
First conjecture: a variation on Fejes Tóth’s kissing problem
estimate (1953). Let 14 nonoverlapping balls of diameter 1 be
given with centers Pi, i = 0, . . . , 13. Let

a = 7/
√

27 ≈ 1.347

Is
13∑

i=1

P0Pi ≥ 12 + a ≈ 13.347?
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Let

L(h) =






h0−h
h0−1 h ≤ h0

0 h ≥ h0.

where h0 = 1.26.
Theorem 1 (L12). Let P0, . . . , PN be the centers of N

nonoverlapping balls. Set hi = P0Pi. Then

N∑

i=1

L(hi) ≤ 12.

(If N = 13 and h0 is increased to a, then it becomes Fejes
Tóth’s kissing number conjecture from 1953.)

21
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Theorem 2 (Kepler (1611)). The densest packing of
congruent balls in R3 is attained (non-uniquely) by the
face-centerd cubic packing.

22
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Theorem 3 (Fejes Tóth’s full contact conjecture (1969)). In
3-space a packing of equal balls such that each enclosed ball
is touched by 12 others consists of hexagonal layers.

(The corresponding problem in the plane is trivial. If each unit
disk in the plane touches 6 others then it must be the regular
hexagonal packing of disks.)

23
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Theorem 4 (K. Bezdek’s strong dodecahedral conjecture
(2000)). In every packing of congruent balls in R3, the
surface area of every Voronoi cell is at least that of the
regular dodecahedron.

(The strong dodecahedral conjecture implies the weak
dodecahedral conjecture, which was proved by S.
McLaughlin in 1998, and published last year.)

24
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Theorem 5. The L12 inequality (the variant of FT’s kissing
number estimate from 1953) implies all of the other
conjectures:

1. L12 implies the Kepler conjecture.

2. L12 implies FT’s full contact conjecture.

3. L12 implies the strong dodecahedral conjecture.

25
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L12 as a graph classification theorem. Let V be a packing in
the annulus [2, 2h0] with card(V ) > 12. Let E be the set of
edges {u,v} ⊂ V such that

0 < ‖u− v‖ ≤ 2h0.

and such that
∑

v∈V L(‖v‖/2) > 12. Then (V,E) does not
exist.

30
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Lemma 1. Let V be a packing in R3 in which every
ball touches twelve others. Then for all distinct u,v ∈
V , either ‖u− v‖ = 2 or ‖u− v‖ ≥ 2h0.

Proof. Let u1, . . . ,u12 be the twelve kissing points around
u. Assume that v %= ui,u. By Inequality (L12),

L(‖u− v‖/2)+12 = L(‖u− v‖/2)+
12∑

i=1

L(‖u− ui‖/2) ≤ 12.

This implies that L(‖u− v‖/2) ≤ 0, so ‖u− v‖ ≥
2h0.

28-1
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Definition 1. Let S2 be the sphere of radius 2, centered
at 0. Let V be the set of packings V ⊂ R3 such that

1. card(V ) = 12,

2. V ⊂ S2.

3. ‖u− v‖ ∈ {0, 2} ∪ [2.52, 4] for all u,v ∈ V .

For each V ∈ V , let Ectc be the contact graph on ver-
tex set V ; that is, the set of {u,v} ⊂ V such that
‖u− v‖ = 2.

28-2
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Fejes Tóth’s contact conjecture follows from L12 and
Theorem 6 (contact graph classification theorem). Let
V ∈ V . Then (V,Ectc) is the contact graph of the kissing
configuration of the face-centered cubic or hexagonal-close
packing.

(These two kissing configurations can fill space only when
arranged in hexagonal layers: the HCP has a preferred plane
of symmetry; as soon as one HCP piece occurs, a plane of
HCPs is forced.)

29
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In summary, to prove Fejes Tóth’s contact conjecture, it is
enough to prove two graph classification theorems:

• L12: no graphs with 13 or more vertices satisfy the L12

inequality.

• Only the HCP and FCC contact graphs have 12 vertices
and no edges in the range (2, 2h0).

31
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The proofs of these two classification results differ in detail,
but the high-level structure is the same in both cases.

• Represent graphs purely combinatorially as hypermaps.

• A computer program classifies hypermaps (satisfying
given properties) up to isomorphism.

• Linear programs eliminate the extraneous cases; those
that exist combinatorially but that do not admit a
geometric realization.

• The inequalities used in the linear program are proved by
computer.

32
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13

A hypermap (D, e, n, f) is a finite set D together with three
permutations e, n, f on D such that enf = I .

33



• Hypermaps replace geometric aspects of planar graphs
with purely combinatorial notions.

• All basic notions of planar graphs (planarity,
connectedness, biconnectedness, degrees, of vertices,
edges, Euler characteristic, etc.) can be translated to
hypermaps.

• Hypermaps are more natural for computer algorithms and
proof formalization.

• (Gonthier’s formalization of the 4CT is based on
hypermaps.)

34
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Graph (hypermap) Generation:

• The formalization of the computer program that classifies
planar graphs was the first success of the Flyspeck project
(G. Bauer and T. Nipkow)

• Nipkow visited Pittsburgh in August 2010 to update the
formal proof so that it gives L12 graph classification.

• In doing so, he uncovered a bug in my original code (that
went unexercised in the original proof). The bug was an
uninitialized structure that gets used in symmetry
reductions.

• L12 classification: there are about 25K such graphs.

• Contact graph classification: 8 graphs.

35
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8.2 Contravening Hypermap 217

Any (V ′, φ) ∈ Vn has the desired property. Otherwise, there exists some202

node v′ ∈ V ′
c-iso

in contact isolation that is neither isolated nor surrounded in203

the standard fan. There exist i and j, with i ≤ j such that204

{k : ck(V ′, φ) = c(V ′, φ, v′)} = {k : i ≤ k ≤ j}.

