Directed Cut Polyhedra with Mining Applications

David Avis and Conor Meagher

September 20, 2011

Backdrop

Mining and Cuts

Cuts and Directed Cuts

CCCG 2010

Those ubiquitous cut polyhedra
CCCG 2010 Paul Erdös Lecture

David Avis
Kyoto University and McGill University
July 14， 2010

CCCG 2010

[^0]Backdrop
L_{1}-embedding
Hypercubes

Correlations

Cut Polytope

Quantum correlations

Mining

Mining

- Yet another long story so . - ... please read Conor's thesis

Mining

- Yet another long story so ...

Mining

- Yet another long story so ...
- ... please read Conor's thesis!

Conor's thesis

On the Directed Cut Polyhedra and Open
Pit Mining

Conor Meagher

Doctor of Philosophy

School of Computer Science

McGill University
Montreal,Quebec
2010-08-31

Conor's Acknowledgements

ACKNOWLEDGEMENTS

It is said that after your parents a Ph.D. supervisor has the greatest influence on your life. I had the privilege of having three supervisors during my time at McGill. My three dads were David Avis, Roussos Dimitrakopoulos and Bruce Reed. The combination of discrete optimization, mining and graph theory appearing in this thesis is not an accident and are a direct reflection of their influence and respective areas of expertise. David taught me much of what I know on discrete optimization and that you can take any problem and relate it to the cut polytope. I am greatly indebted to Roussos for introducing me to optimization problems and opportunities in the mining industry. Without Bruce I doubt I would have ever pursued this degree, while my focus drifted away from my original intent to focus on graph colouring Bruce taught me a lot of graph theory and probability before I changed my focus.

Open pit mine

- The ground is broken up into sections

- Using estimation or simulation techniques from drill hole data, economic values are produced for each block

- Ore blocks can return a profit when mined
- Waste blocks cost money to remove
- Each block is considered as a node of a graph
- Arcs are added to represent slope requirements

Graph closure

- A graph closure is a subset S of nodes such that no arcs leave S
- A maximum weight graph closure is known as "the ultimate pit"

Maximum network flow

- source node s with arcs to each ore node
- sink node t with arcs from each waste node

- Capacities on the arcs are the absolute value of the blocks
- Slope arcs have infinite capacity

Minimum cut

The minimum cut represents the maximum weight graph closure

- Minimize the waste inside and the ore outside the pit

Pushbacks

- The ultimate pit must be decomposed into a multiperiod schedule
- Let P_{i} be the pit dug in period i

Pushbacks

- The ultimate pit must be decomposed into a multiperiod schedule
- Let P_{i} be the pit dug in period i

Problems with existing pushback design methods

- The pits have very different sizes and P_{2} is not connected.
- We may make a limit the number blocks can be mined per period.
- We mav require Pi to be connected

Problems with existing pushback design methods

- The pits have very different sizes and P_{2} is not connected.
- We may make a limit the number blocks can be mined per period.
- We may require P_{i} to be connected
- Either makes the probem NP-hard

Problems with existing pushback design methods

- The pits have very different sizes and P_{2} is not connected.
- We may make a limit the number blocks can be mined per period.
- We may require P_{i} to be connected
- Either makes the probem NP-hard

Problems with existing pushback design methods

- The pits have very different sizes and P_{2} is not connected.
- We may make a limit the number blocks can be mined per period.
- We may require P_{i} to be connected
- Either makes the probem NP-hard

Partially ordered knapsack

- The block limit introduces a knapsack type constraint.

Partially ordered knapsack

- The block limit introduces a knapsack type constraint.

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} c_{i} x_{i} \\
\text { s.t. } & x_{i} \leq x_{j} \quad \text { for all } \operatorname{arcs}(i, j) \\
& \sum_{i=1}^{n} w_{i} x_{i} \leq b \tag{1}\\
& x_{i} \in\{0,1\} \quad \forall i
\end{array}
$$

Partially ordered knapsack

- The block limit introduces a knapsack type constraint.

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} c_{i} x_{i} \\
\text { s.t. } & x_{i} \leq x_{j} \quad \text { for all } \operatorname{arcs}(i, j) \\
& \sum_{i=1}^{n} w_{i} x_{i} \leq b \tag{1}\\
& x_{i} \in\{0,1\} \quad \forall i
\end{array}
$$

- Constraint (1) ruins total unimodularity.

Partially ordered knapsack

- The block limit introduces a knapsack type constraint.

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} c_{i} x_{i} \\
\text { s.t. } & x_{i} \leq x_{j} \quad \text { for all } \operatorname{arcs}(i, j) \\
& \sum_{i=1}^{n} w_{i} x_{i} \leq b \tag{1}\\
& x_{i} \in\{0,1\} \quad \forall i
\end{array}
$$

- Constraint (1) ruins total unimodularity.
- This is the partially ordered knapsack problem and is NP-hard.

