: $(\{5,6\}, 3)$-spheres with 5 -gons organized in six pairs.
- $(\{1,3\}, 6)$-spheres, except $\{1,3\}_{1}$ and $\{1,3\}_{3}$, are as above but with 3 edges changed into 2 -gons enclosing one 1 -gon.
- (\{2, 6\}, 3)-spheres are given by the Goldberg-Coxeter construction from Bundle $_{3}=3 \times K_{2}\{2,6\}_{2}$.
- (\{1,3\},6)-spheres come by the Goldberg-Coxeter construction (extended below on 6 -regular spheres) from Trifolium $\{1,3\}_{1}$.

Computer generation of the families

Main technique: exhaustive search. Sometimes, speedup by proving that a group of faces cannot be completed to the desired graph.

- The program CPF by Brinkmann-Delgado-Dress-Harmuth, 1997 generates 3-regular plane graphs with specified p-vector.
- ENU by Brinkmann-Harmuth-Heidemeier, 2003 and Heidemeier, 1998 does the same for 4-regular plane graphs. Dutour adapted ENU to deal with 2-gonal faces also.
- CGF by Harmuth generates 3-regular orientable maps with specified genus and p -vector.
- Plantri by Brinkmann-McKay deals with general graphs.
- The package CaGe by Brinkmann-Delgado-Dress-Harmuth, 1997 is used for plane graph drawings.
- The package PlanGraph by Dutour, 2002 is used for handling planar graphs in general.

II. Connectedness of ($\{a, b\}, k)$-spheres

Polyhedra and planar graphs

- A graph is called k-connected if after removing any set of $k-1$ vertices it remains connected.
- The skeleton of a polytope P is the graph $G(P)$ formed by its vertices, with two vertices adjacent if they generate a face.
- Steinitz Theorem: a graph is the skeleton of a polyhedron (3-polytope) if and only if it is planar and 3-connected.
- A polyhedron is usually represented by the Schlegel diagram of its skeleton, the program used for this is CaGe .
- The dual graph G^{*} of a plane graph G is the plane graph formed by the faces of G, with two faces adjacent if they share an edge. The skeletons of dual polyhedra are dual.

3-connectedness of (\{a, b\}, 3)-spheres

- Any $(\{a, b\}, k)$-sphere is 2 -connected. But some infinite series of $(\{1,2,3\}, 6)$-spheres with $\left(p_{1}, p_{2}\right)=(2,2)$ are not.
- Any $(\{a, 6\}, 3)$-sphere is 3 -connected if $a=4,5$ and not if $a=2$ (one can delete two vertices adjacent to a 2-gon).
- Except the following series, (\{3,6\}, 3)-spheres (moreover, all ($\{3,4,5,6\}, 3$)-spheres) are 3-connected.

3-connectedness of $(\{a, b\}, 6)$ - and $(\{a, b\}, 4)$-spheres

- Any $(\{a, b\}, 6)$-sphere is 3 -connected, except $(\{2,3\}, 6)$ - ones which are duals of only 2 -connected ($\{3,6\}, 3$)-spheres, with six vertices of degree 2 added on edges.
- Any ($\{a, b\}, 4$)-sphere is 3 -connected, except the following series of (\{2, 4\}, 4)-spheres.

REMARK. $\{2,4\}_{v}\left(D_{2 d}, D_{2 h}\right)$ are k-inflations of above. $D_{4}, D_{4 h}$ are $G C_{k, I}\left(4 \times K_{2}\right)$. Remaining D_{2} : 2 complex or 3 natural parameters.

Hamiltonicity of $(\{a, b\}, k)$-spheres

- Grűnbaum-Zaks, 1974: all (\{1, 3\}, 6)- and (\{2, 4\}, 4)-spheres are Hamiltonian, but $(\{2,6\}, 3)$ - with $v \equiv 0(\bmod 4)$ are not
- Goodey, 1977: $(\{3,6\}, 3)$ - and ($\{4,6\}, 3$)- are Hamiltonian.
- Conjecture: an Hamiltonian circuit exists in all other cases.

To check hamiltonicity of a ($\{a, b\}, k$)-map on the projective plane \mathbb{P}^{2}, the following theorem (Thomas-Yu, 1994) could help: every 4-connected graph on \mathbb{P}^{2} has a contractible (i.e. being a boundary of 2-cell) Hamiltonian circuit.

II'. (\{a, b\},k)-spheres with small p_{b} : listings

Listing of $(\{a, b\}, k)$-spheres with $p_{b} \leq 3 \leq a \leq b$

- Remind: $(a, k)=(3,3),(4,3),(3,4),(5,3)$ or $(3,5)$ if $a \geq 3$.
- The only $(\{a, b\}, k)$-spheres with $p_{b} \leq 1$ are 5 Platonic $\left(a^{k}\right)$: Tetrahedron, Prism $_{4}$, APrism $_{3}$, snub Prism $_{5}$, snub APrism 3 .
- There exists unique 3 -connected $(\{a, b\}, k)$-sphere with $p_{b}=2$ for $(\{4, b\}, 3)-,(\{3, b\}, 4)-,(\{5, b\}, 3)-,(\{3, b\}, 5)-:$ Prism $_{b} D_{b h}$, APrism $_{b} D_{b d}$, snub Prism $_{b}$ or snub APrism $_{b} D_{b d}$ each (2 b-gons separated by $2 b$-rings of 5 -gons or $3 b$-rings of 3 -gons). Doubled b-gon $D_{b h}$ is such ($\{2, b\}, 4$)-sphere.
- Also, for any $(a, k)=(3,3),(3,4),(4,3),(3,5),(5,3)$, there is unique only 2 -connected such sphere $\left(D_{2 h}\right)$ iff $b \equiv 0(\bmod a)$.

Listing of $(\{a, b\}, k)$-spheres with $p_{b} \leq 3 \leq a \leq b$

- Remind: $(a, k)=(3,3),(4,3),(3,4),(5,3)$ or $(3,5)$ if $a \geq 3$.
- The only $(\{a, b\}, k)$-spheres with $p_{b} \leq 1$ are 5 Platonic $\left(a^{k}\right)$: Tetrahedron, Prism $_{4}$, APrism $_{3}$, snub Prism $_{5}$, snub APrism 3 .
- There exists unique 3 -connected $(\{a, b\}, k)$-sphere with $p_{b}=2$ for $(\{4, b\}, 3)-,(\{3, b\}, 4)-,(\{5, b\}, 3)-,(\{3, b\}, 5)-$: Prism $_{b} D_{b h}$, APrism $_{b} D_{b d}$, snub Prism b or snub APrism $_{b} D_{b d}$ each (2 b-gons separated by $2 b$-rings of 5 -gons or $3 b$-rings of 3 -gons). Doubled b-gon $D_{b h}$ is such $(\{2, b\}, 4)$-sphere.
- Also, for any $(a, k)=(3,3),(3,4),(4,3),(3,5),(5,3)$, there is unique only 2 -connected such sphere $\left(D_{2 h}\right)$ iff $b \equiv 0(\bmod a)$.
- (\{a,b\},k)-sphere with $p_{b}=3$ exists if and only if $b \equiv 2, a, 2 a-2(\bmod 2 a)$ and $b \equiv 4,6(\bmod 10)$ if $a=5$.
- Such sphere has symmetry $\neq D_{3 h}$ iff $b \equiv a(\bmod 2 a)$. Such sphere is not unique iff $b \equiv a(\bmod 2 a)$ and $(a, k) \neq(3,3)$.
- Pictures illustrating all 5 cases with $p_{b}=3$ follow; removing central line on them illustrate the cases with $p_{b}=2$.

$(\{, b\}, 3)$-spheres with

Such sphere exists iff $b \equiv 2,3,4(\bmod 6)$. For $b=4+6 m, 2+6 m$, $3+6 m$, it come from Prism $_{3}, 3 K_{2}$, Tetrahedron K_{4} by adding m K_{4}-e's on 3 edges creating symmetry $D_{3 h}, D_{3 h}$ and resp. $C_{3 v}$. It is 3-connected only for $b=4$: Prism $_{3}$.

$$
b=4+6 \quad 2+12 \quad 3+12, C_{3 v}
$$

Removing central line gives $(\{3, b=3 m\}, 3)$-spheres with $p_{b}=2$.

($\{, b\}, 3)$-spheres with

Such sphere exists iff $b \equiv 2,4,6(\bmod 8)$. For $b=6+8 m, 2+8 m$, $4+8 m$, it come from 4-triakon Prism $_{3}, 3 K_{2}$, Cube K_{2}^{3} (two) by adding $m K_{2}^{3}-e$'s on 3 edges creating $D_{3 h}, D_{3 h}$ and resp. $C_{3 v}, C_{2 v}$. It is 3-connected only for $b=6$: 4-triakon Prism 3 below.

($\{, b\}, 4$)-spheres with

Such sphere exists iff $b \equiv 2,3,4(\bmod 6)$. For $b=4+6 m, 2+6 m$, $3+6 m$, it come from 9-vertex $(\{3, b\}, 4)$-sphere, $3 K_{2}$, Octahedron $K_{2,2,2}$ (three) by adding m vertex-split $K_{2,2,2}$'s on 3 edges creating symmetry $D_{3 h}, D_{3 h}$ and resp. $C_{3 v}, C_{s}, C_{s}$. It is 3 -connected iff the symmetry is not C_{s}.

$(\{, b\}, 3)$-spheres with

Such sphere exists iff $b \equiv 2,4,5,6,8(\bmod 10)$. For $b=4+10 m$, $6+10 \mathrm{~m}, 8+10 \mathrm{~m} 2+10 \mathrm{~m}, 5+10 \mathrm{~m}$, it come from $14,26,38$-vertex ($\{5, b\}, 3$)-spheres with $b=4,6,8,3 K_{2}$ and Dodecahedron (five) by adding $m(5,3)$-polycycles C_{1} on 3 edges creating symmetry $D_{3 h}$, $D_{3 h}, D_{3 h}, D_{3 h}$ and resp. two $C_{3 v}$, three C_{s}.

$b=6$
8
$2+10$
$4+10$

$5+10, C_{3 v}$
$15, C_{s}$

$15, C_{3 v}$

$15, C_{s}$

III. 8 standard families: 4 smallest members

First four $(\{2,4\}, 4)$ - and $(\{3,4\}, 4)$-spheres

$D_{4 h} 2_{1}^{2}\left(2^{2}\right)$

Borr. rings

$$
O_{h} 6_{2}^{3}\left(4^{3}\right)
$$

$D_{4 h} 4_{1}^{2}\left(4^{2}\right)$

$D_{4 d} 8_{18}$ (16)
$D_{2 h} 2 \times 2_{1}^{2}\left(2^{2}, 4\right)$
$D_{2 d} \sigma_{2}^{2}\left(6^{2}\right)$

$D_{3 h} 9_{40}$ (18)
(Herschel)*

$D_{2} 105_{56}^{2}$
(6;14)

Above links/knots are given in Rolfsen, 1976 and 1990 notation. Herschel graph: the smallest non-Hamiltonian polyhedral graph.