As v′ is not isolated in the standard fan, it follows that c(V ′, φ, v′) ≤ 2h0. As v′205

is not surrounded in the standard fan in the cyclic order on206

{w′ ∈ V ′ : ||w′ − v′ || = c(V ′, φ, v′)},

some azimuth angle is at least π. Thus, there is a direction in which v′ can be207

perturbed that fixes c0, . . . , ci−1, does not decrease ci, . . . , c j−1, and increases208

c j. This is contrary to the defining property of (V
′, φ) ∈ Vn ⊂ V j ⊂ Vi. This209

establishes the claim. !210

Lemma 8.16 [FCDJDOT] Assume that there exists a counterexample to In-211

equality 8.1. Then there also exists a counterexample V to the inequality with212

the following properties:213

1. V ⊂ B is a packing.214

2. L(V) > 12, and no finite packing in B attains a value larger than L(V).215

3. The cardinality of V is thirteen, fourteen, or fifteen.216

4. Every node v is surrounded in the standard fan (V, Estd).217

5. Every node v that is not surrounded in the contact fan (V, Ectc) satisfies218

||v || = 2.219

Proof Assume that a counterexample exists. The set of counterexamplesV ⊂220

B is a compact set. The function L is a continuous function on this compact221

set. Hence, there exists V that maximizes L(V).222

The set V has cardinality thirteen, fourteen, or fifteen (Lemma 6.102). Lemma 8.15223

gives the existence of a counterexample V in which every node is surrounded224

or isolated in the standard fan. By Lemma 6.104, if there are any isolated ver-225

tices in the standard fan, then it is not a counterexample. In fact, every node is226

surrounded in the standard fan.227

A node v that is not surrounded in the contact fan satisfies ||v || = 2. Oth-228

erwise, the counterexample does not maximize L. In fact, the packing that229

replaces v with (1 − ε)v for sufficiently small ε > 0 does better. !230

Definition 8.17 (contravening) [YXISOKH][contravening " contravening]231

A finite packing V is a contravening packing if it satisfies the properties of232

Lemma 8.16. The hypermap hyp(V, Estd) is also said to be contravening when233

V is contravening.234

Notation:
L(V ) =

∑

v∈V

L(‖v‖/2).

B = closed annulus [2, 2h0].

fan = (projective) graph.

surrounded = at least 3 edges, angles < π.
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218 Tame Hypermap

8.3 Contravention is Tame235

This section and the next one prove that every contravening hypermap is tame.236

Let V be a contravening packing with standard fan (V, E) = (V, Estd) and let237

H = hyp(V, E) = (D, e, n, f ) be the hypermap attached to (V, E). The fan (V, E)238

is fully surrounded and a conforming fan by Lemma 5.42. We recall some of239

the properties of conforming fans fromSection 5.3.2. The hypermapH is plain,240

planar, connected, and simple. The set of topological components of Y(V, E) is241

in bijection with the set of faces of H. For each face of H, the corresponding242

componentUF is eventually radial with solid angle243

sol(UF ) = 2π +
∑

x∈F

(azim(x) − π).

Recall that244
∑

F

sol(UF) = 4π.

Recall the map node : F → V that maps each dart to its node: [node ! FST]245

x $→ node(x); x = (node(x), . . .).

Set246

h(x) = ||node(x) ||/2.

Define the weight function

τ(V, E, F) =
∑

x∈F

azim(x)

(

1 +
sol0

π
(1 − L(h(x)))

)

+ (π + sol0) (2 − k(F))

= sol(UF) + (2 − k(F)) sol0 −
sol0

π

∑

x∈F

azim(x)(L(h(x)) − 1)

= sol(UF)

(

1 +
sol0

π

)

−
sol0

π

∑

x∈F

azim(x)(L(h(x))), (8.18)

where sol0 is the solid angle of a spherical equilateral triangle with a side of247

arclength π/3, and k(F) is the cardinality of F. These formulas are equivalent.248

The proof of equivalence rests on the Euler formula for planar hypermaps and249

the solid angle formula for topological components UF . The first expression250

for τ(V, E, F) is particularly convenient because it expresses τ as a sum of251

local contributions from each dart. The main conjecture may be expressed in252

the following alternative form:253

Lemma 8.19 (target) [HRXEFDM] Let V be a contravening packing. Then254

∑

F

τ(V, Estd, F) < 4π − 20 sol0 .

sol0 = 0.55 . . . = area of spherical triangle π/3

37
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7.4 Main Estimate 193

where sol0 = 3 arccos(1/3) − π ≈ 0.551 is the solid angle of a spherical equi-441

lateral triangle of side π/3, and k(F) is the cardinality of F. Let442

τtri(y1, y2, y3, y4, y5, y6) =

3
∑

i=1

ρ(yi) dihi(y1, . . . , y6) − (π + sol0) , (7.41)

where

dih1(y1, y2, y3, y4, y5, y6) = dih(y1, y2, y3, y4, y5, y6),

dih2(y1, y2, y3, y4, y5, y6) = dih(y2, y3, y1, y5, y6, y4), and

dih3(y1, y2, y3, y4, y5, y6) = dih(y3, y1, y2, y6, y4, y5). (7.42)

443

Definition 7.43 (standard, superior, diagonal) [KRACSCQ]Let (V, E) be a fan.444

We write ||ε || for ||v − w || , when ε = {v,w} ⊂ V . We say that ε is standard if445

2 ≤ ||ε || ≤ 2h0.

We say that ε is superior if446

2h0 ≤ ||ε || ≤
√
8.

If v,w ∈ V are distinct, and ε = v,w is not an edge in E, then we call ε a447

diagonal of the fan.448

Theorem 7.44 (main estimate) [JEJTVGB] Let (V, E, F) be a nonreflexive449

local fan (Definition 7.2). We make the following additional assumptions on450

(V, E, F):451

1. () V is a packing. That is, for every v,w ∈ V, if ||v − w || < 2, then452

v = w.453

2. () V ⊂ B.454

3. () For all distinct elements v,w ∈ V, if {v,w} ! E, then455

||v − w || ≥ 2h0.