Directed cut approach

- An alternate approach is to optimize over the polytope of all directed cuts using cutting planes.
- Not much is known about directed cut polyhedra.

Geometry of cuts and metrics

about:blank

Michel Deza
Monique Laurent

How about directed cuts?

- Far less studied - surprising because most people learn about directed cuts first: Max-flow
Min-cut theorem (1956)
They appear briefly in early NP-completeness literature,
and ...

How about directed cuts?

- Far less studied - surprising because ...
- ... most people learn about directed cuts first: Max-flow Min-cut theorem (1956)

They appear briefly in early NP-completeness literature, and
the work of Goemans-Williamson (1995) on SDP relaxation.

How about directed cuts?

- Far less studied - surprising because ...
- ... most people learn about directed cuts first: Max-flow Min-cut theorem (1956)
- They appear briefly in early NP-completeness literature, and ...
relaxation

How about directed cuts?

- Far less studied - surprising because ...
- ... most people learn about directed cuts first: Max-flow Min-cut theorem (1956)
- They appear briefly in early NP-completeness literature, and ...
- ... the work of Goemans-Williamson (1995) on SDP relaxation.

Weightable oriented multicut quasimetrics

> Very recent general results by M. Deza, E. Deza, J. Vidali and others overlap results in today's talk. "It is easy to see that an oriented multicut quasi-semimetric is weightable iff it is oriented cut". (M. Deza)

Weightable oriented multicut quasimetrics

- Very recent general results by M. Deza, E. Deza, J. Vidali and others overlap results in today's talk.

Weightable oriented multicut quasimetrics

- Very recent general results by M. Deza, E. Deza, J. Vidali and others overlap results in today's talk.
- "It is easy to see that an oriented multicut quasi-semimetric is weightable iff it is oriented cut". (M. Deza)

Weightable oriented multicut quasimetrics

- Very recent general results by M. Deza, E. Deza, J. Vidali and others overlap results in today's talk.
- "It is easy to see that an oriented multicut quasi-semimetric is weightable iff it is oriented cut". (M. Deza)
- See arXiv:1101.0517

Cut polytope: definition

- Let $S \subseteq\{1, \ldots, n\}$ and \oplus denote exclusive or.

Cut polytope: definition

- Let $S \subseteq\{1, \ldots, n\}$ and \oplus denote exclusive or.
- Define $\delta(S) \in \mathbb{R}^{\binom{n}{2}}$ by

$$
\delta(S) i j=\left\{\begin{array}{ll}
1 & i \oplus j \in S \\
0 & \text { otherwise }
\end{array} \quad 1 \leq i<j \leq n\right.
$$

Cut polytope: definition

- Let $S \subseteq\{1, \ldots, n\}$ and \oplus denote exclusive or.
- Define $\delta(S) \in \mathbb{R}^{\binom{n}{2}}$ by

$$
\delta(S) i j=\left\{\begin{array}{ll}
1 & i \oplus j \in S \\
0 & \text { otherwise }
\end{array} \quad 1 \leq i<j \leq n\right.
$$

- $\delta(S)$ is the edge-incidence vector of the cut $[S, V-S]$ in K_{n}.

Cut polytope: definition

- Let $S \subseteq\{1, \ldots, n\}$ and \oplus denote exclusive or.
- Define $\delta(S) \in \mathbb{R}^{\binom{n}{2}}$ by

$$
\delta(S) i j=\left\{\begin{array}{ll}
1 & i \oplus j \in S \\
0 & \text { otherwise }
\end{array} \quad 1 \leq i<j \leq n\right.
$$

- $\delta(S)$ is the edge-incidence vector of the cut $[S, V-S]$ in K_{n}.
- The cut cone is

$$
C U T_{n}=\operatorname{Cone}\left\{\delta(S): S \subseteq V\left(K_{n}\right)\right\}
$$

Cut polytope: definition

- Let $S \subseteq\{1, \ldots, n\}$ and \oplus denote exclusive or.
- Define $\delta(S) \in \mathbb{R}^{\binom{n}{2}}$ by

$$
\delta(S) i j=\left\{\begin{array}{ll}
1 & i \oplus j \in S \\
0 & \text { otherwise }
\end{array} \quad 1 \leq i<j \leq n\right.
$$

- $\delta(S)$ is the edge-incidence vector of the cut $[S, V-S]$ in K_{n}.
- The cut cone is

$$
C U T_{n}=\operatorname{Cone}\left\{\delta(S): S \subseteq V\left(K_{n}\right)\right\}
$$

- The cut polytope is

$$
C U T_{n}^{\square}=C H\left\{\delta(S): S \subseteq V\left(K_{n}\right)\right\}
$$

$\mathrm{CUT}_{3}^{\square}$

S	x_{12}	x_{13}	x_{23}
\emptyset or $\{1,2,3\}$	0	0	0
$\{1\}$ or $\{2,3\}$	1	1	0
$\{2\}$ or $\{1,3\}$	1	0	1
$\{3\}$ or $\{1,2\}$	0	1	1