First four $(\{2,3\}, 6)$ - and $(\{1,3\}, 6)$-spheres

$D_{6 h}\left(2^{3}\right)$

$C_{3 v}$ (3)

$D_{3 h}(3 ; 6)$

$C_{3 h}(3 ; 6)$

$D_{2 d}\left(2^{2} ; 8\right)$

$C_{3 v}\left(6^{2}\right)$

$T_{d}\left(3^{4}\right)$

$C_{3}(21)$

Grűnbaum-Zaks, 1974: $\{1,3\}_{v}$ exists iff $v=k^{2}+k I+I^{2}$ for integers $0 \leq I \leq k$. We show that the number of $\{1,3\}_{v}$'s is the number of such representations of v, i.e. found $G C_{k, l}\left(\{1,3\}_{1}\right)$.

First four $(\{2,6\}, 3)$ - and ($\{3,6\}, 3$)-spheres

Number of $\left(\{2,6\}_{v}\right.$'s is nr . of representations $v=2\left(k^{2}+k l+l^{2}\right)$, $0 \leq I \leq k\left(G C_{k,}\left(\{2,6\}_{2}\right)\right)$. It become 2 for $v=7^{2}=5^{2}+15+3^{2}$.

$D_{3 h}(6)$

$T_{d}\left(4^{3}\right)$

$D_{3 h}\left(6^{3}\right)$
$D_{3 h}\left(12^{2}\right)$
$T_{d}\left(12^{3}\right)$

$D_{2 h}\left(8^{2}, 4^{2}\right)$

$D_{3}(42)$

$T_{d}\left(8^{6}\right)$

First four $(\{4,6\}, 3)$ - and $(\{5,6\}, 3)$-spheres

$D_{6 h}\left(18^{2}\right)$
$D_{3 h}\left(6^{2} ; 30\right)$
$D_{2 d}\left(24^{2}\right)$

$I_{h}\left(10^{6}\right)$

$D_{6 d}(12 ; 60) \quad D_{3 h}\left(12^{3} ; 42\right) \quad T_{d}\left(12^{7}\right)$

IV. Symmetry groups of ($\{a, b\}, k)$-spheres

Finite isometry groups

All finite groups of isometries of 3 -space \mathbb{E}^{3} are classified.
In Schoenflies notations, they are:

- C_{1} is the trivial group
- C_{s} is the group generated by a plane reflexion
- $C_{i}=\left\{I_{3},-I_{3}\right\}$ is the inversion group
- C_{m} is the group generated by a rotation of order m of axis Δ
- $C_{m v}$ (\simeq dihedral group) is the group generated by C_{m} and m reflexion containing Δ
- $C_{m h}=C_{m} \times C_{s}$ is the group generated by C_{m} and the symmetry by the plane orthogonal to Δ
- $S_{2 m}$ is the group of order $2 m$ generated by an antirotation, i.e. commuting composition of a rotation and a plane symmetry

Finite isometry groups $D_{m}, D_{m h}, D_{m d}$

- D_{m} (\simeq dihedral group) is the group generated of C_{m} and m rotations of order 2 with axis orthogonal to Δ
- $D_{m h}$ is the group generated by D_{m} and a plane symmetry orthogonal to Δ
- $D_{m d}$ is the group generated by D_{m} and m symmetry planes containing Δ and which does not contain axis of order 2

$D_{2 h}$

$D_{2 d}$

Remaining 7 finite isometry groups

- $I_{h}=H_{3}$ is the group of isometries of Dodecahedron; $I_{h} \simeq A I_{5} \times C_{2}$
- $I \simeq A / t_{5}$ is the group of rotations of Dodecahedron
- $O_{h}=B_{3}$ is the group of isometries of Cube
- $O \simeq \operatorname{Sym}(4)$ is the group of rotations of Cube
- $T_{d}=A_{3} \simeq \operatorname{Sym}(4)$ is the group of isometries of Tetrahedron
- $T \simeq A / t(4)$ is the group of rotations of Tetrahedron
- $T_{h}=T \cup-T$

While (point group) Isom $(P) \subset \operatorname{Aut}(G(P))$ (combinatorial group), Mani, 1971: for any 3-polytope P, there is a map-isomorphic 3-polytope P^{\prime} (so, with the same skeleton $G\left(P^{\prime}\right)=G(P)$), such that the group Isom $\left(P^{\prime}\right)$ of its isometries is isomorphic to $\operatorname{Aut}(G)$.

8 families: symmetry groups

- 28 for $\{5,6\}_{v}: C_{1}, C_{s}, C_{i} ; C_{2}, C_{2 v}, C_{2 h}, S_{4} ; C_{3}, C_{3 v}, C_{3 h}, S_{6}$; $D_{2}, D_{2 h}, D_{2 d} ; D_{3}, D_{3 h}, D_{3 d} ; D_{5}, D_{5 h}, D_{5 d} ; D_{6}, D_{6 h}, D_{6 d} ; T$, $T_{d}, T_{h} ; I, I_{h}$ (Fowler-Manolopoulos, 1995)
- 16 for $\{4,6\}_{v}: C_{1}, C_{s}, C_{i} ; C_{2}, C_{2 v}, C_{2 h} ; D_{2}, D_{2 h}, D_{2 d} ; D_{3}$, $D_{3 h}, D_{3 d} ; D_{6}, D_{6 h} ; O, O_{h}$ (Deza-Dutour, 2005)
- 5 for $\{3,6\}_{v}: D_{2}, D_{2 h}, D_{2 d} ; T, T_{d}$ (Fowler-Cremona,1997)
- 2 for $\{2,6\}_{v}: D_{3}, D_{3 h}$ (Grűnbaum-Zaks, 1974)
- 18 for $\{3,4\}_{v}: C_{1}, C_{s}, C_{i} ; C_{2}, C_{2 v}, C_{2 h}, S_{4} ; D_{2}, D_{2 h}, D_{2 d} ; D_{3}$, $D_{3 h}, D_{3 d} ; D_{4}, D_{4 h}, D_{4 d} ; O, O_{h}$ (Deza-Dutour-Shtogrin, 2003)
- 5 for $\{2,4\}_{v}: D_{2}, D_{2 h}, D_{2 d} ; D_{4}, D_{4 h}$, all in $\left[D_{2}, D_{4 h}\right]$ (same)
- 3 for $\{1,3\}_{v}: C_{3}, C_{3 v}, C_{3 h}$ (Deza-Dutour, 2010)
- 22 for $\{2,3\}_{v}: C_{1}, C_{s}, C_{i} ; C_{2}, C_{2 v}, C_{2 h}, S_{4} ; C_{3}, C_{3 v}, C_{3 h}, S_{6}$; $D_{2}, D_{2 h}, D_{2 d} ; D_{3}, D_{3 h}, D_{3 d} ; D_{6}, D_{6 h} ; T, T_{d}, T_{h}$ (same)
(1) 38 for icosahedrites $(\{3,4\}, 5)$ - (same, 2011).

8 families: Goldberg-Coxeter construction $G C_{k, l}($.

With $\mathrm{T}=\left\{T, T_{d}, T_{h}\right\}, \mathrm{O}=\left\{O, O_{h}\right\}, \mathrm{I}=\left\{I, I_{h}\right\}, \mathrm{C}_{1}=\left\{C_{1}, C_{s}, C_{i}\right\}$,
$\mathrm{C}_{\mathrm{m}}=\left\{C_{m}, C_{m v}, C_{m h}, S_{2 m}\right\}, \mathrm{D}_{\mathrm{m}}=\left\{D_{m}, D_{m h}, D_{m d}\right\}$, we get

- for (\{5, 6\}, 3)-: $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}, \mathbf{C}_{\mathbf{3}}, \mathbf{D}_{\mathbf{2}}, \mathbf{D}_{\mathbf{3}}, \mathbf{D}_{\mathbf{5}}, \mathbf{D}_{\mathbf{6}}, \mathbf{T}, \mathbf{I}$
- for $(\{2,3\}, 6)-: \mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}, \mathbf{C}_{\mathbf{3}}, \mathbf{D}_{\mathbf{2}}, \mathbf{D}_{\mathbf{3}},\left\{D_{6}, D_{6 h}\right\}, \mathbf{T}$
- for (\{4, 6\}, 3)-: $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}} \backslash S_{4}, \mathbf{D}_{\mathbf{2}}, \mathbf{D}_{\mathbf{3}},\left\{D_{6}, D_{6 h}\right\}, \mathbf{O}$
- for (\{3, 4\}, 4)-: $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}, \mathbf{D}_{\mathbf{2}}, \mathbf{D}_{\mathbf{3}}, \mathbf{D}_{\mathbf{4}}, \mathbf{O}$
- for $\left(\{3,6\}, 3-: \mathbf{D}_{2},\left\{T, T_{d}\right\}\left\{D_{3}, D_{3 h}\right\}\right.$
- for $(\{2,4\}, 4)-: \mathbf{D}_{2},\left\{D_{4}, D_{4 h}\right\}$
- for (\{2, 6\}, 3)-: $\left\{D_{3}, D_{3 h}\right\}$
- for $(\{1,3\}, 6)-: \mathbf{C}_{3} \backslash S_{6}=\left\{C_{3}, C_{3 v}, C_{3 h}\right\}$
(1) if $(\{3,4\}, 5): \mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{C}_{3}, \mathbf{C}_{4}, \mathbf{C}_{5}, \mathbf{D}_{2}, \mathbf{D}_{3}, \mathbf{D}_{4}, \mathbf{D}_{5}, \mathbf{T}, \mathbf{O}, \mathbf{I}$.

8 families: Goldberg-Coxeter construction $G C_{k, l}($.

With $\mathrm{T}=\left\{T, T_{d}, T_{h}\right\}, \mathrm{O}=\left\{O, O_{h}\right\}, \mathrm{I}=\left\{I, I_{h}\right\}, \mathrm{C}_{1}=\left\{C_{1}, C_{s}, C_{i}\right\}$,
$\mathrm{C}_{\mathrm{m}}=\left\{C_{m}, C_{m v}, C_{m h}, S_{2 m}\right\}, \mathrm{D}_{\mathrm{m}}=\left\{D_{m}, D_{m h}, D_{m d}\right\}$, we get

- for (\{5, 6\}, 3)-: $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}, \mathbf{C}_{\mathbf{3}}, \mathbf{D}_{\mathbf{2}}, \mathbf{D}_{\mathbf{3}}, \mathbf{D}_{\mathbf{5}}, \mathbf{D}_{\mathbf{6}}, \mathbf{T}, \mathbf{I}$
- for (\{2, 3\}, 6)-: $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}, \mathbf{C}_{\mathbf{3}}, \mathbf{D}_{\mathbf{2}}, \mathbf{D}_{3},\left\{D_{6}, D_{6 h}\right\}, \mathbf{T}$
- for (\{4, 6\}, 3)-: $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}} \backslash S_{4}, \mathbf{D}_{\mathbf{2}}, \mathbf{D}_{\mathbf{3}},\left\{D_{6}, D_{6 h}\right\}, \mathbf{O}$
- for (\{3, 4\}, 4)-: $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}, \mathbf{D}_{\mathbf{2}}, \mathbf{D}_{\mathbf{3}}, \mathbf{D}_{\mathbf{4}}, \mathbf{O}$
- for $\left(\{3,6\}, 3-: \mathbf{D}_{2},\left\{T, T_{d}\right\}\left\{D_{3}, D_{3 h}\right\}\right.$
- for $(\{2,4\}, 4)-: \mathbf{D}_{2},\left\{D_{4}, D_{4 h}\right\}$
- for (\{2, 6\}, 3)-: $\left\{D_{3}, D_{3 h}\right\}$
- for $(\{1,3\}, 6)-: \mathbf{C}_{3} \backslash S_{6}=\left\{C_{3}, C_{3 v}, C_{3 h}\right\}$
(1) if ($\{3,4\}, 5): \mathbf{C}_{1}, \mathbf{C}_{\mathbf{2}}, \mathbf{C}_{\mathbf{3}}, \mathbf{C}_{\mathbf{4}}, \mathbf{C}_{\mathbf{5}}, \mathbf{D}_{\mathbf{2}}, \mathbf{D}_{\mathbf{3}}, \mathbf{D}_{4}, \mathbf{D}_{\mathbf{5}}, \mathbf{T}, \mathbf{O}, \mathbf{I}$.