4. () Let k = card(E) = card(F). Then 3 ≤ k ≤ 6.456

In this context, we have the following conclusions.457

1. Assume k ≥ 4. If every edge of E is standard, then458

τ(V, E, F) ≥ d(k), where d(k) =



























0.206, if k = 4,

0.4819, if k = 5,

0.712, if k = 6.
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194 Local Fan

2. Assume k = 5. Assume that every edge of E is standard. Assume that every459

diagonal ε of the fan satisfies ||ε || ≥
√
8. Then460

τ(V, E, F) ≥ 0.616.

3. Assume k = 5. Assume there exists some superior edge in E and that the461

other four are standard. Then462

τ(V, E, F) ≥ 0.616.

4. Finally, assume that k = 4. Assume that there exists some superior edge in463

E and that the other three are standard. Then464

τ(V, E, F) ≥ 0.477.

There are two related inequalities that we will prove separately. For that465

reason, we state them as a separate lemma.466

Lemma 7.45 [HGDRXAN]Under the same hypotheses on (V, E, F),467

1. Assume k = 3. Then468

τ(V, E, F) ≥ 0.

2. Assume k = 4. Assume that every edge of E is standard. Assume that both469

diagonals ε of the fan satisfy ||ε || ≥ 3. Then470

τ(V, E, F) ≥ 0.467.

The proof of the main estimate occuplies the rest of the chapter. We refer to471

the first conclusion as the standard main estimate.472

The main estimate and Lemma 7.45 are obtained by computer calculation,473

proving nonlinear inequalities by interval arithmetic. Two difficulties arise in474

the proof of the main estimate. First, nonlinear optimization is in general NP475

hard; and our calculations in particular rapidly become more difficult to carry476

out as the dimension increases. When k = 3, the set V = {v1, v2, v3} is 6477

dimensional (9 spacial coordinates minus a three-dimensional group of rota-478

tional symmetries). These calculations in six dimensions are relatively simple.479

However, by the time k = 6, the dimension of V has reached 15, which is far480

beyond our computational capacity. We are forced to prove a series of lem-481

mas, showing that any configuration (V, E, F) that minimizes τ lies in an ex-482

plicit low-dimensional subset of this set of local nonreflexive fans, where low-483

dimensional means anything small enough to be treated directly by a computer484

calculation.485

The second source of difficulty comes from numerical instabilities. For nu-486

merical stability, we insist on using analytic functions on compact domains.487
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7.4 Main Estimate 193
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212 Tame Hypermap

Definition 8.4 (b) [OOVCYPI] [b ! b tame] Define b : N2 → R by64

b(p, q) = tgt, except for the values in the following table:65

q = 0 1 2 3 4

p = 0 tgt tgt tgt 0.618 0.97

1 tgt tgt 0.656 0.618 tgt

2 tgt 0.797 0.412 1.2851 tgt

3 tgt 0.311 0.817 tgt tgt

4 0.347 0.366 tgt tgt tgt

5 0.04 1.136 tgt tgt tgt

6 0.686 tgt tgt tgt tgt

7 1.450 tgt tgt tgt tgt

66

Definition 8.5 (d) [BTDOPPJ] [d ! d tame] Define d : N→ R by67

d(k) =























































0 k ≤ 3,
0.206 k = 4,

0.4819 k = 5,

0.7578 k = 6,

tgt = 1.541 otherwise.

68

Definition 8.6 (weight assignment) [DUSOAYQ][admissible ! admissible weight]69

[total weight ! total weight]A weight assignment of a hypermapH70

is a real-valued function τ on the set of faces of H. A weight assignment τ is71

admissible if the following properties hold:72

1. ( ) [0.63 ! a tame] [ ! adm 3] Let v be any node of type73

(5, 0, 1) and let A be the set of triangles meeting that node. Then74

∑

F∈A

τ(F) ≥ 0.63.

2. ( ) [ ! adm 2] If a node v has type (p, q, 0), then75

∑

F: v∩F!∅

τ(F) ≥ b(p, q).

3. ( ) [ ! adm 1] If the face F has cardinality k, then τ(F) ≥ d(k).76

The sum
∑

F τ(F) (over all faces) is called the total weight.77
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8.2 Contravening Hypermap 213

8.1.2 hypermap property78

Definition 8.7 (tame) [YOHGLNA] [tame ! tame hypermap] A hyper-79

map is tame if it satisfies the following conditions:80

1. () [ ! tame 1] The hypermap is plain and planar.81

2. () [ ! tame 2] The hypermap is connected and simple. In partic-82

ular, each intersection of a face with a node contains at most one dart.83

3. () [ ! tame 3] The edge map e has no fixed points.84

4. ( ) [ ! tame 4] The two darts of each edge lie in different nodes.85

5. (  ) [ ! tame 5a] At most one edge meets any two (not86

necessarily distinct) nodes.87

6. ( ) [ ! tame 8] The hypermap has at least three faces.88

7. ( ) [ ! tame 9a] The cardinality of each face is at least three and89

at most six.90

8. ( ) [ ! tame 10] There are thirteen, fourteen, or fifteen nodes.91

9. ( ) [ ! tame 11a] The cardinality of every node is at least three92

and at most seven.93

10. ( ) [ ! tame 12o] If a node has type (p, q, r) with p+q+r ≥ 694

and r ≥ 1, then (p, q, r) = (5, 0, 1).95

11. () [ ! tame 13a] There exists an admissible weight assignment96

of total weight less than the target, tgt = 1.541.97

8.2 Contravening Hypermap98

8.2.1 standard fan99

Let [Estd ! ESTD] [Ectc ! ECTC]

Estd = {{v,w} ⊂ V : 0 < ||v − w || ≤ 2h0}, (8.8)

Ectc = {{v,w} ⊂ V : ||v − w || = 2} ⊂ Estd. (8.9)