Simple facets of the cut polyhedra

Triangle Inequalities:

$$
x_{i, j}-x_{i, k}-x_{k, j} \leq 0
$$

Perimeter Triangle Inequalities:

$$
x_{i, j}+x_{j, k}+x_{k, i} \leq 2
$$

Semimetric polyhedra

- The semimetric cone is

$$
M E T_{n}=\left\{x \in \mathbb{R}^{\binom{n}{2}}: x_{i, j}-x_{i, k}-x_{k, j} \leq 0 \quad \forall i, j, k\right\}
$$

Semimetric polyhedra

- The semimetric cone is

$$
M E T_{n}=\left\{x \in \mathbb{R}^{\binom{n}{2}}: x_{i, j}-x_{i, k}-x_{k, j} \leq 0 \quad \forall i, j, k\right\}
$$

- The semimetric polytope is
$M E T_{n}^{\square}=\left\{x \in \mathbb{R}^{\binom{n}{2}}: x_{i, j}-x_{i, k}-x_{k, j} \leq 0, x_{i, j}+x_{j, k}+x_{k, i} \leq 2 \forall i, j, k\right\}$
$M E T_{n}$ is an LP relaxation of $C U T_{n}$
$M E T_{n}^{\square}$ is an LP relaxation $C U T_{n}^{\square}$

Semimetric polyhedra

- The semimetric cone is

$$
M E T_{n}=\left\{x \in \mathbb{R}^{\binom{n}{2}}: x_{i, j}-x_{i, k}-x_{k, j} \leq 0 \forall i, j, k\right\}
$$

- The semimetric polytope is
$M E T_{n}^{\square}=\left\{x \in \mathbb{R}^{\binom{n}{2}}: x_{i, j}-x_{i, k}-x_{k, j} \leq 0, x_{i, j}+x_{j, k}+x_{k, i} \leq 2 \forall i, j, k\right\}$
- $M E T_{n}$ is an LP relaxation of $C U T_{n}$

Semimetric polyhedra

- The semimetric cone is

$$
M E T_{n}=\left\{x \in \mathbb{R}^{\binom{n}{2}}: x_{i, j}-x_{i, k}-x_{k, j} \leq 0 \quad \forall i, j, k\right\}
$$

- The semimetric polytope is
$M E T_{n}^{\square}=\left\{x \in \mathbb{R}^{\binom{n}{2}}: x_{i, j}-x_{i, k}-x_{k, j} \leq 0, x_{i, j}+x_{j, k}+x_{k, i} \leq 2 \forall i, j, k\right\}$
- $M E T_{n}$ is an LP relaxation of $C U T_{n}$
- $M E T_{n}^{\square}$ is an LP relaxation $C U T_{n}^{\square}$

Directed cut polytope: definition

- Let $S \subseteq\{1, \ldots, n\}$.

Directed cut polytope: definition

- Let $S \subseteq\{1, \ldots, n\}$.
- Define $\delta^{+}(S) \in \mathbb{R}^{n(n-1)}$ by

$$
\delta^{+}(S)(i j)=\left\{\begin{array}{ll}
1 & i \in S, j \notin S \\
0 & \text { otherwise }
\end{array} \quad 1 \leq i \neq j \leq n\right.
$$

Directed cut polytope: definition

- Let $S \subseteq\{1, \ldots, n\}$.
- Define $\delta^{+}(S) \in \mathbb{R}^{n(n-1)}$ by

$$
\delta^{+}(S)(i j)=\left\{\begin{array}{ll}
1 & i \in S, j \notin S \\
0 & \text { otherwise }
\end{array} \quad 1 \leq i \neq j \leq n\right.
$$

- $\delta^{+}(S)$ is the edge-incidence vector of the directed cut [$S, V-S$] in the complete directed graph \vec{K}_{n}.

Directed cut polytope: definition

- Let $S \subseteq\{1, \ldots, n\}$.
- Define $\delta^{+}(S) \in \mathbb{R}^{n(n-1)}$ by

$$
\delta^{+}(S)(i j)=\left\{\begin{array}{ll}
1 & i \in S, j \notin S \\
0 & \text { otherwise }
\end{array} \quad 1 \leq i \neq j \leq n\right.
$$

- $\delta^{+}(S)$ is the edge-incidence vector of the directed cut [S,V-S] in the complete directed graph \vec{K}_{n}.
- The directed cut cone is

$$
D C U T_{n}=\operatorname{Cone}\left\{\delta^{+}(S): S \subseteq V\left(\vec{K}_{n}\right)\right\}
$$