Spheres of blue symmetry are $G C_{k, I}$ from 1st such; so, given by one complex (Gaussian for $k=4$, Eisenstein for $k=3,6$) parameter. Goldberg, 1937 and Coxeter, 1971: $\{5,6\}_{v}\left(I, I_{h}\right),\{4,6\}_{v}\left(O, O_{h}\right)$, $\{3,6\}_{v}\left(T, T_{d}\right)$. Dutour-Deza, 2004 and 2010: for other cases.

V. Goldberg-Coxeter construction

Goldberg-Coxeter construction $G C_{k, l}($.

- Take a 3- or 4-regular plane graph G. The faces of dual graph G^{*} are triangles or squares, respectively.
- Break each face into pieces according to parameter (k, l). Master polygons below have area $\mathcal{A}\left(k^{2}+k l+l^{2}\right)$ or $\mathcal{A}\left(k^{2}+l^{2}\right)$, where \mathcal{A} is the area of a small polygon.

3-valent case

4-valent case

Gluing the pieces together in a coherent way

- Gluing the pieces so that, say, 2 non-triangles, coming from subdivision of neighboring triangles, form a small triangle, we obtain another triangulation or quadrangulation of the plane.

- The dual is a 3- or 4-regular plane graph, denoted $G C_{k, I}(G)$; we call it Goldberg-Coxeter construction.
- It works for any 3- or 4-regular map on oriented surface.
$G C_{k, l}($ Cube $)$ for $(k, I)=(1,0),(1,1),(2,0),(2,1)$

1,1

Goldberg-Coxeter construction from Octahedron

2,0

The case $(k, /)=(1,1)$

3-regular case
$G C_{1,1}$ is called leapfrog
($\frac{1}{3}$-truncation of the dual) truncated Octahedron

4-regular case
$G C_{1,1}$ is called medial
($\frac{1}{2}$-truncation)
Cuboctahedron

The case $(k, I)=(k, 0)$ of $G C_{k, I}(G)$: k-inflation

Chamfering (quadrupling) $G C_{2,0}(G)$ of 8 1st ($\left.\{a, b\}, k\right)$-spheres, $(a, b)=(2,6),(3,6),(4,6),(5,6)$ and $(2,4),(3,4),(1,3),(2,3)$, are:

$D_{3 h}\left(12^{2}\right)$
$T_{d}\left(8^{6}\right)$
$O_{h}\left(12^{8}\right)$
$D_{4 h}\left(4^{4}\right)$

$O_{h}\left(8^{6}\right)$

$C_{3 v}\left(6^{2}\right) \quad D_{6 h}\left(4^{3}, 6^{2}\right)$
For 4-regular $G, G C_{2 k^{2}, 0}(G)=G C_{k, k}\left(G C_{k, k}(G)\right)$ by $(k+k i)^{2}=2 k^{2}$.

First four $G C_{k, l}\left(3 \times K_{2}\right)$ and $G C_{k, l}\left(4 \times K_{2}\right)$

All $(\{2,6\}, 3)$-spheres are $G_{k, I}\left(3 \times K_{2}\right): D_{3 h}, D_{3 h}, D_{3}$ if $I=0, k$, else.

$D_{3} G_{2,1}$

$D_{4 h} 4 \times K_{2}$

$D_{4 h}$ medial

$D_{4 h} G_{2,0}$

$D_{4} G_{2,1}$

First four $G C_{k, I}\left(6 \times K_{2}\right)$ and $G C_{k, I}($ Trifolium $)$

$D_{6 h}$

$C_{3 v}$

$D_{3 d} G_{1,1}$

$C_{3 h} G_{1,1}$

$D_{6 h} G_{2,0}$

$C_{3 v} G_{2,0}$

$D_{6} G_{2,1}$

$C_{3} G_{2,1}$

All $(\{2,3\}, 6)$-spheres are $G_{k, I}\left(6 \times K_{2}\right): C_{3 v}, C_{3 h}, C_{3}$ if $I=0, k$, else.

Plane tilings $\left\{4^{4}\right\},\left\{3^{6}\right\}$ and complex rings $\mathbb{Z}[i], \mathbb{Z}[w]$

- The vertices of regular plane tilings $\left\{4^{4}\right\}$ and $\left\{3^{6}\right\}$ form each, convenient algebraic structures: lattice and ring. Path-metrics of those graphs are I_{1}-4-metric and hexagonal 6-metric.
- $\left\{4^{4}\right\}$: square lattice \mathbb{Z}^{2} and ring $\mathbb{Z}[i]=\{z=k+l i: k, l \in \mathbb{Z}\}$ of Gaussian integers with norm $N(z)=z \bar{z}=k^{2}+l^{2}=\|(k, l)\|^{2}$.
- $\left\{3^{6}\right\}$: hexagonal lattice $A^{2}=\left\{x \in \mathbb{Z}^{3}: x_{0}+x_{1}+x_{2}=0\right\}$ and ring $\mathbb{Z}[w]=\{z=k+\mid w: k, l \in \mathbb{Z}\}$, where $w=e^{i \frac{\pi}{3}}=\frac{1}{2}(1+i \sqrt{3})$, of Eisenstein integers with norm $N(z)=z \bar{z}=k^{2}+k l+l^{2}=\frac{1}{2}\|x\|^{2}$ We identify points $x=\left(x_{0}, x_{1}, x_{2}\right) \in A^{2}$ with $x_{0}+x_{1} w \in \mathbb{Z}[w]$.

Plane tilings $\left\{4^{4}\right\},\left\{3^{6}\right\}$ and complex rings $\mathbb{Z}[i], \mathbb{Z}[w]$

- The vertices of regular plane tilings $\left\{4^{4}\right\}$ and $\left\{3^{6}\right\}$ form each, convenient algebraic structures: lattice and ring. Path-metrics of those graphs are I_{1}-4-metric and hexagonal 6-metric.
- $\left\{4^{4}\right\}$: square lattice \mathbb{Z}^{2} and ring $\mathbb{Z}[i]=\{z=k+l i: k, l \in \mathbb{Z}\}$ of Gaussian integers with norm $N(z)=z \bar{z}=k^{2}+l^{2}=\|(k, I)\|^{2}$.
- $\left\{3^{6}\right\}$: hexagonal lattice $A^{2}=\left\{x \in \mathbb{Z}^{3}: x_{0}+x_{1}+x_{2}=0\right\}$ and ring $\mathbb{Z}[w]=\{z=k+\mid w: k, l \in \mathbb{Z}\}$, where $w=e^{i \frac{\pi}{3}}=\frac{1}{2}(1+i \sqrt{3})$, of Eisenstein integers with norm $N(z)=z \bar{z}=k^{2}+k l+l^{2}=\frac{1}{2}\|x\|^{2}$ We identify points $x=\left(x_{0}, x_{1}, x_{2}\right) \in A^{2}$ with $x_{0}+x_{1} w \in \mathbb{Z}[w]$.
- A natural number $n=\prod_{i} p_{i}^{\alpha_{i}}$ is of form $n=k^{2}+l^{2}$ if and only if any α_{i} is even, whenever $p_{i} \equiv 3(\bmod 4)$ (Fermat Theorem). It is of form $n=k^{2}+k l+I^{2}$ if and only if $p_{i} \equiv 2(\bmod 3)$.
- The first cases of non-unicity with $\operatorname{gcd}(k, I)=\operatorname{gcd}\left(k_{1}, l_{1}\right)=1$ are $91=9^{2}+9+1^{2}=6^{2}+30+5^{2}$ and $65=8^{2}+1^{2}=7^{2}+4^{2}$. The first cases with $I=0$ are $7^{2}=5^{2}+15+3^{2}$ and $5^{2}=4^{2}+3^{2}$.

The bilattice of vertices of hexagonal plane tiling $\left\{6^{3}\right\}$

- We identify the hexagonal lattice A^{2} (or equilateral triangular lattice of the vertices of the regular plane tiling $\left\{3^{6}\right\}$) with Eisenstein ring (of Eisenstein integers) $\mathbb{Z}[w]$.
- The hexagon centers of $\left\{6^{3}\right\}$ form $\left\{3^{6}\right\}$. Also, with vertices of $\left\{6^{3}\right\}$, they form $\left\{3^{6}\right\}$, rotated by 90° and scaled by $\frac{1}{3} \sqrt{3}$.
- The complex coordinates of vertices of $\left\{6^{3}\right\}$ are given by vectors $v_{1}=1$ and $v_{2}=w$. The lattice $L=\mathbb{Z} v_{1}+\mathbb{Z} v_{2}$ is $\mathbb{Z}[w]$.
- The vertices of $\left\{6^{3}\right\}$ form bilattice $L_{1} \cup L_{2}$, where the bipartite complements, $L_{1}=(1+w) L$ and $L_{2}=1+(1+w) L$, are stable under multiplication. Using this,
$G C_{k, I}(G)$ for 6-regular graph G can be defined similarly to 3- and 4-regular case, but only for $k+I w \in L_{2}$, i.e. $k \equiv I \pm 1(\bmod 3)$.

Ring formalism

$\mathbb{Z}[i]$ (Gaussian integers) and $\mathbb{Z}[\omega]$ (Eisenstein integers) are unique factorization rings

Dictionary

	3-regular G	4-regular G	6-regular G
the ring	Eisenstein $\mathbb{Z}[\omega]$	G Gaussian $\mathbb{Z}[i]$	Eisenstein $\mathbb{Z}[\omega]$
Euler formula	$\sum_{i}(6-i) p_{i}=12$	$\sum_{i}(4-i) p_{i}=8$	$\sum_{i}(3-i) p_{i}=6$
curvature 0	hexagons	squares	triangles
ZC-circuits	zigzags	central circuits	both
$G C_{11}(G)$	leapfrog graph	medial graph	or. tripling

Goldberg-Coxeter operation in ring terms

- Associate $z=k+/ w$ (Eisenstein) or $z=k+l i$ (Gaussian integer) to the pair (k, l) in 3-,6- or 4-regular case. Operation $G C_{z}(G)$ correspond to scalar multiplication by $z=k+l w$ or $k+l i$.
- Writing $G C_{z}(G)$, instead of $G C_{k, l}(G)$, one has:

$$
G C_{z}\left(G C_{z^{\prime}}(G)\right)=G C_{z z^{\prime}}(G)
$$

- If G has v vertices, then $G C_{k, l}(G)$ has $v N(z)$ vertices, i.e., $v\left(k^{2}+l^{2}\right)$ in 4-regular and $v\left(k^{2}+k l+l^{2}\right)$ in 3 - or 6-reg. case.