Lemma 8.10 [UBHDEUU] Let V ⊂ B be a packing. If E = Estd or E = Ectc,100

then (V, E) is a fan.101

Definition 8.11 [SUZCOOW] The fans (V, Estd) and (V, Ectc) are called the102

standard fan and the contact fan, respectively.103

Proof (V, Estd) is a fan by Lemma 8.12. Since Ectc ⊂ Estd, it follows from104

Lemma 5.3 that (V, Ectc) is a fan. "105
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224 Tame Hypermap

Proof By definition, a tame hypermap is nonempty, connected, plain, planar,377

and simple. The edge and node maps have no fixed points. The cardinality of378

every face is at least three. These are also precisely the defining properties of379

a restricted hypermap. !380

8.5 Linear Programs381

This is a short section, but it represents a major part of the proof of the Ke-382

pler conjecture. It is short only because the calculations are better expressed383

as computer code than as published text. The code appears at the project web-384

site [22]. Appendix ?? gives details about the computational methods that have385

been used.386

The classification result in this section is one of the main results of this book.387

All of the work to prove the classification algorithm has been completed in the388

chapter on hypermaps. A list of hypermaps appears at [22]. The following389

theorem has been established by executing a computer program that generates390

tame hypermaps. Further details about this program appear in the Appendix ??.391

392

Theorem 8.37 [WTEMDTA] Every tame hypermap is isomorphic to a hyper-393

map in the list [22] or is isomorphic to the opposite of a hypermap in the list.394

395

Because of this classification, we may attach an explicit linear program to396

each tame hypermap. For each tame hypermapH there is a configuration space397

D(H) of all finite packings V ⊂ B, the standard fan of which is isomorphic to398

H.399

A nonlinear optimization problem asks for the maximum of400

∑

v∈V

L( ||v ||/2) (8.38)

over all V ∈ D(H).401

The linear program comes as a linear relaxation of this nonlinear optimiza-402

tion problem on D(H). That is, the optimal solution of the linear program has403

value at least as great as the corresponding nonlinear problem. By showing that404

the value of each linear program is at most 12, we conclude that the maximum405

of (8.38) is at most 12.406

Theorem 7. Every (preprocessed) counterexample (V,Estd)
has a tame hypermap.

38

This classification completes the first part of the proof of L12.
The second part of the proof of L12 uses linear programs to
eliminate all 25K hypermaps.

39
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80 Appendix B — Results of Running the Basic LPs

# Inconsistent Time
1 Yes 15.4
2 Yes 21.9
3 Yes 17.6
4 Yes 39.8
5 Yes 19.4
6 Yes 23.1
7 Yes 26.9
8 Yes 24.3
9 Yes 41.5

10 Yes 40.7
11 Yes 37.7
12 Yes 30.4
13 Yes 30.9
14 Yes 47.3
15 Yes 53.5
16 Yes 66.8
17 Yes 56.1
18 ? 47.3
19 Yes 15.9
20 Yes 12.7
21 Yes 20.0
22 Yes 20.8
23 Yes 22.9
24 Yes 23.6
25 Yes 24.3
26 Yes 21.0
27 Yes 21.6
28 Yes 18.0
29 Yes 18.6
30 Yes 21.6
31 Yes 20.6
32 Yes 22.5
33 Yes 19.8
34 Yes 20.6
35 Yes 21.9
36 ? 19.8
37 Yes 21.6
38 Yes 21.6
39 Yes 23.9
40 Yes 22.9
41 Yes 19.2
42 Yes 25.8
43 Yes 22.7
44 Yes 23.0
45 Yes 19.7
46 Yes 27.4
47 Yes 18.2
48 Yes 21.3
49 Yes 22.4
50 Yes 22.0
51 Yes 20.9
52 Yes 18.2
53 Yes 18.8
54 Yes 20.0
55 Yes 20.3
56 Yes 20.9
57 Yes 18.5
58 Yes 19.9
59 Yes 18.0
60 Yes 17.3
61 ? 19.4
62 ? 19.2
63 Yes 19.7
64 Yes 23.4
65 Yes 19.4
66 Yes 23.4
67 Yes 22.8
68 Yes 19.7
69 Yes 23.5
70 Yes 24.0
71 Yes 24.7
72 Yes 19.8
73 Yes 21.6
74 Yes 25.9
75 Yes 27.1
76 Yes 17.6
77 Yes 28.7
78 ? 26.1
79 Yes 23.3
80 Yes 18.3
81 ? 28.3
82 Yes 22.2
83 Yes 25.4
84 Yes 18.8
85 Yes 25.4
86 Yes 26.0
87 Yes 21.9
88 Yes 25.0
89 ? 26.9
90 ? 27.5
91 ? 19.4
92 Yes 23.5
93 Yes 26.0
94 Yes 25.3
95 Yes 40.4
96 Yes 25.1
97 Yes 22.6
98 Yes 18.7
99 Yes 22.2

100 Yes 18.0

# Inconsistent Time
101 Yes 18.7
102 Yes 19.9
103 Yes 24.0
104 Yes 18.1
105 Yes 23.8
106 Yes 25.0
107 Yes 21.1
108 Yes 18.4
109 Yes 24.2
110 Yes 25.6
111 Yes 18.8
112 Yes 23.6
113 Yes 26.0
114 Yes 19.4
115 Yes 18.1
116 Yes 23.4
117 Yes 18.3
118 Yes 29.3
119 Yes 23.7
120 Yes 17.8
121 Yes 22.9
122 Yes 23.9
123 Yes 25.9
124 Yes 25.6
125 Yes 23.5
126 Yes 26.0
127 Yes 26.7
128 Yes 24.5
129 Yes 20.4
130 Yes 20.4
131 Yes 18.4
132 Yes 28.1
133 ? 19.8
134 Yes 27.2
135 Yes 26.2
136 Yes 21.3
137 Yes 24.7
138 ? 20.6
139 Yes 19.3
140 ? 19.7
141 Yes 22.8
142 Yes 27.7
143 ? 18.5
144 Yes 22.4
145 ? 21.0
146 ? 19.6
147 Yes 31.5
148 Yes 17.7
149 Yes 18.7
150 Yes 21.7
151 Yes 21.7
152 Yes 26.0
153 Yes 28.2
154 Yes 21.2
155 Yes 24.6
156 Yes 23.2
157 Yes 23.6
158 ? 20.1
159 Yes 29.4
160 Yes 19.8
161 Yes 17.8
162 Yes 21.2
163 Yes 19.9
164 Yes 26.8
165 ? 28.0
166 Yes 25.2
167 Yes 25.2
168 Yes 28.3
169 Yes 27.4
170 Yes 27.9
171 Yes 17.9
172 Yes 32.4
173 Yes 17.8
174 Yes 18.0
175 ? 22.0
176 Yes 25.6
177 Yes 22.9
178 Yes 25.8
179 Yes 17.8
180 Yes 22.2
181 Yes 24.6
182 Yes 28.5
183 Yes 20.4
184 Yes 21.9
185 Yes 23.1
186 Yes 25.8
187 Yes 30.3
188 Yes 28.4
189 Yes 27.0
190 Yes 18.3
191 Yes 25.9
192 Yes 20.4
193 Yes 24.7
194 Yes 30.7
195 Yes 27.6
196 Yes 25.6
197 ? 23.6
198 Yes 20.5
199 Yes 19.8
200 Yes 20.8

