#### On the Densest k-Subgraph problem

#### Aravindan Vijayaraghavan

Princeton University & Center for Computational Intractability

Based on joint work

[Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uri Feige, V '10]

[Aditya Bhaskara, Moses Charikar, Venkat Guruswami, V, Yuan Zhou '11]

#### The Dense Subgraph Problem



Problem. Given G, find a subgraph H of size k of max. density (think of k as n<sup>p</sup>).

<u>Notation:</u> Density (H) = Avg. degree in induced subgraph H

### Related problems

- Max–density subgraph (no size restriction): Polynomial time algorithm [GGT'87]
- Small set expansion





Center for Computational Intractability

#### Dense subgraphs are everywhere !

A useful subroutine for many applications

- <u>Social networks:</u> Trawling the Web for emerging cyber-communities [KRRT '99]
  - Web communities are characterized by dense bipartite subgraphs
- <u>Computational biology</u>: Mining dense subgraphs across massive biological networks for functional discovery [HYHHZ '05]
  - dense protein interaction subgraph corresponds to a protein complex [BD'03] [SM'03][SS '05]

## Dense subgraphs are everywhere !

- A useful subroutine for many applications.
- A useful candidate hard problem with many consequences

## Average case hardness assumption

- [ABW '10] Variant was used as the hardness assumption in Public Key Cryptography.
   Non-expanding small set – private key.
- [ABBG'10] Toxic assets can be hidden in complex financial derivatives to commit undetectable fraud
- [KZ'II,CMVZ'II] Evidence of inapproximability for many problems assuming hardness of planted variants.

## How does DkS fit in?

Densest k-subgraph as a CSP with a strict budget:

DkS = (trivial) Max 2-AND at most k-variables set to 1

© Original Artist Reproduction rights obtainable from www.CartoonStock.com



#### Reeling in the years...

**Problem.** Given G, find a subgraph of size k with the maximum number of edges (think of k as  $n^{\rho}$ )

Algorithms:

**[FKP 93]** give an  $O(n^{1/3} - 1/90)$  approximation algorithm

#### Inapproximability:

[Feige 03] No PTAS under the Random 3-SAT assumption

**[Khot 05]** No PTAS unless NP  $\subseteq$  BPTIME(sub-exp)

[RS 10] No constant factor approx assuming Small Set Expansion Conjecture

**[FS 97]** Natural SDP has an  $\Omega(n^{1/3})$  integrality gap

Algorithm

[Bhaskara, Charikar, Chlamtac, Feige, V'10]

**Theorem.**  $O(n^{1/4 + \epsilon})$  approximation for DkS in time  $O(n^{1/\epsilon})$ 

(Informal) Theorem. Can efficiently detect subgraphs of high log-density.

## Strong Hierarchy Integrality gaps

[Bhaskara, Charikar, Guruswami, V, Zhou'II]

**Theorem.**  $\Omega^{\sim}(n^{1/4})$  approximation for DkS for  $\Omega(\log n/\log \log n)$  levels of SA+ (Sherali-Adams +SDP)

**Theorem.**  $n^{\Omega(\epsilon)}$  gap for  $n^{1-\epsilon}$  levels of Lasserre hierarchy

## Outline

- Notion of log-density
- Algorithms for DkS:
   § Planted DkS: 'Local counting' based algorithms.
   § LP hierarchies to imitate arguments in worst case.
- Integrality gaps for strong hierarchies
- Open problems

## Log density

A graph on *n* vertices has **log-density**  $\delta$  if the average degree is  $n^{\delta}$ 

$$\delta = \frac{\log d_{avg}}{\log |V|}$$

**Question.** Given G, can we detect the presence of a subgraph on k vertices, with higher log-density?

#### Planted versions of DkS



- Assume G does not have dense subgraphs
- Good algorithm for  $DkS \Rightarrow$  we can distinguish