Directed cut polytope: definition

- Let $S \subseteq\{1, \ldots, n\}$.
- Define $\delta^{+}(S) \in \mathbb{R}^{n(n-1)}$ by

$$
\delta^{+}(S)(i j)=\left\{\begin{array}{ll}
1 & i \in S, j \notin S \\
0 & \text { otherwise }
\end{array} \quad 1 \leq i \neq j \leq n\right.
$$

- $\delta^{+}(S)$ is the edge-incidence vector of the directed cut [S,V-S] in the complete directed graph \vec{K}_{n}.
- The directed cut cone is

$$
D C U T_{n}=\operatorname{Cone}\left\{\delta^{+}(S): S \subseteq V\left(\vec{K}_{n}\right)\right\}
$$

- The directed cut polytope is

$$
D C U T_{n}^{\square}=C H\left\{\delta^{+}(S): S \subseteq V\left(\vec{K}_{n}\right)\right\}
$$

Directed cut polyhedra

- $S=\{1,5\}$
- Red edges have value 1, black edges have value 0 in $\delta^{+}(S)$.

$D C U T$ п

S	x_{12}	x_{13}	x_{23}	x_{21}	x_{31}	x_{32}
\emptyset or $\{1,2,3\}$	0	0	0	0	0	0
$\{1\}$	1	1	0	0	0	0
$\{2\}$	0	0	1	1	0	0
$\{3\}$	0	0	0	0	1	1
$\{2,3\}$	0	0	0	1	1	0
$\{1,3\}$	1	0	0	0	0	1
$\{1,2\}$	0	1	1	0	0	0

- There are $2^{n}-1$ vertices.

DCUT ${ }_{n}^{\square}$

S	x_{12}	x_{13}	x_{23}	x_{21}	x_{31}	x_{32}
\emptyset or $\{1,2,3\}$	0	0	0	0	0	0
$\{1\}$	1	1	0	0	0	0
$\{2\}$	0	0	1	1	0	0
$\{3\}$	0	0	0	0	1	1
$\{2,3\}$	0	0	0	1	1	0
$\{1,3\}$	1	0	0	0	0	1
$\{1,2\}$	0	1	1	0	0	0

- There are $2^{n}-1$ vertices.
- What do we do next?

DCUT ${ }_{n}^{\square}$

S	x_{12}	x_{13}	x_{23}	x_{21}	x_{31}	x_{32}
\emptyset or $\{1,2,3\}$	0	0	0	0	0	0
$\{1\}$	1	1	0	0	0	0
$\{2\}$	0	0	1	1	0	0
$\{3\}$	0	0	0	0	1	1
$\{2,3\}$	0	0	0	1	1	0
$\{1,3\}$	1	0	0	0	0	1
$\{1,2\}$	0	1	1	0	0	0

- There are $2^{n}-1$ vertices.
- What do we do next?
- Compute the facets of course!

Linearities and facets for directed cuts

- 3 point symmetries: $x_{i j}+x_{j k}+x_{k i}=x_{j i}+x_{k j}+x_{i k}$
- Triangle inequality: $x_{i j}-x_{i k}-x_{k j} \leq 0$

Linearities and facets for directed cuts

- 3 point symmetries: $x_{i j}+x_{j k}+x_{k i}=x_{j i}+x_{k j}+x_{i k}$
- Non-negativity: $x_{i j} \geq 0$
- Perimeter triangle inequality: $x_{i j}+x_{j k}+x_{k i} \leq 1$

Linearities and facets for directed cuts

- 3 point symmetries: $x_{i j}+x_{j k}+x_{k i}=x_{j i}+x_{k j}+x_{i k}$
- Non-negativity: $x_{i j} \geq 0$
- Triangle inequality: $x_{i j}-x_{i k}-x_{k j} \leq 0$
- Perimeter triangle inequality: $x_{i j}+x_{j k}+x_{k i} \leq 1$

Linearities and facets for directed cuts

- 3 point symmetries: $x_{i j}+x_{j k}+x_{k i}=x_{j i}+x_{k j}+x_{i k}$
- Non-negativity: $x_{i j} \geq 0$
- Triangle inequality: $x_{i j}-x_{i k}-x_{k j} \leq 0$
- Perimeter triangle inequality: $x_{i j}+x_{j k}+x_{k i} \leq 1$

Directed semimetric polyhedra

- The semimetric cone is

$$
\begin{aligned}
D M E T_{n}= & \left\{x \in \mathbb{R}^{n(n-1)}, x_{i j} \geq 0, x_{i j}-x_{i k}-x_{k j} \leq 0\right. \\
& \left.x_{i j}+x_{j k}+x_{k i}=x_{j i}+x_{k j}+x_{i k} \forall i, j, k\right\}
\end{aligned}
$$

Directed semimetric polyhedra

- The semimetric cone is

$$
\begin{aligned}
D M E T_{n}= & \left\{x \in \mathbb{R}^{n(n-1)}, x_{i j} \geq 0, x_{i j}-x_{i k}-x_{k j} \leq 0\right. \\
& \left.x_{i j}+x_{j k}+x_{k i}=x_{j i}+x_{k j}+x_{i k} \forall i, j, k\right\}
\end{aligned}
$$