# Inconsistent Time
201 Yes 21.4
202 Yes 24.1
203 Yes 18.2
204 Yes 30.0
205 Yes 26.1
206 Yes 27.2
207 Yes 26.1
208 Yes 31.8
209 Yes 25.1
210 Yes 28.3
211 Yes 25.8
212 Yes 27.7
213 Yes 22.3
214 Yes 21.0
215 Yes 29.4
216 Yes 29.9
217 Yes 26.6
218 Yes 29.5
219 Yes 26.4
220 Yes 26.4
221 Yes 27.0
222 Yes 35.0
223 Yes 31.7
224 Yes 29.1
225 Yes 21.2
226 Yes 24.1
227 Yes 25.2
228 Yes 32.6
229 Yes 22.7
230 Yes 27.0
231 Yes 26.8
232 Yes 28.7
233 Yes 28.8
234 Yes 32.3
235 Yes 29.1
236 Yes 28.6
237 Yes 26.7
238 Yes 31.1
239 Yes 30.0
240 Yes 30.8
241 Yes 35.9
242 Yes 21.8
243 Yes 30.4
244 Yes 17.6
245 Yes 23.1
246 Yes 28.1
247 Yes 27.5
248 Yes 31.7
249 Yes 27.2
250 Yes 30.5
251 Yes 24.3
252 Yes 21.3
253 Yes 18.9
254 Yes 22.4
255 Yes 18.2
256 ? 22.8
257 Yes 17.8
258 Yes 19.0
259 Yes 26.9
260 Yes 18.9
261 Yes 24.4
262 Yes 26.4
263 Yes 21.7
264 Yes 26.9
265 Yes 29.1
266 Yes 25.5
267 Yes 24.0
268 Yes 23.9
269 Yes 22.8
270 Yes 17.6
271 Yes 27.0
272 Yes 22.2
273 Yes 19.5
274 Yes 22.9
275 Yes 25.6
276 Yes 26.6
277 Yes 25.4
278 Yes 27.8
279 Yes 27.8
280 Yes 25.3
281 Yes 27.2
282 Yes 28.5
283 Yes 23.5
284 Yes 25.4
285 Yes 27.2
286 Yes 28.1
287 Yes 30.4
288 Yes 24.8
289 Yes 22.7
290 Yes 25.9
291 Yes 28.5
292 Yes 30.3
293 Yes 22.7
294 Yes 24.9
295 Yes 30.1
296 Yes 23.5
297 Yes 23.7
298 Yes 22.7
299 Yes 28.0
300 Yes 28.7

# Inconsistent Time
301 Yes 26.4
302 Yes 28.4
303 Yes 27.0
304 Yes 26.7
305 Yes 30.9
306 Yes 20.1
307 Yes 24.7
308 Yes 32.6
309 Yes 21.0
310 Yes 36.2
311 Yes 32.9
312 Yes 31.1
313 Yes 30.0
314 Yes 32.3
315 Yes 36.4
316 Yes 17.9
317 Yes 17.6
318 Yes 22.1
319 Yes 18.2
320 Yes 19.3
321 Yes 22.8
322 Yes 16.0
323 Yes 20.0
324 Yes 22.6
325 Yes 18.9
326 Yes 17.7
327 Yes 20.9
328 Yes 16.1
329 Yes 17.8
330 Yes 20.7
331 Yes 20.4
332 Yes 27.3
333 Yes 19.1
334 Yes 21.2
335 Yes 19.9
336 Yes 18.0
337 Yes 18.7
338 Yes 19.7
339 Yes 18.3
340 Yes 18.8
341 Yes 21.3
342 Yes 18.2
343 Yes 17.6
344 Yes 17.8
345 Yes 21.5
346 Yes 18.7
347 Yes 18.8
348 Yes 20.3
349 Yes 25.6
350 Yes 27.3
351 Yes 22.6
352 Yes 21.5
353 Yes 25.0
354 Yes 25.2
355 Yes 28.4
356 Yes 20.0
357 Yes 19.5
358 Yes 18.8
359 Yes 23.8
360 Yes 16.8
361 Yes 17.8
362 Yes 18.7
363 Yes 17.3
364 Yes 19.9
365 Yes 19.1
366 Yes 19.3
367 Yes 16.1
368 Yes 19.4
369 ? 24.5
370 Yes 18.3
371 Yes 18.2
372 Yes 19.1
373 Yes 19.7
374 Yes 18.0
375 Yes 21.6
376 Yes 18.2
377 Yes 19.8
378 Yes 19.4
379 Yes 20.3
380 Yes 20.9
381 Yes 23.5
382 Yes 20.5
383 Yes 22.8
384 Yes 18.7
385 Yes 31.9
386 Yes 22.8
387 Yes 25.5
388 Yes 21.2
389 Yes 19.2
390 Yes 25.6
391 Yes 26.5
392 Yes 25.1
393 Yes 21.0
394 Yes 25.2
395 Yes 23.4
396 Yes 18.8
397 Yes 24.9
398 Yes 25.3
399 Yes 24.1
400 Yes 24.2