**Problem.** Distinguish between NO: G(n,p) of log-density  $\delta$ YES: G(n,p) (same p) with ksubgraph of log-density  $\delta + \epsilon$ 

#### Note:

In G(n,p), a k-subgraph H has density~  $kp = k (n^{\delta}/n) < k^{\delta}$ 

#### Main idea



#### random graph $G(n, n^{-1/3})$ :

**any** three vertices have  $O(\log n)$  common neighbors w.h.p. (n.p<sup>3</sup> in expectation)

#### planted siste hiptezwith log conniton2/dighbors

**Princeton University** 

#### Main idea (contd.)

**Example 2.**  $\delta = 1/3$ , i.e., degree =  $n^{1/3}$  ( $p = n^{-2/3}$ )



#### random graph $G(n, n^{-1/3})$ :

any pair of vertices have  $O(\log^2 n)$  paths of length 3, w.h.p.  $(n^2p^3 \text{ in expectation})$ planted graph: size k, log-density 1/3+ $\epsilon$ : exists a pair of vertices with  $k^{\epsilon}$  paths

## Main idea (contd.)

**General strategy:** For each rational  $\delta$ , consider appropriate `caterpillar' structures, count how many `supported' on fixed set of leaves



S Random graph G(n,p), log-density δ:
 every leaf tuple supports polylog(n) caterpillars
 S Planted graph, size k, log-density δ+ε :
 some leaf tuple supports at least k<sup>ε</sup> caterpillars

#### Analysis for NO case ( $\delta = 2/5$ i.e. $p=n^{-3/5}$ )

TO SHOW: Every leaf tuple supports polylog(n) caterpillars





**Idea:** Upper bound #candidates for each internal node by polylog(n). Fix tuple (a,b,c). Eg:  $S_{ab}(v) \rightarrow candidates$  for v after fixing a,b.  $\mathbf{E}[|S_a(u)|] \sim D = np = n^{2/5}$ , and it is concentrated. Similarly,  $\mathbf{E}[|S_a(v)|] \sim n^{4/5}$  and concentrated.  $\mathbf{E}[|S_{ab}(v)|] \sim n^{4/5}p \sim n^{1/5}$  and it's concentrated. Similarly,  $\mathbf{E}[|S_{abc}(w)|] \sim n^{1/5}$ . np. p = O(1)

#### **Proof for** $\delta$ = 2/5



- # of "candidate w's" given leaves a,b,c is < log n w.h.p.
- The same is true for "candidate v's and u's" too by similar arguments.

Thus the number of structures is  $< (\log^4 n)$  w.h.p.

#### Dense vs. Random – conclusion

**Theorem.** For every  $\epsilon > 0$ , and  $0 < \delta < 1$ , we can distinguish between G(n,p) of log-density  $\delta$ , and a graph with a *k*-subgraph of log-density  $\delta + \epsilon$ , in time  $n^{O(1/\epsilon)}$ .

(Pick a rational no. in  $[\delta, \delta + \epsilon)$  and use the appropriate caterpillar)

- k-subgraphs in G(n,p) have density max{1,kn<sup>δ</sup>/n}
- Can detect planted k-subgraphs of density  $k^{\delta+}$
- Distinguishing ratio ~ max  $\frac{k^{\delta}}{\max\{1, kn^{\delta}/n\}} = O(n^{1/4})$

## DkS in general graphs

Moving from average case to worst case

## DkS in general graphs

**Input.** G on *n* vertices, degree  $\leq D$  **Promise.** There is a subgraph H on k vertices with average degree d **Question.** How dense a k-subgraph can we find?

An algorithm in worst case by mimicking our distinguishing algorithm for random graphs.

#### Some simplifications

Given: A regular graph G with degree
D= n<sup>δ</sup> such that k.D=n
( k-subgraph in G has ~ O(1) density.)