- The semimetric polytope is

$$
\begin{aligned}
D M E T_{n}^{\square} & =\left\{x \in \mathbb{R}^{n(n-1)}: x_{i j} \geq 0, x_{i j}-x_{i k}-x_{k j} \leq 0\right. \\
x_{i j}+x_{j k}+x_{k i} & \left.=x_{j i}+x_{k j}+x_{i k}, x_{i j}+x_{j k}+x_{k i} \leq 1 \quad \forall i, j, k\right\}
\end{aligned}
$$

Directed semimetric polyhedra

- The semimetric cone is

$$
\begin{aligned}
D M E T_{n}= & \left\{x \in \mathbb{R}^{n(n-1)}, x_{i j} \geq 0, x_{i j}-x_{i k}-x_{k j} \leq 0\right. \\
& \left.x_{i j}+x_{j k}+x_{k i}=x_{j i}+x_{k j}+x_{i k} \forall i, j, k\right\}
\end{aligned}
$$

- The semimetric polytope is

$$
\begin{aligned}
D M E T_{n}^{\square} & =\left\{x \in \mathbb{R}^{n(n-1)}: x_{i j} \geq 0, x_{i j}-x_{i k}-x_{k j} \leq 0\right. \\
x_{i j}+x_{j k}+x_{k i} & \left.=x_{j i}+x_{k j}+x_{i k}, x_{i j}+x_{j k}+x_{k i} \leq 1 \quad \forall i, j, k\right\}
\end{aligned}
$$

- $D M E T_{n}$ is an LP relaxation of $D C U T_{n}$

Directed semimetric polyhedra

- The semimetric cone is

$$
\begin{aligned}
D M E T_{n}= & \left\{x \in \mathbb{R}^{n(n-1)}, x_{i j} \geq 0, x_{i j}-x_{i k}-x_{k j} \leq 0\right. \\
& \left.x_{i j}+x_{j k}+x_{k i}=x_{j i}+x_{k j}+x_{i k} \forall i, j, k\right\}
\end{aligned}
$$

- The semimetric polytope is

$$
\begin{aligned}
D M E T_{n}^{\square} & =\left\{x \in \mathbb{R}^{n(n-1)}: x_{i j} \geq 0, x_{i j}-x_{i k}-x_{k j} \leq 0\right. \\
x_{i j}+x_{j k}+x_{k i} & \left.=x_{j i}+x_{k j}+x_{i k}, x_{i j}+x_{j k}+x_{k i} \leq 1 \quad \forall i, j, k\right\}
\end{aligned}
$$

- $D M E T_{n}$ is an LP relaxation of $D C U T_{n}$
- $D M E T_{n}^{\square}$ is an LP relaxation $D C U T_{n}^{\square}$

Dimension of the directed cut polytope

Lemma
The dimension of $D C U T_{n}^{\square}$ (and $D M E T_{n}^{\square}$) is $\binom{n}{2}+n-1$

- Upper bound: the weight on edge $j i, j>i$, can be recovered from $i j, 1 i, 1 j, i 1, j 1$ and the 3 -point symmetries.

Dimension of the directed cut polytope

Lemma
The dimension of $D C U T_{n}^{\square}$ (and $D M E T_{n}^{\square}$) is $\binom{n}{2}+n-1$

- Upper bound: the weight on edge $j i, j>i$, can be recovered from $i j, 1 i, 1 j, i 1, j 1$ and the 3 -point symmetries.
- Lower bound: a set of $\binom{n}{2}+n-1$ linearly independent cut vectors.

Bijections between the directed and undirected polyhedra

Define the polytopes \mathcal{P}_{1} and \mathcal{P}_{2} to be:

- $\mathcal{P}_{1}=\operatorname{conv}\left\{\delta^{+}(S): 1 \in S \subseteq V(G)\right\}$.
- $\mathcal{P}_{2}=\operatorname{conv}\left\{\delta^{+}(S): 1 \notin S \subseteq V(G)\right\}$.

12,13,21,23,31
$S=\{1,2,3\} \quad(0,0,0,0,0)$
$\mathrm{S}=\{1\} \quad(1,1,0,0,0)$ $\mathrm{S}=\{1,2\} \quad(0,1,0,1,0)$ $\mathrm{S}=\{1,3\} \quad(1,0,0,0,0)$

	$12,13,21,23,31$
$S=\{ \}$	$(0,0,0,0,0)$
$S=\{2\}$	$(0,0,1,1,0)$
$S=\{3\}$	$(0,0,0,0,1)$
$S=\{2,3\}$	$(0,0,1,0,1)$

Bijection between directed and undirected polyhedra

$$
\xi_{1}: \mathbb{R}^{\binom{n}{2}} \rightarrow \mathbb{R}^{\binom{n}{2}+n-1} \text { and } \xi_{2}: \mathbb{R}^{\binom{n}{2}} \rightarrow \mathbb{R}^{\binom{n}{2}+n-1}
$$