Goldberg-Coxeter operation in ring terms

- Associate $z=k+/ w$ (Eisenstein) or $z=k+l i$ (Gaussian integer) to the pair (k, l) in 3-,6- or 4-regular case. Operation $G C_{z}(G)$ correspond to scalar multiplication by $z=k+l w$ or $k+l i$.
- Writing $G C_{z}(G)$, instead of $G C_{k, l}(G)$, one has:

$$
G C_{z}\left(G C_{z^{\prime}}(G)\right)=G C_{z z^{\prime}}(G)
$$

- If G has v vertices, then $G C_{k, l}(G)$ has $v N(z)$ vertices, i.e., $v\left(k^{2}+l^{2}\right)$ in 4-regular and $v\left(k^{2}+k l+l^{2}\right)$ in 3 - or 6 -reg. case.
- $G C_{z}(G)$ has all rotational symmetries of G in 3- and 4-regular case, and all symmetries if $I=0, k$ in general case.
- $G C_{z}(G)=G C_{\bar{z}}(\bar{G})$ where \bar{G} differs by a plane symmetry only from G. So, if G has a symmetry plane, we reduce to $0 \leq I \leq k$; otherwise, graphs $G C_{k, I}(G)$ and $G C_{l, k}(G)$ are not isomorphic.

$G C_{k, I}(G)$ for 6 -regular plane graph G and any $k, /$

- Bipartition of G^{*} gives vertex 2-coloring, say, red/blue of G.
- Truncation $\operatorname{Tr}(G)$ of $\{1,2,3\}_{v}$ is a 3 -regular $\{2,4,6\}_{6 v}$.
- Coloring white vertices of G gives face 3-coloring of $\operatorname{Tr}(G)$. White faces in $\operatorname{Tr}(G)$ correspond to such in $G C_{k, I}(\operatorname{Tr}(G))$.
- For $k \equiv I \pm 1(\bmod 3)$, i.e. $k+I w \in L_{2}$, define $G C_{k, I}(G)$ as $G C_{k . I}(\operatorname{Tr}(G))$ with all white faces shrinked.
- If $k \equiv I\left((\bmod 3)\right.$, faces of $\operatorname{Tr}(G)$ are white in $G C_{k, I}(\operatorname{Tr}(G))$. Among 3 faces around each vertex, one is white. Coloring other red gives unique 3-coloring of $G C_{k, I}(\operatorname{Tr}(G))$. Define $G C_{k, l}(G)$ as pair G_{1}, G_{2} with $\operatorname{Tr}\left(G_{1}\right)=\operatorname{Tr}\left(G_{2}\right)=G C_{k, l}(\operatorname{Tr}(G))$ obtained from it by shrinking all red or blue faces.
- $G C_{1,0}(G)=G$ and $G C_{1,1}(G)$ is oriented tripling.

Oriented tripling $G C_{1,1}(G)$ of 6-regular plane graph G

- Let C_{1}, C_{2} be bipartite classes of G^{*}. For each C_{i}, oriented tripling $G C_{1,1}(G)$ is 6 -regular plane graph $\operatorname{Or}_{C_{i}}(G)$ coming by each vertex of $G \rightarrow 3$ vertices and 43 -gonal faces of $\operatorname{Or}_{c_{i}}(G)$. Symmetries of $\operatorname{Or}_{C_{i}}(G)$ are symmetries of G preserving C_{i}.
- Orient edges of C_{i} clockwise. Select 3 of 6 neighbors of each vertex $v:\{2,4,6\}$ are those with directed edge going to v; for $\{1,5,5\}$, edges go to them.

- Any $z=k+l w \neq 0$ with $k \equiv l(\bmod 3)$ can be written as $(1+w)^{s}\left(k^{\prime}+l^{\prime} w\right) w$, where $s \geq 0$ and $k^{\prime} \equiv l^{\prime} \pm 1(\bmod 3)$. So, it holds reduction $G C_{k, l}(G)=G_{k^{\prime}, l^{\prime}}\left(O r^{s}(G)\right)$.

Examples of oriented tripling $G C_{1,1}(G)$

Below: $\{2,3\}_{2}$ and $\{2,3\}_{4}$ have unique oriented tripling.

$2 D_{6 h}$

$6 D_{3 d}$

$4 T_{d}$

$12 T_{h}$

Examples of oriented tripling $G C_{1,1}(G)$

Below: $\{2,3\}_{2}$ and $\{2,3\}_{4}$ have unique oriented tripling.

$2 D_{6 h}$

$6 D_{3 d}$

$4 T_{d}$

$12 T_{h}$

$1 C_{3 v}$

$3 C_{3 h}$

$9 C_{3 v}$

$27 C_{3 h}$

$81 C_{3 v}$

Above: first 4 consecutive oriented triplings of the Trifolium.

VI. Parameterizing $(\{a, b\}, k)$-spheres

Example: construction of the $(\{3,6\}, 3)$-spheres in $Z[\omega]$

In the central triangle $A B C$, let A be the origin of the complex plane

The corresponding triangulation

All $(\{3,6\}, 3)$-spheres come this way; two complex parameters in $Z[\omega]$ defined by the points B and C

Parameterizing $(\{a, b\}, k)$-spheres

Thurston, 1998 implies: $(\{a, b\}, k)$-spheres have $p_{\mathrm{a}}-2$ parameters and the number of v-vertex ones is $O\left(v^{m-1}\right)$ if $m=p_{a}-2>2$. Idea: since b-gons are of zero curvature, it suffices to give relative positions of a-gons having curvature $2 k-a(k-2)>0$. At most $p_{a}-1$ vectors will do, since one position can be taken 0 . But once $p_{a}-1$ a-gons are specified, the last one is constrained. The number of m-parametrized spheres with at most v vertices is $O\left(v^{m}\right)$ by direct integration. The number of such v-vertex spheres is $O\left(v^{m-1}\right)$ if $m>1$, by a Tauberian theorem.

Parameterizing $(\{a, b\}, k)$-spheres

Thurston, 1998 implies: $(\{a, b\}, k)$-spheres have $p_{a}-2$ parameters and the number of v-vertex ones is $O\left(v^{m-1}\right)$ if $m=p_{a}-2>2$. Idea: since b-gons are of zero curvature, it suffices to give relative positions of a-gons having curvature $2 k-a(k-2)>0$. At most $p_{a}-1$ vectors will do, since one position can be taken 0 . But once $p_{a}-1$ a-gons are specified, the last one is constrained. The number of m-parametrized spheres with at most v vertices is $O\left(v^{m}\right)$ by direct integration. The number of such v-vertex spheres is $O\left(v^{m-1}\right)$ if $m>1$, by a Tauberian theorem.

- Goldberg, 1937: $\{a, 6\}_{v}$ (highest 2 symmetries): 1 parameter
- Fowler and al., 1988: $\{5,6\}_{v}\left(D_{5}, D_{6}\right.$ or $\left.T\right): 2$ parameters.
- Grűnbaum-Motzkin, 1963: $\{3,6\}_{v}: 2$ parameters.
- Deza-Shtogrin, 2003: $\{2,4\}_{v} ; 2$ parameters.
- Thurston, 1998: $\{5,6\}_{v}: 10$ (again complex) parameters. Graver, 1999: $\{5,6\}_{v}: 20$ integer parameters.
- Rivin, 1994: parameter desciption by dihedral angles.

Parameterizing (R, k)-spheres without hyperbolic faces

Thurston, 1998 parametrized (dually, as triangulations) such ($R, 3$)-spheres, i.e. 19 series of $(\{3,4,5,6\}, 3)$-spheres.
In general, such (R, k)-spheres are given by $m=\sum_{3 \leq i<\frac{2 k}{k-2}} p_{i}-2$ complex parameters z_{1}, \ldots, z_{m}.
The number of vertices is expressed as a non-degenerate Hermitian form $q=q\left(z_{1}, \ldots, z_{m}\right)$ of signature ($1, m-1$).
Let H^{m} be the cone of $z=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}$ with $q(z)>0$. Given (R, k)-sphere is described by different parameter sets; let $M=M\left(\left\{p_{3}, \ldots, p_{m}\right\}, k\right)$ be the discrete linear group preserving q. For $k=3$, the quotient $H^{m} /\left(\mathbb{R}_{>0} \times M\right)$ is of finite covolume (Thurston, 1998, actually, 1993). Sah, 1994 deduced from it that the number of corresponding spheres grows as $O\left(v^{m-1}\right)$.
Dutour partially generalized above for other k and surface maps.

8 families: number of complex parameters by groups

- $\{5,6\}{ }_{\vee} \mathbf{C}_{\mathbf{1}}(10), \mathbf{C}_{\mathbf{2}}(6), \mathbf{C}_{\mathbf{3}}(4), \mathbf{D}_{\mathbf{2}}(4), \mathbf{D}_{\mathbf{3}}(3), \mathbf{D}_{\mathbf{5}}(2), \mathbf{D}_{\mathbf{6}}(2)$, $\mathbf{T}(2),\left\{I, I_{h}\right\}(1)$
- $\{4,6\}_{V} \mathbf{C}_{\mathbf{1}}(4), \mathbf{C}_{\mathbf{2}} \backslash S_{4}(3), \mathbf{D}_{\mathbf{2}}(2), \mathbf{D}_{\mathbf{3}}(2),\left\{D_{6}, D_{6 h}\right\}(1)$, $\left\{O, O_{h}\right\}(1)$
- $\{3,4\}{ }_{v} \mathbf{C}_{\mathbf{1}}(6), \mathbf{C}_{\mathbf{2}}(4), \mathbf{D}_{\mathbf{2}}(3), \mathbf{D}_{\mathbf{3}}(2), \mathbf{D}_{4}(2),\left\{O, O_{h}\right\}(1)$
- $\{2,3\}_{\nu} \mathbf{C}_{\mathbf{1}}(4), \mathbf{C}_{\mathbf{2}}\left(3\right.$?), $\mathbf{C}_{\mathbf{3}}\left(3\right.$?), $\mathbf{D}_{2}\left(2\right.$?), $\mathbf{D}_{\mathbf{3}}(2$?), $\mathbf{T}(1)$, $\left\{D_{6}, D_{6 h}\right\}(1)$
- $\{3,6\}_{V} \mathbf{D}_{2}(2),\left\{T, T_{d}\right\}(1)$
- $\{2,4\}_{V} \mathbf{D}_{2}(2),\left\{D_{4}, D_{4 h}\right\}(1)$
- $\{2,6\}_{\vee}\left\{D_{3}, D_{3 h}\right\}(1)$
- $\{1,3\}_{v}\left\{C_{3}, C_{3 v}, C_{3 h}\right\}(1)$

Thurston, 1998 implies: $(\{a, b\}, k)$-spheres have $p_{\mathrm{a}}-2$ parameters and the number of v-vertex ones is $O\left(v^{m-1}\right)$ if $m=p_{\mathrm{a}}-2>1$.