# Inconsistent Time
401 Yes 24.9
402 Yes 26.7
403 Yes 24.1
404 Yes 21.5
405 Yes 25.3
406 Yes 27.0
407 Yes 27.3
408 Yes 19.1
409 Yes 23.5
410 Yes 19.6
411 Yes 31.9
412 Yes 23.2
413 Yes 24.0
414 Yes 25.2
415 Yes 23.5
416 Yes 23.2
417 Yes 20.6
418 Yes 21.7
419 Yes 22.7
420 Yes 22.1
421 Yes 19.0
422 Yes 22.5
423 Yes 22.1
424 Yes 25.4
425 Yes 24.0
426 Yes 20.3
427 Yes 25.0
428 Yes 20.9
429 Yes 24.2
430 Yes 22.8
431 Yes 24.0
432 Yes 19.8
433 Yes 20.1
434 Yes 23.8
435 Yes 18.5
436 Yes 24.9
437 Yes 25.6
438 Yes 23.6
439 Yes 20.8
440 Yes 19.1
441 Yes 21.4
442 Yes 18.8
443 Yes 20.2
444 Yes 18.7
445 Yes 19.8
446 Yes 19.7
447 Yes 24.7
448 Yes 24.2
449 Yes 27.3
450 Yes 26.9
451 Yes 24.2
452 Yes 23.0
453 Yes 26.1
454 Yes 20.3
455 Yes 21.2
456 Yes 27.5
457 Yes 25.3
458 Yes 25.0
459 Yes 23.6
460 Yes 23.3
461 Yes 27.2
462 Yes 25.1
463 Yes 20.8
464 Yes 29.2
465 Yes 27.6
466 Yes 35.8
467 Yes 23.8
468 Yes 19.9
469 Yes 17.9
470 Yes 25.2
471 Yes 28.3
472 Yes 25.7
473 Yes 24.6
474 Yes 27.3
475 Yes 24.2
476 Yes 25.6
477 Yes 25.1
478 Yes 24.5
479 Yes 19.1
480 Yes 19.0
481 Yes 23.0
482 Yes 19.5
483 Yes 18.3
484 Yes 15.1
485 Yes 15.2
486 Yes 16.8
487 Yes 18.7
488 Yes 16.6
489 Yes 15.4
490 Yes 16.1
491 Yes 17.2
492 Yes 16.9
493 Yes 16.7
494 Yes 14.1
495 Yes 14.2
496 Yes 18.0
497 Yes 17.8
498 Yes 15.9
499 Yes 18.2
500 Yes 19.1
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A P P E N D I X B

Results of Running the Basic LPs

In this appendix we list our results of running our methods on the archive of
tame graphs. For each tame graph, we assumed that it forms a graph system. By
generating the corresponding basic linear program and trying to prove it infeasible
we tried to show that this assumption was false. Our results are presented in tables
of the following format:

# Inconsistent Time

The ’#’ column contains the number of the tame graph that has been examined.
The numbering is chosen to correspond to the order of the tame graphs listed in [22].
A tame graph is in class n if all of its faces have at most n edges and there is at least
one face with n edges. Class 3 ranges from #1 to #20, class 4 from #21 to #943, class
5 from #944 to #2488, class 6 from #2489 to #2726, class 7 from #2727 to #2749, and
class 8 from #2750 to #2771.

The ’Inconsistent’ column says ’Yes’ if we have successfully shown the infeasi-
bility of the basic linear program induced by the tame graph, and therefore shown
the inconsistency of the corresponding graph system. If it says ’?’, we only know
that our methods failed on this graph.

Finally, the ’Time’ column tells us how many minutes the examination of the
tame graph lasted. We used the SML mode of the HOL Computing Library. Each
tame graph has been examined by its own Isabelle process. Each Isabelle process
ran on a dedicated processor of a cluster of 32 four processor 2.4GHz Opteron 850
machines with 8 GB RAM per machine. The quickest process needed 8.4 minutes,
the slowest 67. The examination of all tame graphs took about 7.5 hours of cluster
runtime. This corresponds to about 40 days on a single processor machine.

We were able to prove the inconsistency of 2565 of the graph systems, and failed
on 206. This yields a success rate of about 92.5%.  

Fejes Toth at Fields
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The current approach

• The linear programming is done in GLPK.

• There is an AMPL model that is indpendent of the

hypermap. (It is the same model for all 25, 000

hypermaps.)

• There is a OCAML generated AMPL data file for each

linear program.
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Subdivision

• Subdivision of a problem that is already linear causes a

needless blowup in the number of cases.

• An intelligent scheme for subdivision of the problem

should be based on the location of the nonlinearities.
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Our approach is to compute all of the dihedral angles (based

on optimal edge lengths returned by the linear program) and

compare them to the linearized dihedral angles.

The angles are ranked by the size of the error.

Each angle is attached a weight, according to the number of

subdivisions that have already occurred at that angle.

The angle with the largest weight error is used for

subdivision.
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Adding new inequalities

• Several programs are used (all automated).

• A mathematica procedure based on heuristics is used to

generate a candidate inequality.

• The inequality is shipped to cfsqp for testing by nonlinear

optimization methods.

• A formal specification is automatically generated in HOL

Light.

• The AMPL model is automatically updated with the new

inequality. (The inequality is added to all linear

programs.)
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• This work was all informal, but done with formalization
in mind.

• At this point A. Solovyev took over the project and began
to formalize the linear programming.

• He implemented linear program checking inside HOL
Light.

• He optimized real arithmetic calculations inside HOL
Light.

• He can now make a formal verification of a large-scale
linear program in about 3 seconds. (Read/write
operations rather than real arithmetic dominate the times.)