The mapping ξ_{1} between $\operatorname{CUT}{ }_{n}^{\square}$ and \mathcal{P}_{1} is defined by,

$$
\begin{cases}x_{i 1}=0 & \text { for } 2 \leq i \leq n \\ x_{1 i}=x_{1, i} & \text { for } 2 \leq i \leq n \\ x_{i j}=\frac{1}{2}\left(x_{i, j}+x_{1, j}-x_{1, i}\right) & \text { for } 2 \leq i<j \leq n .\end{cases}
$$

equivalently,

$$
\begin{cases}x_{1, i}=x_{1 i} & \text { for } 2 \leq i \leq n \\ x_{i, j}=x_{i j}+x_{j i}=x_{1 i}-x_{1 j}+2 x_{i j} & \text { for } 2 \leq i<j \leq n\end{cases}
$$

Bijection example

The above figure is an example for $S=\{1,4\}$.

$$
\begin{aligned}
\xi_{1}(\delta(S)) & =\xi_{1}\left(x_{1,2}, x_{1,3}, x_{1,4}, x_{2,3}, x_{2,4}, x_{3,4}\right) \\
& =\xi_{1}((1,1,0,0,1,1)) \\
& =(1,1,0,0,0,0,0,0) \\
& =\left(x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{31}, x_{34}, x_{41}\right)=\delta^{+}(S)
\end{aligned}
$$

We can define a similar mapping between P_{2} and $\mathrm{CUT}_{n}^{\square}$ and use these bijections to show that.

Theorem

The directed cut polytope is the convex hull of two cut polytopes that only intersect at the origin.
and...

Theorem

If $a^{\top} x \leq 0$ is a facet of the undirected cut cone then:

$$
\sum_{2 \leq i<j \leq n} 2 a_{i, j} x_{i j}+\sum_{i=2}^{n} c_{i 1} x_{i 1}+\sum_{i=2}^{n} b_{1 i} x_{1 i} \leq 0
$$

is a facet of the directed cut cone. Where,

$$
\left\{\begin{array}{lr}
b_{1 i}=0 & \text { for } 2 \leq i \leq n \\
b_{i 1}=a_{1, i}+\sum_{k=2}^{i-1} a_{k, i}-\sum_{j=i+1}^{n} a_{i, j} & \text { for } 2 \leq i \leq n
\end{array}\right.
$$

and

$$
\begin{cases}c_{1 i}=a_{1, i}-\sum_{k=2}^{i-1} a_{k, i}+\sum_{j=i+1}^{n} a_{i, j} & \text { for } 2 \leq i \leq n \\ c_{i 1}=0 & \text { for } 2 \leq i \leq n .\end{cases}
$$

The proof uses the following lemma:
Lemma (YB, Lemma 26.5.2)
Let $v^{\top} x \leq 0$ be facet inducing for $C U T_{n}$ and let $R(v)$ denote its set of roots. Let F be a subset of E_{n}.
If $v_{\bar{F}} \neq 0$, then $\operatorname{rank}\left(R(v)_{F}\right)=|F|$.

Proof of theorem

- The $k=1, \ldots,\binom{n}{2}-1$ roots $\delta\left(S_{j}\right)$ of $v^{\top} x \leq 0$ extend to roots $\delta^{+}\left(S_{j}\right)$ of the cut polytope.

Proof of theorem

- The $k=1, \ldots,\binom{n}{2}-1$ roots $\delta\left(S_{j}\right)$ of $v^{\top} x \leq 0$ extend to roots $\delta^{+}\left(S_{j}\right)$ of the cut polytope.
- We may assume $1 \in S_{j}$ for all j.
whose projections on F are linearly independent.

Proof of theorem

- The $k=1, \ldots,\binom{n}{2}-1$ roots $\delta\left(S_{j}\right)$ of $v^{\top} x \leq 0$ extend to roots $\delta^{+}\left(S_{j}\right)$ of the cut polytope.
- We may assume $1 \in S_{j}$ for all j.
- Let $F=\{1 i: 2 \leq i \leq n\}$. From lemma there are $\delta\left(T_{i}\right)$ $(1 \leq i \leq n-1)$ linearly independent roots of $v^{\top} x \leq 0$ whose projections on F are linearly independent.

Proof of theorem

- The $k=1, \ldots,\binom{n}{2}-1$ roots $\delta\left(S_{j}\right)$ of $v^{\top} x \leq 0$ extend to roots $\delta^{+}\left(S_{j}\right)$ of the cut polytope.
- We may assume $1 \in S_{j}$ for all j.
- Let $F=\{1 i: 2 \leq i \leq n\}$. From lemma there are $\delta\left(T_{i}\right)$ $(1 \leq i \leq n-1)$ linearly independent roots of $v^{\top} x \leq 0$ whose projections on F are linearly independent.
- We may assume $1 \notin T_{i}$ for all i.