Number of complex parameters

$\{5,6\}_{v}$	
Group	\#param.
C_{1}	10
C_{2}	6
$\mathrm{C}_{3}, \mathrm{D}_{2}$	4
D_{3}	3
$\mathrm{D}_{5}, \mathrm{D}_{6}, \mathrm{~T}$	2
1	1
$\{4,6\}_{v}$	
Group	\#param.
C_{1}	4
C_{2}	3
$\mathrm{D}_{2}, \mathrm{D}_{3}$	2
$\mathrm{D}_{6}, \mathrm{O}$	1

$\{3,4\}_{v}$	
Group	\#param.
C_{1}	6
C_{2}	4
D_{2}	3
$\mathrm{D}_{3}, \mathrm{D}_{4}$	2
0	1
$\{2,3\}_{v}$	
Group	\#param.
C_{1}	4
$\mathrm{C}_{2}, \mathrm{C}_{3}$	3 ?
$\mathrm{D}_{2}, \mathrm{D}_{3}$	2 ?
$\mathrm{D}_{6}, \mathrm{~T}$	1

$\left\{3, \overline{6\}_{v^{-}}}\right.$and $\{2,4\}_{v}: 2$ complex parameters but 3 natural ones will do: pseudoroad length, number of circumscribing railroads, shift.

VII. Railroads and tight $(\{a, b\}, k)$-spheres

ZC-circuits

- The edges of any plane graph are doubly covered by zigzags (Petri or left-right paths), i.e., circuits such that any two but not three consecutive edges bound the same face.
- The edges of any Eulerian (i.e., even-valent) plane graph are partitioned by its central circuits (those going straight ahead).
- A ZC-circuit means zigzag or central circuit as needed. CC- or Z-vector enumerate lengths of above circuits.

ZC-circuits

- The edges of any plane graph are doubly covered by zigzags (Petri or left-right paths), i.e., circuits such that any two but not three consecutive edges bound the same face.
- The edges of any Eulerian (i.e., even-valent) plane graph are partitioned by its central circuits (those going straight ahead).
- A ZC-circuit means zigzag or central circuit as needed. CC- or Z-vector enumerate lengths of above circuits.
- A railroad in a 3-, 4- or 6-regular plane graph is a circuit of 6-, 4- or 3-gons, each adjacent to neighbors on opposite edges. Any railroad is bound by two "parallel" ZC-circuits. It (any if 4-, simple if 3- or 6-regular) can be collapsed into 1 ZC-circuit.

Railroad in a 6-regular sphere: examples

APrism $_{3}$ with 2 base 3 -gons doubled is the $\{2,3\}_{6}\left(D_{3 d}\right)$ with CC-vector ($3^{2}, 4^{3}$), all five central circuits are simple.
Base 3-gons are separated by a simple railroad R of six 3-gons, bounded by two parallel central 3-circuits around them. Collapsing R into one 3 -circuit gives the $\{2,3\}_{3}\left(D_{3 h}\right)$ with CC-vector $(3 ; 6)$.

Above $\{2,3\}_{4}\left(T_{d}\right)$ has no railroads but it is not strictly tight, i.e. no any central circut is adjacent to a non-3-gon on each side.

Railroads flower: Trifolium $\{1,3\}_{1}$

Railroads can be simple or self-intersect, including triply if $k=3$.
First such Dutour $(\{a, b\}, k)$-spheres for $(a, b)=(4,6),(5,6)$ are:

$\{4,6\}_{66}\left(D_{3 h}\right)$ twice

$\{5,6\}_{172}\left(C_{3 v}\right)$

Which plane curves with at most triple self-intersectionss come so?

Number of ZC-circuits in tight $(\{a, b\}, k)$-sphere

- Call an $(\{a, b\}, k)$-sphere tight if it has no railroads.
- ≤ 15 for $\{5,6\}_{v}$ Dutour, 2004
- ≤ 9 for $\{4,6\}_{v}$ and $\{2,3\}_{v}$ Deza-Dutour, 2005 and 2010
- ≤ 3 for $\{2,6\}_{v}$ and $\{1,3\}_{v}$ same
- ≤ 6 for $\{3,4\}_{V}$ Deza-Shtogrin, 2003
- Any $\{3,6\}_{v}$ has ≥ 3 zigzags with equality iff it is tight. All $\{3,6\}_{v}$ are tight iff $\frac{v}{4}$ is prime and none iff it is even.
- Any $\{2,4\}_{v}$ has ≥ 2 central circuits with equality iff it is tight. There is a tight one for any even v.

Number of ZC-circuits in tight $(\{a, b\}, k)$-sphere

- Call an $(\{a, b\}, k)$-sphere tight if it has no railroads.
- ≤ 15 for $\{5,6\}_{V}$ Dutour, 2004
- ≤ 9 for $\{4,6\}_{v}$ and $\{2,3\}_{v}$ Deza-Dutour, 2005 and 2010
- ≤ 3 for $\{2,6\}_{v}$ and $\{1,3\}_{v}$ same
- ≤ 6 for $\{3,4\}_{V}$ Deza-Shtogrin, 2003
- Any $\{3,6\}_{v}$ has ≥ 3 zigzags with equality iff it is tight. All $\{3,6\}_{v}$ are tight iff $\frac{v}{4}$ is prime and none iff it is even.
- Any $\{2,4\}_{v}$ has ≥ 2 central circuits with equality iff it is tight. There is a tight one for any even v.

First tight ones with max. of ZC-circuits are $G C_{21}\left(\{a, b\}_{\text {min }}\right)$:
$\{5,6\}_{140}(I),\{4,6\}_{56}(O),\{2,6\}_{14}\left(D_{3}\right),\{3,4\}_{30}(0) ;\{2,3\}_{44}\left(D_{3 h}\right)$ and $\{a, b\}_{\text {min }}:\{3,6\}_{4}\left(T_{d}\right),\{2,4\}_{2}\left(D_{4 h}\right)$. Besides $\{2,3\}_{44}\left(D_{3 h}\right)$, ZC-circuits are: $\left(28^{15}\right),\left(21^{8}\right),\left(14^{3}\right),\left(10^{6}\right),\left(4^{3}\right),\left(2^{2}\right)$, all simple.

Maximal number M_{v} of central circuits in any $\{2,3\}_{v}$

- $M_{v}=\frac{v}{2}+1, \frac{v}{2}+2$ for $v \equiv 0,2(\bmod 4)$. It is realized by the series of symmetry $D_{2 d}$ with CC-vector $2^{\frac{v}{2}}, 2 v_{0, v}$ and of symmetry $D_{2 h}$ with CC-vector $2^{\frac{v}{2}}, v_{0, \frac{v-2}{4}}^{2}$ if $v \equiv 0,2(\bmod 4)$.
- For odd v, M_{v} is $\left\lfloor\frac{v}{3}\right\rfloor+3$ if $v \equiv 2,4,6(\bmod 9)$ and $\left\lfloor\frac{v}{3}\right\rfloor+1$, otherwise. Define t_{v} by $\frac{v-t_{v}}{3}=\left\lfloor\frac{v}{3}\right\rfloor . M_{v}$ is realized by the series of symmetry $C_{3 v}$ if $v \equiv 1(\bmod 3)$ and $D_{3 h}$, otherwise. CC-vector is $3\left\lfloor\frac{v}{3}\right\rfloor,\left(2\left\lfloor\frac{v}{3}\right\rfloor+t_{v}\right)_{0,\left\lfloor\frac{v-2 t_{v}}{9}\right\rfloor}^{3}$ if $v \equiv 2,4,6(\bmod 9)$ and $3^{\left\lfloor\frac{v}{3}\right\rfloor},\left(2 v+t_{v}\right)_{0, v+2 t_{v}}$, otherwise.

Smallest CC-knotted or Z-knotted $\{2,3\}_{v}$

- The minimal number of central circuits or zigzags, 1 , have CC-knotted and Z-knotted $\{2,3\}_{v}$. They correspond to plane curves with only triple self-intersection points. For $v \leq 16$, there are $1,2,4,7,9,12$ Z-knotted if $v=3,7,9,11,13,15$ and $1,2,2,4,11,9,1,19$ CC-knotted if $v=4,6,8,10,12,14,15,16$.
- Conjecture (holds if $v \leq 54$): any Z-knotted $\{2,3\}_{v}$ has odd v and a CC-knotted $\{2,3\}_{v}$ is Z-knotted if and only if v is odd.

$4 D_{2}$

$6 D_{3}$

$6 C_{2}$

$8 D_{2}$

$15 C_{1}$

VIII. Tight pure ($\{a, b\}, k)$-spheres

Tight ($\{a, b\}, k$)-spheres with only simple ZC-circuits

- Call $(\{a, b\}, k)$-sphere pure if any of its ZC-circuits is simple, i.e. has no self-intersections. Such ZC-circuit can be seen as a Jordan curve, i.e. a plane curve which is topologically equivalent to (a homeomorphic image of) the unit circle.
- Any $(\{3,6\}, 3)$ - or (\{2, 4\}, 4)-sphere is pure. They are tight if and only if have three or, respectively, two ZC-circuits.
- Any ZC-circuit of $\{2,6\}_{v}$ or $\{1,3\}_{v}$ self-intersects.

Tight ($\{a, b\}, k$)-spheres with only simple ZC-circuits

- Call $(\{a, b\}, k)$-sphere pure if any of its ZC-circuits is simple, i.e. has no self-intersections. Such ZC-circuit can be seen as a Jordan curve, i.e. a plane curve which is topologically equivalent to (a homeomorphic image of) the unit circle.
- Any $(\{3,6\}, 3)$ - or $(\{2,4\}, 4)$-sphere is pure. They are tight if and only if have three or, respectively, two ZC-circuits.
- Any ZC-circuit of $\{2,6\}_{v}$ or $\{1,3\}_{v}$ self-intersects.

The number of tight pure $(\{a, b\}, k)$-spheres is:

- 9? for $\{5,6\}_{v}$ computer-checked for $v \leq 300$ by Brinkmann
- 2 for $\{4,6\}_{v}$ Deza-Dutour, 2005
- 8 for $\{3,4\}_{v}$ same
- 5 for $\{2,3\}_{v}$ same, 2010

All tight $(\{3,4\}, 4)$-spheres with only simple central circuits

$\left(8^{3}, 10^{2}\right)$

$12 O_{h}\left(6^{4}\right)$

$22 D_{2 h}$
$30 O\left(10^{6}\right)$
$G C_{21}$ (Oct.)

$32 D_{4 h}$
$\left(10^{4}, 12^{2}\right)$

All tight $(\{4,6\}, 3)$-spheres with only simple zigzags

There are exactly two such spheres: Cube and its leapfrog $G C_{11}$ (Cube), truncated Octahedron.

$6 O_{h}\left(6^{4}\right)$

$24 O_{h}\left(10^{6}\right)$

All tight $(\{4,6\}, 3)$-spheres with only simple zigzags

There are exactly two such spheres: Cube and its leapfrog $G C_{11}$ (Cube), truncated Octahedron.

Proof is based on a) The size of intersection of two simple zigzags in any $(\{4,6\}, 3)$-sphere is $0,2,4$ or 6 and
b) Tight ($\{4,6\}, 3$)-sphere has at most 9 zigzags.

For (\{2, 3\}, 6)-spheres, a) holds also, implying a similar result.