• Compare Obua’s benchmarks of about 20 minutes per LP,
even when performing real arithmetic outside the proof
assistant.

40
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7

It is well-known that (V, Ectc) is a planar graph for all V ∈ V. The complement in
R3 of the union of cones

{su + tv : s ≥ 0, t ≥ 0}, {u, v} ∈ Ectc,

is the union of finitely many connected components UF . We write sol(UF) for the solid
angle of UF at the origin. Their solid angles sum to 4π:

4π =
∑

UF

sol(UF).

When V ∈ V, each UF is bounded by a finite number k(UF) ∈ N of cones. Write

τ(V, Ectc, F) = sol(UF) + (2 − k(UF)) sol0,

where sol0 is the solid angle of an equilateral spherical triangle on the unit sphere of
side π/3.

Using Lexell theorem, we obtain lower bounds on the function τ(V, Ectc, F) as a
function of k(F). This is used to constrain the combinatorial possibilities of the graph.
A computer search is made of all planar graphs satisfying the combinatorial properties
obtained from the study of τ. As it turns out, there are only eight possibilities. Two of
the eight possibilities are the HCP and FCC. Five of the six are subsequently eliminated
with linear programming inequalities.

The final case is the graph shown in Figure 1. It is eliminated with the following
observations. The perimeter of a hexagon with sides π/3 is 2π. However, the hexagons
in the graph are nonreflexive, and 2π is a strict upper bound on the perimeter of a
nonreflexive hexagon. Thus, this case does not admit a geometric realization as a contact
graph. Fejes Tóth’s contact conjecture ensues.

Fig. 1. This planar graph is not a contact graph.

References
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232 Further Results

Theorem 9.19 (main estimate) [VGJDQJV] Let V be a packing in S 2(2), E a181

set of edges, and F a face of hyp(V, E) such that (V, E, F) is a local fan (but not182

necessarily nonreflexive). Assume that F has at least three darts Assume that183

every edge in E has length at most 3. Let S be a subset of E such that the length184

of every edge in S is at least 2.52. Let U = UF be the topological component185

of Y(V, E) corresponding to F. Assume that if {u, v} ⊂ V with C0{u, v} ⊂ U,186

then ||u − v || ≥ 2.52. Let r = card(E \ S ) and s = card(S ). Then187

τ(V, E, F) ≥ min(d(r, s), tgt),

where188

d(r, s) =















0.103(2− s) + 0.2759(r + 2s − 4), r + 2s > 3

0, r + 2s ≤ 3.

Proof This proof imitates the proof of the main estimate from [23]. (Compare189

Chapter 7.)190

For a contradiction, let the local fan (V, E, F, S ) violate the given inequality.191

Among all counterexamples to the theorem, we may assume that (V, E, F, S )192

is a counterexample that minimizes k = r + s. Let kmin be the smallest value193

attained.194

There exists a counterexample that minimizes195

τ(V, E, F) −min(d(r, s), tgt) (9.20)

among all counterexamples that have parameters that satisfy kmin = k. Indeed,196

a compactness argument shows that a sequence tending to the minimum value197

has a convergent subsequence. (Compare Lemma 7.60 and Lemma 7.56.)198

Wemay assume that the counterexample (V, E, F, S ) is minimal in this sense.199

In a minimal counterexample, all edges of length at least 2.52 belong to S .200

Indeed, d(r − 1, s + 1) > d(r, s).201

A minimal counterexample (V, E, F, S ) does not have any edges {u, v} ⊂ V,
satisfying C0{u, v} ⊂ U and ||u − v || ≤ 3. Otherwise, {u, v} may be added to
the edge set of the fan to slice F into two faces F1 and F2. The constants d(r, s)

are additive under slicing For some constants d1 and d2,

d(r, s) = d1(2 − s) + d2(r + 2s − 4)

= d1(2 − s′) + d2(r′ + 2s′ − 4) + d1(2 − s′′) + d2(r′′ + 2s′′ − 4)

= d(r′, s′) + d(r′′, s′′). (9.21)

Because of this additivity, one of the two faces F1 or F2 is a counterexample202

as well with a small parameter: k(F1), k(F2) < kmin = k(F). This is contrary to203

the assumed minimality of k.204
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236 Further Results

Proof Up to a null set (given by the finite union of blades C0(ε) for ε ∈286

EV \Ectc), the regionU is the union of topological componentsUF of Y(V, EV),287

which are in bijection with the faces F of hyp(V, EV). The function τ(U) is288

additive:289

τ(U) =
∑

UF⊂U

τ(V, EV , F). (9.28)

By the biconnectedness of (V, EV), each value τ(V, EV , F) is the same be-290

fore and after localization. Lemma 9.19 gives a lower bound on the constants291

τ(V, EV , F). The constants d(rU , sU) are superadditive:292

d(rU , sU) ≤
∑

UF⊂U

d(r(F)), s(F)),

where s(F) is the cardinality of the set of edges of EV \ Ectc that meet F, and293

r(F) = card(F) − s(F). Thus, the lower bound on τ(U) follows from the main294

estimate (Lemma 9.19). !295

Lemma 9.29 [UCEUZYO] Let V ∈ V′. Then296

∑

U∈[Y(V,Ectc )]

τ(U) = (4π − 20 sol0)

Proof For a packing of twelve points V ⊂ S 2(2), we have 12 = L(V). From297

this equality, following (8.20), we have298

∑

τ(V, Ectc, F) = (4π − 20 sol0).