Proof of theorem

- The $k=1, \ldots,\binom{n}{2}-1$ roots $\delta\left(S_{j}\right)$ of $v^{\top} x \leq 0$ extend to roots $\delta^{+}\left(S_{j}\right)$ of the cut polytope.
- We may assume $1 \in S_{j}$ for all j.
- Let $F=\{1 i: 2 \leq i \leq n\}$. From lemma there are $\delta\left(T_{i}\right)$ $(1 \leq i \leq n-1)$ linearly independent roots of $v^{\top} x \leq 0$ whose projections on F are linearly independent.
- We may assume $1 \notin T_{i}$ for all i.
- $\delta^{+}\left(T_{i}\right) \cup \delta^{+}\left(S_{j}\right)$ form $\binom{n}{2}+n-2$ linearly independent roots for the new inequality.

Corollary

- The triangle inequalities are facet defining for $D C U T_{n}$. inequality:
is known as a hypermetric inequality. Hvpermetric facets of the cut cone aive facets of the dicut cone.

Corollary

- The triangle inequalities are facet defining for $D C U T_{n}$.
- Let b_{1}, \cdots, b_{n} be an integers that sum to one. The inequality:

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} x_{i, j} \leq 0
$$

is known as a hypermetric inequality.

Corollary

- The triangle inequalities are facet defining for $D C U T_{n}$.
- Let b_{1}, \cdots, b_{n} be an integers that sum to one. The inequality:

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} x_{i, j} \leq 0
$$

is known as a hypermetric inequality.

- Hypermetric facets of the cut cone give facets of the dicut cone:

$$
\begin{aligned}
\sum_{2 \leq i<j \leq n} b_{i} b_{j} x_{i j} & +\sum_{i=1}^{n}\left(b_{1}-\sum_{k=2}^{i-1} b_{k}+\sum_{j=i+1}^{n} b_{j}\right) b_{i} x_{1 i} \\
& +\sum_{i=1}^{n}\left(b_{1}+\sum_{k=2}^{i-1} b_{k}-\sum_{j=i+1}^{n} b_{j}\right) b_{i} x_{i 1} \leq 0
\end{aligned}
$$

- A similar (even more messy) result holds for DCUT $_{n}^{\square}$... but I will spare you the details Using these results we can classify facets of DCUT ${ }_{4}^{\square}$
- A similar (even more messy) result holds for DCUT $_{n}^{\square}$...
- ... but I will spare you the details
- A similar (even more messy) result holds for DCUT $_{n}^{\square}$...
- ... but I will spare you the details
- Using these results we can classify facets of $\mathrm{DCUT}_{4}^{\square}$

DCUT ${ }_{4}^{\square}$

- 31 vertices and 40 facets

12 non-negativity constraints 16 triangle inequalities

$\mathrm{DCUT}_{4}^{\square}$

- 31 vertices and 40 facets
- 12 non-negativity constraints
- 16 triangle inequalities

Six new homogeneous inequalities

$x_{13}+x_{24} \leq x_{12}+x_{34}+x_{14}+x_{23}$

$\mathrm{DCUT}_{4}^{\square}$

- 31 vertices and 40 facets
- 12 non-negativity constraints
- 16 triangle inequalities
- Six new homogeneous inequalities

$x_{13}+x_{24} \leq x_{12}+x_{34}+x_{14}+x_{23}$
- Six new non-hnmnnenenis inenial ties

$\mathrm{DCUT}_{4}^{\square}$

- 31 vertices and 40 facets
- 12 non-negativity constraints
- 16 triangle inequalities
- Six new homogeneous inequalities

$$
x_{13}+x_{24} \leq x_{12}+x_{34}+x_{14}+x_{23}
$$

DCUT ${ }_{4}^{\square}$

- 31 vertices and 40 facets
- 12 non-negativity constraints
- 16 triangle inequalities
- Six new homogeneous inequalities

$$
x_{13}+x_{24} \leq x_{12}+x_{34}+x_{14}+x_{23}
$$

- Six new non-homogeneous inequalities

$$
x_{31}+x_{12}+x_{24} \leq 1+x_{21}
$$

Relaxations for $\operatorname{CUT}(\mathrm{G})$ and $\operatorname{CUT}^{\square}(G)$

- Let G be an undirected graph.

We can optimize over MET(G) and MET $\square(G)$ in polynomial time by setting $c_{i j}=0$ when $i j \notin E(G)$.