Tight $(\{2,3\}, 6)$-spheres with only simple ZC-circuits

All CC-pure, tight: Nrs. 1,2,4,5,6 (Nrs. 3,7 are not CC-pure). All Z-pure, tight: Nrs. 1,2,3,6,7 (4 is not Z-pure, 5 is not Z-tight). 1st, 3rd are strictly CC-, Z-tight: all ZC-circuits sides touch 2-gons

7 tight (\{5, 6\},3)-spheres with only simple zigzags

$20 I_{h}\left(10^{6}\right)$

$76 D_{2 d}$ $\left(22^{4}, 20^{7}\right)$

$88 T\left(22^{12}\right)$

The zigzags of $1,2,3,5,7$ th above and next two form 7 Grűnbaum arrangements of Jordan curves, i.e. any two intersect in 2 points. The groups of $1,5,7$ th and $\{5,6\}_{60}\left(I_{h}\right)$ are zigzag-transitive.

Two other such $(\{5,6\}, 3)$-spheres

$60 I_{h}\left(18^{10}\right)$

$60 D_{3}\left(18^{10}\right)$

This pair was first answer on a question in Grúnbaum, 1967, 2003 Convex Polytopes about existence of simple polyhedra with the same p-vector but different zigzags. The groups of above $\{5,6\}_{60}$ have, acting on zigzags, 1 and 3 orbits, respectively.
IX. Other fullerene analogs:

$$
c \text {-disks }\left(\left\{a, b, c_{1}\right\}, k\right)
$$

Other fullerene-like spheres with hyperbolic faces

Related non-standard (R, k)-spheres with $\frac{1}{k}+\frac{1}{\max _{i \in R^{i}}}<\frac{1}{2}$ are:

- G-fulleroids (Deza-Delgado, 2000; Jendrol-Trenkler, 2001 and Kardos, 2007): (\{5, b\}, 3)-spheres with $b \geq 7$ and symmetry G.
- b-Icosahedrites: $(\{3, b\}, 5)$-spheres. So, they have $p_{3}=(3 b-10) p_{b}+203$-gons and $v=2(b-3) p_{b}+12$ vertices.
- Haeckel, 1887: $(\{5,6, c\}, 3)$-spheres with $c=7,8$ representing skeletons of radiolarian zooplankton Aulonia hexagona.
- ($\{a, b, c\}, k)$-disk is an ($\{a, b, c\}, k$)-sphere with $p_{c}=1$; so, its $v=\frac{2}{k-2}\left(p_{a}-1+p_{b}\right)=\frac{2}{2 k-a(k-2)}\left(a+c+p_{b}(b-a)\right)$ and (setting $\left.b^{\prime}=\frac{2 k}{k-2}\right) p_{a}=\frac{b^{\prime}+c}{b^{\prime}-a}+p_{b} \frac{b-b^{\prime}}{b^{\prime}-a}$. So, $p_{a}=\frac{b+c}{b-a}$ if $b=b^{\prime}$ (8 families).
- Fullerene c-disk is the case $(a, b, c ; k)=(5,6, c ; 3)$ of above. So, they have $p_{5}=c+6$ and $v=2\left(p_{6}+c+5\right)$ vertices.

Minimal fullerene ((\{5, 6\}, 3)) c-disks

If $c=3,4,5$, it is 1 -vertex-, 1 -edge-truncated, usual Dodecahedron.
Their number is $2,3,10$ and $p_{6}=c-3$ if $c=9,10,11$; else, 1 with min $p_{6}(c)=3,2,0,1,3,4,5,6\left(\right.$ tube $\left.C_{s} / C_{2}\right)$ if $c=3,4,5,6,7,8,12, \geq 13$.

$730 C_{s}$

$834 C_{2 v}$

$1244 C_{2 v}$

Conjecture: $\left(\left\{5,6, c_{1}\right\}, 3\right)$ with $c \geq 13$ exists of v is even $\geq 2 c+22$.

$1348 C_{5}$

$1450 C_{2}$

$1552 C_{s}$

$1654 C_{2}$

Symmetries of fullerene c-disks $\left(\left\{5,6, c_{1}\right\}, 3\right), c \geq 3$

- Their groups: $C_{m}, C_{m v}$ with $m \equiv 0(\bmod c)$ (since any symmetry should stabilize unique c-gonal face) and $m \in\{1,2,3,5,6\}$ since the axis pass by a vertex, edge or face.
- The minimal such 3-connected 8- and 9-disks are given below.

$834 C_{2 v}$
$836 C_{s}$
$838 C_{1}$

$838 C_{2}$

$940 C_{3 v}$

$942 C_{1}$

X. Icosahedrites:

$$
(\{3,4\}, 5) \text {-spheres }
$$

Icosahedrites, i.e., $(\{3,4\}, 5)$-spheres

- They have $p_{3}=2 p_{b}+20$ and $v=2 p_{b}+12$ vertices.
- Their number is $1,0,1,1,5,12,63,246,1395,7668,45460$ for $v=12,14,16,18,20,22,24,26,28,30,32$. It grows at least exponentially with v. So, there is a continuum of icosahedrites, while 8 standard families are countable.
- p_{a} is fixed in for standard ($\{a, b\}, k$)-spheres permitting Goldberg-Coxeter construction and parametrization of graphs which imply the polynomial growth of their number. It does not happen for icosahedrites; no parametrization for them.

A-operation keeps symmetries; B-operation: only rotational ones.

Proof for the number of icosahedrites

A weak zigzag ia a left/right, but never extreme, edge-circuit. If a v-vertex icosahedrite has a simple weak zigzag of length 6 , a $(v+6)$-vertex one come by inserting a corona (6-ring of three 4 -gons alternated by three pairs of adjacent 3-gons) instead of it. But such spheres exist for $v=18,20,22$; so, for $v \equiv 0,2,4(\bmod 6)$. There are two options of inserting corona; so, the number of v-vertex icosahedrites grows at least exponentially.

An usual (strong) zigzag is a left/right, both extreme, edge-circuit.

38 symmetry groups of icosahedrites

- Agregating $\mathrm{C}_{1}=\left\{C_{1}, C_{s}, C_{i}\right\}, \mathrm{C}_{\mathrm{m}}=\left\{C_{m}, C_{m v}, C_{m h}, S_{2 m}\right\}, \mathrm{D}_{\mathbf{m}}=$ $\left\{D_{m}, D_{m h}, D_{m d}\right\}, \mathrm{T}=\left\{T, T_{d}, T_{h}\right\}, \mathbf{O}=\left\{O, O_{h}\right\}, \mathrm{I}=\left\{I, I_{h}\right\}$, all 38 symmetries of $(\{3,4\}, 5)$-spheres are:
$\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{m}}, \mathbf{D}_{\mathbf{m}}$ for $2 \leq m \leq 5$ and $\mathbf{T}, \mathbf{O}, \mathbf{I}$.
- Any group appear an infinite number of times since one gets an infinity by applying A-operation iteratively.
- Group limitations came from k-fold axis only. Is it occurs for all ($\{a, b\}, k$)-spheres with b-faces of negative curvature?
- Examples (minimal whenever $v \leq 32$) are given below:

$22 C_{1}$

$22 C_{s}$

$32 C_{i}$

$72 O_{h}$

Minimal $(\{3,4\}, 5)$-spheres of 5-fold symmetry

It exists iff $p_{4} \equiv 0(\bmod 5)$, i.e., $v=2 p_{4}+12 \equiv 2(\bmod 10)$.

$32 D_{5}$

$52 C_{5}$

$22 D_{5 h}$

$62 C_{5 h}$

$32 D_{5 d}$

$12 I_{h}$

$72 C_{5 v}$

$72 S_{10}$

Minimal $(\{3,4\}, 5)$-spheres of 4-fold symmetry

It exists iff $p_{4} \equiv 2(\bmod 4)$, i.e., $v=2 p_{4}+12 \equiv 0(\bmod 8)$.

$32 D_{4}$

$40 C_{4}$

$16 D_{4 d}$

$40 C_{4 v}$

$40 D_{4 h}$

$32 C_{4 h}$

240

$32 S_{8}$

Minimal $(\{3,4\}, 5)$-spheres of 3-fold symmetry

It exists iff $p_{4} \equiv 0(\bmod 3)$, i.e., $v=2 p_{4}+12 \equiv 0(\bmod 6)$.

$18 D_{3}$

$30 C_{3}$

$24 D_{3 d}$

$30 C_{3 v}$

$30 D_{3 h}$

$24 C_{3 h}$

$36 T_{d}$

$24 S_{6}$

Minimal $(\{3,4\}, 5)$-spheres of 2-fold symmetry

$20 D_{2}$

$20 C_{2}$

$20 D_{2 d}$

$22 C_{2 v}$

$24 D_{2 h}$

$28 C_{2 h}$

$36 T_{h}$

$28 S_{4}$

XI. Standard $(\{a, b\}, k)$-maps

on surfaces

Standard (R, k)-maps

- Given $R \subset \mathbb{N}$ and a surface \mathbb{F}^{2}, an $(R, k)-\mathbb{F}^{2}$ is a k-regular map M on surface \mathbb{F}^{2} whose faces have gonalities $i \in R$.
- Euler characteristic $\chi(M)$ is $v-e+f$, where v, e and $f=\sum_{i} p_{i}$ are the numbers of vertices, edges and faces of M.
- Since $k v=2 e=\sum_{i} i p_{i}$, Euler formula $\chi=v-e+f$ becomes Gauss-Bonnet-like one $2 \chi(M) k=\sum_{i} p_{i}(2 k-i(k-2))$.
- Again, let our maps be standard, i.e., $\min _{i \in R}\left(\frac{1}{k}+\frac{1}{i}\right)=\frac{1}{2}$. So, $M=\max \{i \in R\}=\frac{2 k}{k-2}$ and $(M, k)=(6,3),(4,4),(3,6)$.
- There are infnity of standard maps $(R, k)-\mathbb{F}^{2}$, since the number p_{M} of parabolic faces is not restricted.
- Also, $\chi \geq 0$ with $\chi=0$ if and only if $R=\{m\}$. So, \mathbb{F}^{2} is $\mathbb{S}^{2}, \mathbb{T}^{2}, \mathbb{P}^{2}, \mathbb{K}^{2}$ with $\chi=2,0,1,0$, respectively.
- Such $(\{a, b\}, k)-\mathbb{F}^{2}$ map has $b=\frac{2 k}{k-2}, p_{a}=\frac{\chi b}{b-a}, v=\frac{1}{k}\left(a p_{a}+b p_{b}\right)$ So, $(a=b, k)=(6,3),(3,6),(4,4)$ if \mathbb{F}^{2} is \mathbb{T}^{2} or \mathbb{K}^{2}.
- But $\chi=\frac{p_{3}-2 p_{4}}{10}$ for icosahedrite maps $(\{3,4\}, 5)$ (non-standard) So, $\chi<0$ is possible and $\chi=0$ (i.e., $\mathbb{F}^{2}=\mathbb{T}^{2}, \mathbb{K}^{2}$) iff $p_{3}=2 p_{4}$.