The result follows by additivity (9.28). !299

Recall from Remark 8.22 that the constant tgt is slightly larger than (4π −300

20 sol0). The constants d(rU , sU ) are nonnegative, so that τ(U) is as well. This301

means that for every subset A of [Y(V, Ectc)], we have302

∑

U∈A

τ(U) < tgt. (9.30)

Lemma 9.31 (biconnected) [BTZPFMU] Let V ∈ V. Then hyp(V, Ectc) is303

biconnected.304

Proof By Lemma 9.23, we may replace V with a new set in V if necessary305

so that (V, EV) is a biconnected fan. We show that the smaller fan (V, Ectc) is306

also biconnected.307

Let U be a topological component of Y(V, Ectc). Lemma 9.27 implies that308

τ(U) ≥ min(d(rU , sU), tgt).309

If mU ≤ 5, then DU is a simple face. Otherwise, either DU is a face that is310

not simple, or it consists of more than one face. Either way, some node v lies in311
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238 Further Results

Definition 9.33 (d) [VUJQZCG]Define d : N→ R by340

d(k) =



























0, k ≤ 3,
0.206 + 0.2759(k − 4), k = 4, . . . , 8,

tgt, k > 8.

The function d is related to the two-variable function in Lemma 9.19: d(k) =341

d(k, 0), when 4 ≤ k ≤ 8.342

Definition 9.34 (weight assignment) [GLIQSFM]Recall that a weight assign-343

ment on a hypermap H is a function τ on the set of faces of H taking values in344

the set of nonnegative real numbers. A weight assignment τ is a contactweight345

assignment if the following two properties hold:346

1. If the face F has cardinality k, then τ(F) ≥ d(k).347

2. If a node v has type (p, q, 0), then348

∑

F: v∩F!∅

τ(F) ≥ b(p, q).

The sum
∑

F τ(F) is called the total weight of τ.349

Definition 9.35 (tame contact) [XJPQTIV] A hypermap has tame contact if350

it satisfies the following conditions:351

1. () The hypermap is plain and planar.352

2. () The hypermap is biconnected. In particular, each face meets353

each node in at most one dart.354

3. () The edge map e has no fixed points.355

4. ( ) The two darts of each edge lie in different nodes.356

5. (  ) At most one edge meets any two given nodes.357

6. ( ) The hypermap has at least two faces.358

7. ( ) The cardinality of each face is at least three and at most eight.359

8. ( ) The hypermap has twelve nodes.360

9. ( ) The cardinality of every node is at least two and at most four.361

10. () There exists a contact weight assignment of total weight less than362

tgt.363

Theorem 9.36 [ZXZSVPH] The contact hypermap of a packing V ∈ V is a364

hypermap with tame contact.365

Proof It is enough to go through the list of properties that define a tame con-366

tact hypermap and to verify that the contact hypermap satisfies each one. We367

use the weight assignment F '→ τ(V, Ectc, F).368
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240 Further Results

Proof The interior angles of a spherical polygon in the contact graph have397

the following lower αk and upper bounds βk, as a function of the number of398

sides k.399

k αk βk
3 azim(2, 2, 2, 2, 2, 2) azim(2, 2, 2, 2, 2, 2)

4 azim(2, 2, 2, 2.52, 2, 2) 2 azim(2, 2, 2, 2, 2.52, 2)

≥5 azim(2, 2, 2, 2.52, 2, 2) 2π.

(9.38)

Thus,400

pα3 + qα4 + r α5 ≤ 2π ≤ p β3 + q β4 + r β5.

There are no solutions for (p, q, r) in natural numbers when p + q + r ≥ 5 and401

only the three given solutions in (p, q, r) with r = 0. !402

9.2.4 classification403

The website for the computer code contains a list of eight hypermaps that have404

been obtained by running the classification algorithm with the tame contact405

parameters [22].406

Lemma 9.39 (tame hypermap classification) [AZYOJBE] Every hypermap407

with tame contact is isomorphic to a hypermap in the given list of eight hyper-408

maps, or is isomorphic to the opposite of a hypermap in the list.409

Proof By a computer calculation7 [22], the set of all hypermaps has been410

classified by the same algorithm described in Section 8.5. !411

Lemma 9.40 [MWWSZTX] Let V ∈ V. Suppose that H = hyp(V, Ectc) is a412

hypermap with tame contact. Then H is the FCC or HCP contact hypermap.413

Proof The explicit enumeration of hypermaps with tame contact has eight414

cases. Two are the hypermaps of the FCC and HCP. The remaining six must be415

eliminated. A geometrical argument eliminates one of these cases and linear416

programming eliminates the other five.417

One case with a hexagonal cannot be realized geometrically as a contact fan418

(Figure 9.1). Indeed, the perimeter of a hexagon with sides π/3 is 2π. However,419

the hexagons are nonreflexive, and 2π is a strict upper bound on the perimeter420

of a nonreflexive hexagon. Thus, this case does not exist.421

There are some linear programming constraints that are immediately avail-422

able to us:423

1. The angles around each node sum to 2π.424
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Figure 9.1 This hypermap is not a contact fan.

2. Each angle of a triangle is α3.425

3. Each angle of each rhombus lies between α4 and β4.426

4. The opposite angles of each rhombus are equal.427

By a linear programming computer calculation8 [22], these systems of con-428

straints are infeasible in the remaining five cases. !429

Lemma 9.41 [YRTPQXK] Let V ∈ V be a packing such that hyp(V, Ectc) is430

isomorphic to the FCC or HCP contact hypermap. Then V is congruent to the431

FCC or HCP configuration in S 2(2).432

Proof Every face of the hypermap of (V, Ectc) is a triangle or quadrilateral.433

The eight triangles in the FCC or HCP contact hypermap determine eight equi-434

lateral triangles in V of edge length 2. The eight triangles rigidly determine V435

up to congruence. !436

Proof of Theorem 9.14 The contact hypermap of a packing with full contact437

has tame contact. By Theorem 9.40, this hypermap is that of the FCC or HCP.438

By Lemma 9.41, the kissing configuration of the packing is congruent to the439

FCC or HCP. As the center of the packing may be chosen at an arbitrary point440

in the packing, every point in the packing is congruent to one of these two441

arrangements. The result ensues. !442

Exercise 9.42 Recently, Musin and Tarasov solved the Tammes problem for443

k = 13 points on a sphere in dimension n = 2 [32]. In parting, we leave it as444

a challenging problem to adapt their solution to the framework of this book to445

obtain an independent solution to the Tammes problem.446
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