H is k-subgraph of G with min-degree  $d=k^{\delta+\epsilon}$  (higher log-density)



Aim: Enough to output a k-subgraph of density  $\rho$  ( $\rho$  is a large constant)

**Observation:** Can return a  $\rho$ -dense subgraph with  $\leq$  k vertices (remove, repeat)

## An outline of the algorithm

- G, n, D=n<sup> $\delta$ </sup> H, k, d
- Inspired by algorithm for Planted problem.
- Algorithm for each  $\delta$  uses the structure Cat $_{\delta}$  (size s $_{\delta}$ )

Algorithm proceeds for  $s_{\delta}$  steps.

**Idea.** Look at the 'set of candidates' for a non-leaf after *fixing* a prefix of the leaves

 $S_t$  -- candidate vertices at step t of the caterpillar. LP(S) -- the number of vertices from H in S. Algorithm either finds dense-subgraph from  $S_t$  or lt 'behaves' as in random case and lower bound LP( $S_{t+1}$ )/ $|S_{t+1}|$ 

Finally,  $LP(S_t)/|S_t| > 1$  (contradiction) .....

## Algorithm using $Cat_{\delta}$ (plot outline)



<u>Procedure LocalSearch(S)</u> Tries to find a dense subgraph greedily between **S** and  $\Gamma(S)$ 

- I.  $S_0 = V$ . Perform LocalSearch( $S_0$ )
- 2. If we don't get a dense subgraph, then  $\exists a$  s.t.  $|S_a(u)| \le U_1$  (as in random graph) and  $|LP(S_a(u))| \ge L_1$ .
- 3. Do LocalSearch( $S_a(u)$ ). If it fails then  $|S_a(v)| \le U_2$  and  $|LP(S_a(v))| \ge L_2$
- 4. Do LocalSearch(S<sub>a</sub>(v)). If fail, ∃ b s.t bounds like random Keep doing this ... At the last step, the parameters give a contradiction!

## LP relaxation (a hierarchy) for $Cat_{\delta}$

Intended solution: k-subgraph H with minimum degree d Simple LP:

$$\sum_{i \in V} y_i \leq k \text{ and}$$
(1) (size at most k)  

$$\exists y_{ij} : i, j \in V \text{ s.t.}$$
(2) (min degree d in H)  

$$\forall i, j \in V \quad \sum_{j \in \Gamma(i)} y_{ij} \geq dy_i$$
(3)  

$$\forall i, j \in V \quad 0 \leq y_{ij} \leq y_i \leq 1$$
(4)

#### LP : Simple LP + LS hierarchy for $s_{\delta}$ levels.

• Captures fixing leaves since  $\{y_{ij} / y_j\}$  satisfy LP too.

• LP is feasible for any constant number of conditionings (i.e. fixing leaves).

## Main Component – LocalSearch(S)



Consider  $k'=LP(\Gamma(S))$  ( <= k )

$$Edges(S, S_{k'}) \ge \sum y_{j} deg_{S}(j)$$

$$j\epsilon\Gamma(S)$$

$$\ge \sum \sum y_{ij} \ge dLP(S)$$

$$i\epsilon \sum j\epsilon\Gamma(i) \qquad (due \text{ to eq } 2)$$

Greedy algorithm:

For each  $k' = 1 \dots k$ , do:

- $S_{k'} = k'$  vertices in  $\Gamma(S)$  with the most edges to S.
- Let S\* be k vertices from S with most edges into S<sub>k</sub>.

If S<sub>k</sub>, U S\* has density  $\geq \rho$ , return it. If no  $\rho$  dense subgraph is found, return Fail

**Lem.** LocalSearch finds a graph of density at least  $= \frac{d LP(S)}{LP(\Gamma(S))+|S|}$ 

### Round or Bound -1 (backbone edge)

**Claim1:** Let S be candidates,  $\{y_i\}$  be LP solution, we either a) Output a k-subgraph of density  $\rho$  using LocalSearch b) else  $LP(\Gamma(S)) \ge d LP(S)/\rho$  (we can set  $S_{new} = \Gamma(S)$ )