Digression on interesting non-standard ($\{5,6, c\}, 3$)-maps

Such maps, generalizing fullerenes, have $c \geq 7$. Examples are:

- G-fulleroids (Deza-Delgado, 2000; Jendrol-Trenkler, 2001 and Kardos, 2007): ($\{5, b\}, 3$)-spheres with $b \geq 7$ and symmetry G
- Haeckel, 1887: $(\{5,6, c\}, 3)$-spheres with $c=7,8$ representing skeletons of radiolarian zooplankton Aulonia hexagona.
- Azulenoids: $(\{5,6,7\}, 3)$-tori; so $g=1, p_{5}=p=7$.
- Schwarzits: $(\{5,6, c\}, 3)$-maps on minimal surfaces of constant negative curvature $(g \geq 2)$ with $c=7,8$. Knor-Potocnik-Siran-Skrekovski, 2010: such ($\{6, c\}, 3$)-maps exist for any $g \geq 2, p_{6} \geq 0$ and $c=7,8,9,10,12$. For $c=7,8$ such polyhedral maps exist.

The $(\{a, b\}, k)$-maps on torus and Klein bottle

The connected closed (compact and without boundary) irreducible surfaces are: sphere \mathbb{S}^{2}, torus \mathbb{T}^{2} (two orientable), real projective plane \mathbb{P}^{2} and Klein bottle \mathbb{K}^{2} with $\chi=2,0,1,0$, respectively.
The maps $(\{a, b\}, k)-\mathbb{T}^{2}$ and $(\{a, b\}, k)-\mathbb{K}^{2}$ have $a=b=\frac{2 k}{k-2}$; so, ($a=b, k$) should be $(6,3),(3,6)$ or $(4,4)$.
We consider only polyhedral maps, i.e. no loops or multiple edges (1- or 2-gons), and any two faces intersect in edge, point or \emptyset only.

The ($\{a, b\}, k)$-maps on torus and Klein bottle

The connected closed (compact and without boundary) irreducible surfaces are: sphere \mathbb{S}^{2}, torus \mathbb{T}^{2} (two orientable), real projective plane \mathbb{P}^{2} and Klein bottle \mathbb{K}^{2} with $\chi=2,0,1,0$, respectively.
The maps $(\{a, b\}, k)-\mathbb{T}^{2}$ and $(\{a, b\}, k)-\mathbb{K}^{2}$ have $a=b=\frac{2 k}{k-2}$; so, $(a=b, k)$ should be $(6,3),(3,6)$ or $(4,4)$.
We consider only polyhedral maps, i.e. no loops or multiple edges (1- or 2-gons), and any two faces intersect in edge, point or \emptyset only.

Smallest \mathbb{T}^{2} and \mathbb{K}^{2}-embeddings for $(a=b, k)=(6,3),(3,6),(4,4)$: as 6 -regular triangulations: K_{7} and $K_{3,3,3}\left(p_{3}=14,18\right)$; as 3 -regular polyhexes: Heawood graph (dual K_{7}) and dual $K_{3,3,3}$; as 4-regular quadrangulations: K_{5} and $K_{2,2,2}\left(p_{4}=5,6\right)$. K_{5} and $K_{2,2,2}$ are also smallest $(\{3,4\}, 4)-\mathbb{P}^{2}$ and $(\{3,4\}, 4)-\mathbb{S}^{2}$, while K_{4} is the smallest $(\{4,6\}, 3)-\mathbb{P}^{2}$ and $(\{3,6\}, 3)-\mathbb{S}^{2}$.

Smallest 3 -regular maps on \mathbb{T}^{2} and \mathbb{K}^{2} : duals $K_{7}, K_{3,3,3}$

Smallest 3-regular maps on \mathbb{T}^{2} and \mathbb{K}^{2} : duals $K_{7}, K_{3,3,3}$

3-regular polyhexes on \mathbb{T}^{2}, cylinder, Möbius surface, \mathbb{K}^{2} are $\left\{6^{3}\right\}$'s quotients by fixed-point-free group of isometries, generated by: two translations, a transl., a glide reflection, transl. and glide reflection.

8 families: symmetry groups with inversion

The point symmetry groups with inversion operation are: T_{h}, O_{h}, $I_{h}, C_{m h}, D_{m h}$ with even m and $D_{m d}, S_{2 m}$ with odd m. So, they are

- 9 for $\{5,6\}_{v}: C_{i}, C_{2 h}, D_{2 h}, D_{3 d}, D_{6 h}, S_{6}, T_{h}, D_{5 d}, I_{h}$
- 7 for $\{2,3\}_{v}: C_{i}, C_{2 h}, D_{2 h}, D_{3 d}, D_{6 h}, S_{6}, T_{h}$
- 6 for $\{4,6\}_{v}: C_{i}, C_{2 h}, D_{2 h}, D_{3 d}, D_{6 h}, O_{h}$
- 6 for $\{3,4\}_{v}: C_{i}, C_{2 h}, D_{2 h}, D_{3 d}, D_{4 h}, O_{h}$
- 2 for $\{2,4\}_{v}: D_{2 h}, D_{4 h}$
- 1 for $\{3,6\}_{v}: D_{2 h}$
- 0 for $\{2,6\}_{v}$ and $\{1,3\}_{v}$
- Cf. 12 for icosahedrites ($(\{3,4\}, 5)$-spheres):
$C_{i}, C_{2 h}, C_{4 h}, D_{2 h}, D_{4 h}, D_{3 d}, D_{5 d}, S_{6}, S_{10}, T_{h}, O_{h}, I_{h}$
(R, k)-maps on the projective plane are the antipodal quotients of centrosymmetric (R, k)-spheres; so, halving their p-vector and v.

Smallest $(\{a, b\}, k)$-maps on the projective plane

- The smallest ones for $(a, b)=(4,6),(3,4),(3,6),(5,6)$ are: K_{4} (smallest \mathbb{P}^{2}-quadrangulation), K_{5}, 2-truncated K_{4}, dual K_{6} (Petersen graph), i.e., the antipodal quotients of Cube $\{4,6\}_{8},\{3,4\}_{10}\left(D_{4 h}\right),\{3,6\}_{16}\left(D_{2 h}\right)$, Dodecahedron $\{5,6\}_{20}$.
- The smallest ones for $(a, b)=(2,4),(2,3)$ are points with 2 , 3 loops; smallest without loops are $4 \times K_{2}, 6 \times K_{2}$ but on \mathbb{P}^{2}.

$\{4,6\}_{4}$

$\{3,4\}_{5}$

$\{3,6\}_{8}$

$\{2,4\}_{2}$

Smallest $(\{5,6\}, 3)-\mathbb{P}^{2}$ and $(\{3,4\}, 5)-\mathbb{P}^{2}$

The Petersen graph (in positive role) is the smallest \mathbb{P}^{2}-fullerene. Its \mathbb{P}^{2}-dual, K_{6}, is the smallest \mathbb{P}^{2}-icosahedrite (half-Icosahedron). K_{6} is also the smallest (with 10 triangles) triangulation of \mathbb{P}^{2}.

6 families on projective plane: parameterizing

- $\{5,6\}_{v}: C_{i}, C_{2 h}, D_{2 h}, S_{6}, D_{3 d}, D_{6 h}, T_{h}, D_{5 d}, I_{h}$
- $\{2,3\}_{v}: C_{i}, C_{2 h}, D_{2 h}, S_{6}, D_{3 d}, D_{6 h}, T_{h}$
- $\{4,6\}_{v}: C_{i}, C_{2 h}, D_{2 h}, D_{3 d}, D_{6 h}, O_{h}$
- $\{3,4\}_{v}: C_{i}, C_{2 h}, D_{2 h}, D_{3 d}, D_{4 h}, O_{h}$
- $\{2,4\}_{v}: D_{2 h}, D_{4 h}$
- $\{3,6\}_{v}: D_{2 h}$

6 families on projective plane: parameterizing

- $\{5,6\}_{v}: C_{i}, C_{2 h}, D_{2 h}, S_{6}, D_{3 d}, D_{6 h}, T_{h}, D_{5 d}, I_{h}$
- $\{2,3\}_{v}: C_{i}, C_{2 h}, D_{2 h}, S_{6}, D_{3 d}, D_{6 h}, T_{h}$
- $\{4,6\}_{v}: C_{i}, C_{2 h}, D_{2 h}, D_{3 d}, D_{6 h}, O_{h}$
- $\{3,4\}_{v}: C_{i}, C_{2 h}, D_{2 h}, D_{3 d}, D_{4 h}, O_{h}$
- $\{2,4\}_{v}: D_{2 h}, D_{4 h}$
- $\{3,6\}_{v}: D_{2 h}$
($\{2,3\}, 6$)-spheres T_{h} and $D_{6 h}$ are $G C_{k, k}(2 \times$ Tetrahedron) and, for $k \equiv 1,2(\bmod 3), G C_{k, 0}\left(6 \times K_{2}\right)$, respectively. Other spheres of blue symmetry are $G C_{k, I}$ with $I=0, k$ from the first such sphere. So, each of 7 blue-symmetric families is described by one natural parameter k and contains $O(\sqrt{v})$ spheres with at most v vertices.

($\{a, b\}, k)$-maps on Euclidean plane and 3-space

- An $(\{a, b\}, k)-\mathbb{E}^{2}$ is a k-regular tiling of \mathbb{E}^{2} by a - and b-gons.
- $(\{a, b\}, k)-\mathbb{E}^{2}$ have $p_{a} \leq \frac{b}{b-a}$ and $p_{b}=\infty$. It follows from Alexandrov, 1958: any metric on \mathbb{E}^{2} of non-negative curvature can be realized as a metric of convex surface on \mathbb{E}^{3}. In fact, consider plane metric such that all faces became regular in it. Its curvature is 0 on all interior points (faces, edges) and ≥ 0 on vertices. A convex surface is at most half- \mathbb{S}^{2}.
- There are ∞ of $(\{a, b\}, k)-\mathbb{E}^{2}$ if $2 \leq p_{a} \leq \frac{b}{b-a}$ and 1 if $p_{a}=0,1$.
- The plane fullerenes (or nanocones) $(\{5,6\}, k)$ - \mathbb{E}^{2} are classified by Klein and Balaban, 2007: the number of equivalence (isomorphism up to a finite induced subgraph) classes is $2,2,2,1$ for $p_{5}=2,3,4,5$, respectively.