Relaxations for CUT(G) and $\operatorname{CUT}^{\square}(G)$

- Let G be an undirected graph.
- We can optimize over MET (G) and $\operatorname{MET}^{\square}(G)$ in polynomial time by setting $c_{i j}=0$ when $i j \notin E(G)$.

$$
\begin{array}{r}
\max \sum_{(i, j)} c_{i j} x_{i j} \\
\text { s.t. } x \in D M E T_{n}^{\square}
\end{array}
$$

Relaxations for $\operatorname{CUT}(\mathrm{G})$ and $\operatorname{CUT}^{\square}(G)$

- Let G be an undirected graph.
- We can optimize over MET (G) and $\operatorname{MET}^{\square}(G)$ in polynomial time by setting $c_{i j}=0$ when $i j \notin E(G)$.

$$
\begin{array}{r}
\max \sum_{(i, j)} c_{i j} x_{i j} \\
\text { s.t. } x \in D M E T_{n}^{\square}
\end{array}
$$

- Is there a compact linear description for MET(G)?

Projecting the triangle inequalities

Theorem (Barahona, Mahjoub, 1986)
Given an arbitrary graph G, the projection of $M E T_{n}$ onto the edge set of G is:
$\operatorname{MET}(G)=\left\{x \in \mathbb{R}_{+}^{E(G)} \quad: \quad x_{e}-x(C \backslash\{e\}) \leq 0\right.$
for each chordless cycle C of $G, e \in C\}$

Integer hull

- Theorem (Seymour 1981, Barahona, Mahjoub, 1986) $\operatorname{CUT}(G)=\operatorname{MET}(G)$ or, equivalently, $\operatorname{CUT}{ }^{\square}(G)=M E T \square(G)$
if and only if
G has no K_{5}-minor.
Do these results generalize to directed graphs?

Integer hull

- Theorem (Seymour 1981, Barahona, Mahjoub, 1986) $\operatorname{CUT}(G)=\operatorname{MET}(G)$ or, equivalently, $\operatorname{CUT}{ }^{\square}(G)=M E T \square(G)$
if and only if
G has no K_{5}-minor.
- Do these results generalize to directed graphs?

Relaxations for $\operatorname{DCUT}(\mathrm{G})$ and $\operatorname{DCUT}(\mathrm{G})^{\square}$

- We can optimize over $\operatorname{DMET}(G)$ and $\operatorname{DMET}^{\square}(G)$ in polynomial time by setting $c_{i j}=0$ when $i j \notin E(G)$.

$$
\begin{array}{r}
\max \sum_{(i, j)} c_{i j} x_{i j} \\
\text { s.t. } x \in D M E T_{n}^{\square}
\end{array}
$$

Relaxations for $\operatorname{DCUT}(\mathrm{G})$ and $\operatorname{DCUT}(\mathrm{G})^{\square}$

- We can optimize over $\operatorname{DMET}(G)$ and $\operatorname{DMET}^{\square}(G)$ in polynomial time by setting $c_{i j}=0$ when $i j \notin E(G)$.

$$
\begin{array}{r}
\max \sum_{(i, j)} c_{i j} x_{i j} \\
\text { s.t. } x \in D M E T_{n}^{\square}
\end{array}
$$

- Is there a compact linear description for $\operatorname{DMET}(G)$?

Projecting the triangle and cycle inequalities

The projection of DMET_{n} onto an arbitrary digraph G is more complex:

$$
\operatorname{DMET}(G)=\left\{x \in \mathbb{R}^{A(G)}: x_{e} \geq 0, \ldots ?\right.
$$

Triangular elimination

- Triangular elimination is a method of zero lifting and Fourier-Motzkin elimination using triangle inequalities [Avis, Imai, Ito, Sasaki '05]
- Can prove large families of inequalities are facet inducing by directed version triangular elimination.

Forbidden graph minors

For a graph G not containing a K_{5} minor [Seymour '81]:

$$
\operatorname{MET}(G)=\operatorname{CUT}(G)
$$

and $M E T^{\square}(G)=C U T^{\square}(G)$ was proved using switching [Barahona, Mahjoub '86]

Forbidden graph minors (directed case)

If G contains any of the following 6 graphs as a "directed minor" then:

$$
\operatorname{DMET}(G) \neq \operatorname{DCUT}(G) \text { and } \operatorname{DMET}^{\square}(G) \neq \operatorname{DCUT}^{\square}(G)
$$

Open problems

- Find compact descriptions for $\operatorname{DMET}(G)$ and $D M E T^{\square}(G)$
- Generalize Seymour's Theorem to directed graphs
- Solve the open pit mining problem with geometric constraints

Open problems

- Find compact descriptions for $\operatorname{DMET}(G)$ and $D M E T^{\square}(G)$
- Generalize Seymour's Theorem to directed graphs

Open problems

- Find compact descriptions for $\operatorname{DMET}(G)$ and $D M E T^{\square}(G)$
- Generalize Seymour's Theorem to directed graphs
- Solve the open pit mining problem with geometric constraints

[^0]: Outline Elackicrop 4 -emboding Hypercubee Conelations Cut Polytape Quantium cornetione Mining