If we do not find  $\rho$  dense subgraph,  $S_{new} = \Gamma(S)$ LP( $\Gamma(S)$ ) increases by at least d/ $\rho$ and  $|\Gamma(S)|$  increases by at most D (like in the random case)

#### Round or Bound – 2 (leaf/hair)

**Claim 2:** If S is candidate set,  $\{y_i\}$  is LP solution, we either a) Find a k-subgraph of density  $\rho$  between S and  $\Gamma(S)$ b) or find leaf j if  $S_{new} = S \cap \Gamma(j)$  $LP(S_{new}) \ge d LP(S)/2k$  and  $|S_{new}| \le \rho(|S|+k)/k$ 



#### To summarize...

Roughly speaking, if we don't find a dense subgraph in a step,

- every backbone step, LP(S)/|S| decreases by O(d/D)
- every hair step, LP(S)/|S| increases by at least  $\Omega(d)$

Because of choice of structure, LP(S)/|S| becomes >1 at final step (a contradiction).

#### Completing the algorithm for $\delta = 2/5$

I. 
$$S_0 = V$$
.  $LP(S_0) / |S_0| = k/n$ .

2. If LocalSearch(S<sub>0</sub>) doesn't give a 100-dense subgraph,  $\exists a$  to condition on so that, LP(S<sub>a</sub>(u))/|S<sub>a</sub>(u)|  $\geq$  dk/n



- 3. If LocalSearch( $S_a(u)$ ) fails, LP( $S_a(v)$ )/ $|S_a(v)| \ge d^2k$ /Dn
- 4. If LocalSearch( $S_a(v)$ ) fails,  $\exists b LP(S_{ab}(v))/|S_{ab}(v)| \ge d^3k/Dn$ .
- 5. If LocalSearch( $S_{ab}(v)$ ) fails, LP( $S_{ab}(w)$ )/ $|S_{ab}(w)| \ge d^4k/D^2n$
- 6. If LocalSearch( $S_{ab}(w)$ ) fails, LP( $S_{abc}(w)$ )/ $|S_{abc}(w)| \ge d^{5}k^{3}/n^{3} > I$

(a contradiction)

## Beating the log-density barrier?

• 
$$n^{(1-\varepsilon)/4}$$
 approximation in time  $2^{n^{6\varepsilon}}$ 

- Guess subsets of size  $n^{\varepsilon}$  for every leaf in caterpillar structure.
- Integrality gaps suggest polytime algorithms from Sherali-Adams (SA+) relaxations can not beat the barrier.

## Stronger relaxations



Sherali-Adams

#### Lovasz-Schrijver



#### Lasserre gaps

- First constructs gaps for Max r-CSP(q) instances over large alphabet size r,q= n<sup>Ω(1)</sup>.
- Simple reduction from Max r-CSP(q) to DkS
- Uses Tulsiani's framework to transform the Lasserre gaps for DkS.

## Small Set Expansion (SSE) problem [RS '10]

Given  $\varepsilon, \delta > 0$ , D-regular graph G, distinguish between (think of D as constant)

- [NO] Small subgraphs expand very well Every subgraph of size ≤δn has density ≤ εD
- [YES] Some small subgraph does not expand
   Some subgraph of size ≤δn has density ≥ (1-ε)D

[ABS'10] exp(n<sup>O(poly(ε))</sup>) time algorithm for SSE. [BRS'11,GS'11] distinguish using n<sup>O(poly(ε))</sup> levels of Lasserre.

 $n^{\Omega(1)}$  levels Lasserre gap for DkS seems to suggest that DkS much harder than SSE

Princeton University

## **Open Problem**



## **Open Problems**

- Better algorithms using SDPs in certain ranges of parameters? (like [Steurer'11])
- Evidence of large inapproximability of DkS?
- Stronger integrality gaps?
   Maybe n<sup>1/4-ε</sup> gap for n<sup>ε</sup> levels of the hierarchy?

# Thank you!