$(\{a, b\}, k)$-maps on Euclidean plane and 3-space

- An $(\{a, b\}, k)-\mathbb{E}^{2}$ is a k-regular tiling of \mathbb{E}^{2} by a - and b-gons.
- $(\{a, b\}, k)-\mathbb{E}^{2}$ have $p_{a} \leq \frac{b}{b-a}$ and $p_{b}=\infty$. It follows from Alexandrov, 1958: any metric on \mathbb{E}^{2} of non-negative curvature can be realized as a metric of convex surface on \mathbb{E}^{3}. In fact, consider plane metric such that all faces became regular in it. Its curvature is 0 on all interior points (faces, edges) and ≥ 0 on vertices. A convex surface is at most half- \mathbb{S}^{2}.
- There are ∞ of $(\{a, b\}, k)-\mathbb{E}^{2}$ if $2 \leq p_{a} \leq \frac{b}{b-a}$ and 1 if $p_{a}=0,1$.
- The plane fullerenes (or nanocones) $(\{5,6\}, k)-\mathbb{E}^{2}$ are classified by Klein and Balaban, 2007: the number of equivalence (isomorphism up to a finite induced subgraph) classes is $2,2,2,1$ for $p_{5}=2,3,4,5$, respectively.
- An $(\{a, b\}, k)-\mathbb{E}^{3}$ is a 3 -periodic k^{\prime}-regular face-to-face tiling of the Euclidean 3 -space \mathbb{E}^{3} by $(\{a, b\}, k)$-spheres.
- Next, we will mention such tilings by 4 special fullerenes, which are important in Chemistry and Crystallography. Then we consider extension of $(\{a, b\}, k)$-maps on manifolds.
XII. Beyond surfaces

Frank-Kasper $(\{a, b\}, k)$-spheres and tilings

- A $(\{a, b\}, k)$-sphere is Frank-Kasper if no b-gons are adjacent.
- All cases are: smallest ones in 8 families, 3 (\{5,6\},3)-spheres (24-, 26-, 28-vertex fullerenes), (\{4, 6\}, 3)-sphere Prism ${ }_{6}$, 3 (\{3, 4\}, 4)-spheres (APrism ${ }_{4}$, APrism $_{3}^{2}$, Cuboctahedron), ($\{2,4\}, 4$)-sphere doubled square and two ($\{2,3\}, 6$)-spheres (tripled triangle and doubled Tetrahedron).

20, I_{h}

$24 D_{6 d}$

26, $D_{3 h}$

$28, T_{d}$

FK space fullerenes

A FK space fullerene is a 3-periodic 4-regular face-to-face tiling of 3 -space \mathbb{E}^{3} by four Frank-Kasper fullerenes $\{5,6\}_{v}$.
They appear in crystallography of alloys, clathrate hydrates, zeolites and bubble structures. The most important, A_{15}, is below.

Weaire-Phelan, 1994: best known solution of weak Kelvin problem

Other \mathbb{E}^{3}-tilings by $(\{a, b\}, k)$-spheres

- An $(\{a, b\}, k)-\mathbb{E}^{3}$ is a 3 -periodic k^{\prime}-regular face-to-face \mathbb{E}^{3}-tiling by $(\{a, b\}, k)$-spheres. Some examples follow.
- Deza-Shtogrin, 1999: first known non-FK space fullerene $(\{5,6\}, 3)-\mathbb{E}^{3}$: 4-regular \mathbb{E}^{3}-tiling by $\{5,6\}_{20},\{5,6\}_{24}$ and its elongation $\simeq\{5,6\}_{36}\left(D_{6 h}\right)$ in proportion 7:2:1.

Other \mathbb{E}^{3}-tilings by $(\{a, b\}, k)$-spheres

- An $(\{a, b\}, k)-\mathbb{E}^{3}$ is a 3 -periodic k^{\prime}-regular face-to-face \mathbb{E}^{3}-tiling by $(\{a, b\}, k)$-spheres. Some examples follow.
- Deza-Shtogrin, 1999: first known non-FK space fullerene $(\{5,6\}, 3)-\mathbb{E}^{3}$: 4-regular \mathbb{E}^{3}-tiling by $\{5,6\}_{20},\{5,6\}_{24}$ and its elongation $\simeq\{5,6\}_{36}\left(D_{6 h}\right)$ in proportion 7:2:1.
- space cubite $(\{4,6\}, 3)$ - \mathbb{E}^{3} : tiling by Prism ${ }_{4}$, Prism $_{6}$ with bipyramidal star. Examples: 5- and 6 -regular \mathbb{E}^{3}-tilings by Prism $_{6}$ and by Cube (Voronoi tilings of lattices $A_{2} \times \mathbb{Z}$ and \mathbb{Z}^{3} with stars $\operatorname{Prism}_{3}^{*}$ and $\beta_{3}=\operatorname{Prism}_{4}^{*}$), respectively.

Other \mathbb{E}^{3}-tilings by $(\{a, b\}, k)$-spheres

- An $(\{a, b\}, k)-\mathbb{E}^{3}$ is a 3 -periodic k^{\prime}-regular face-to-face \mathbb{E}^{3}-tiling by $(\{a, b\}, k)$-spheres. Some examples follow.
- Deza-Shtogrin, 1999: first known non-FK space fullerene $(\{5,6\}, 3)-\mathbb{E}^{3}: 4$-regular \mathbb{E}^{3}-tiling by $\{5,6\}_{20},\{5,6\}_{24}$ and its elongation $\simeq\{5,6\}_{36}\left(D_{6 h}\right)$ in proportion 7:2:1.
- space cubite $(\{4,6\}, 3)$ - \mathbb{E}^{3} : tiling by Prism $_{4}$, Prism $_{6}$ with bipyramidal star. Examples: 5- and 6 -regular \mathbb{E}^{3}-tilings by Prism $_{6}$ and by Cube (Voronoi tilings of lattices $A_{2} \times \mathbb{Z}$ and \mathbb{Z}^{3} with stars $\operatorname{Prism}_{3}^{*}$ and $\beta_{3}=\operatorname{Prism}_{4}^{*}$), respectively.
- space octahedrite $(\{3,4\}, 4)-\mathbb{E}^{3}: 6$-regular (star-Octahedron) tiling by Octahedron, Cuboctahedron in proportion 1:1. It is uniform (vertex-transitive and with Archimedean tiles) and Delaunay tiling of J-complex (mineral perovskite structure).
- Cf. \mathbb{H}^{3}-tilings: 6 -regular $\{5,3,4\}$ by $\{5,6\}_{20}$, (Löbell, 1931) by $\{5,6\}_{24}$ and 12 -reg. $\{5,3,5\}$ by $\{5,6\}_{20},\{4,3,5\}$ by Cube.

Fullerene manifolds

- Given $3 \leq a<b \leq 6$, $\{a, b\}$-manifold is a ($d-1$)-dimensional d-valent compact connected manifold (locally homeomorphic to \mathbb{R}^{d-1}) whose 2 -faces are only a - or b-gonal.
- So, any i-face, $3 \leq i \leq d$, is a polytopal i - $\{a, b\}$-manifold.
- Most interesting case is $(a, b)=(5,6)$ (fullerene manifold), when $d=2,3,4,5$ only since (Kalai, 1990) any 5-polytope has a 3- or 4-gonal 2-face.

Fullerene manifolds

- Given $3 \leq a<b \leq 6,\{a, b\}$-manifold is a ($d-1$)-dimensional d-valent compact connected manifold (locally homeomorphic to \mathbb{R}^{d-1}) whose 2 -faces are only a - or b-gonal.
- So, any i-face, $3 \leq i \leq d$, is a polytopal i - $\{a, b\}$-manifold.
- Most interesting case is $(a, b)=(5,6)$ (fullerene manifold), when $d=2,3,4,5$ only since (Kalai, 1990) any 5-polytope has a 3- or 4-gonal 2-face.
- The smallest polyhex is 6 -gon on \mathbb{T}^{2}. The "greatest": \{633\}, the convex hull of vertices of $\{63\}$, realized on a horosphere.
- Prominent 4 -fullerene (600 -vertex on \mathbb{S}^{3}) is 120 -cell $(\{533\})$. The "greatest" polypent: $\{5333\}$, tiling of \mathbb{H}^{4} by 120 -cells.

Projection of 120-cell in 3-space (G.Hart)

$\{533\}: 600$ vertices, 120 dodecahedral facets, $|A u t|=14400$

4- and 5-fullerenes

- All known finite 4-fullerenes are "mutations" of 120 -cell by interfering in one of ways to construct it: tubes of 120 -cells, coronas, inflation-decoration method, etc.
Some putative facets: $\simeq\{5,6\}_{v}(G)$ with $(v, G)=\left(20, I_{h}\right)$, $\left(24, D_{6 h}\right),\left(26, D_{3}\right),\left(28, T_{d}\right),\left(30, D_{5 h}\right),\left(32, D_{3 h}\right),\left(36, D_{6 h}\right)$.
- $(\{5,6\}, 3)-\mathbb{E}^{3}$: example of interesting infinite 4-fullerenes.

4- and 5-fullerenes

- All known finite 4-fullerenes are "mutations" of 120 -cell by interfering in one of ways to construct it: tubes of 120 -cells, coronas, inflation-decoration method, etc.
Some putative facets: $\simeq\{5,6\}_{v}(G)$ with $(v, G)=\left(20, I_{h}\right)$, $\left(24, D_{6 h}\right),\left(26, D_{3}\right),\left(28, T_{d}\right),\left(30, D_{5 h}\right),\left(32, D_{3 h}\right),\left(36, D_{6 h}\right)$.
- $(\{5,6\}, 3)-\mathbb{E}^{3}$: example of interesting infinite 4-fullerenes.
- All known 5 -fullerenes come from $\{5333\}$'s by following ways. With 6-gons also: glue two \{5333\}'s on some 120-cells and delete their interiors. If it is done on only one 120-cell, it is $\mathbb{R} \times \mathbb{S}^{3}$ (so, simply-connected).
Finite compact ones: the quotients of $\{5333\}$ by its symmetry group (partitioned into 120 -cells) and gluings of them.

Quotient d-fullerenes

- Selberg, 1960, Borel, 1963: if a discrete group of motions of a symmetric space has a compact fundamental domain, then it has a torsion-free normal subgroup of finite index.
- So, the quotient of a d-fullerene by such symmetry group (its points are group orbits) is a finite d-fullerene.

Quotient d-fullerenes

- Selberg, 1960, Borel, 1963: if a discrete group of motions of a symmetric space has a compact fundamental domain, then it has a torsion-free normal subgroup of finite index.
- So, the quotient of a d-fullerene by such symmetry group (its points are group orbits) is a finite d-fullerene.
- Exp. 1: Polyhexes on \mathbb{T}^{2}, cylinder, Möbius surface and \mathbb{K}^{2} are the quotients of $\left\{6^{3}\right\}$ by discontinuous fixed-point-free group of isometries, generated by: 2 translations, a translation, a glide reflection, translation and glide reflection, respectively.

Quotient d-fullerenes

- Selberg, 1960, Borel, 1963: if a discrete group of motions of a symmetric space has a compact fundamental domain, then it has a torsion-free normal subgroup of finite index.
- So, the quotient of a d-fullerene by such symmetry group (its points are group orbits) is a finite d-fullerene.
- Exp. 1: Polyhexes on \mathbb{T}^{2}, cylinder, Möbius surface and \mathbb{K}^{2} are the quotients of $\left\{6^{3}\right\}$ by discontinuous fixed-point-free group of isometries, generated by: 2 translations, a translation, a glide reflection, translation and glide reflection, respectively.
- Exp 2: Poincaré dodecahedral space: the quotient of 120-cell by I_{h}; so, its f-vector is $(5,10,6,1)=\frac{1}{120} f(120$-cell $)$.
- Cf. 6-, 12 -regular \mathbb{H}^{3}-tilings $\{5,3,4\},\{5,3,5\}$ by $\{5,6\}_{20}$ and 6 -regular \mathbb{H}^{3}-tiling by (right-angled) $\{5,6\}_{24}$.
Seifert-Weber, 1933 and Löbell, 1931 spaces are quotients of last 2 with f-vectors $\left(1,6, p_{5}=6,1\right),\left(24,72,48+8=p_{5}+p_{6}, 8\right)$.

