
On the Densest k-Subgraph problem

Aravindan Vijayaraghavan
Princeton University &

Center for Computational Intractability

Based on joint work

[Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uri Feige, V ‘10]

[Aditya Bhaskara, Moses Charikar, Venkat Guruswami, V, Yuan Zhou
‘11]

The Dense Subgraph Problem

Center for Computational Intractability,
Princeton University

graph G of size n

H of size k

Problem. Given G,
find a subgraph H of
size k of max. density

(think of k as n½).

Notation:

Density (H) = Avg. degree in
induced subgraph H

Related problems

• Max–density subgraph (no size restriction):

Polynomial time algorithm [GGT’87]

• Small set expansion

NSF Site Visit 5/13/2010 3
Center for Computational

Intractability

Expansion (S)=# edges leaving S
d |S|

d-regular graph G

d

vertex set S

Dense subgraphs are everywhere !

A useful subroutine for many applications
• Social networks: Trawling the Web for

emerging cyber-communities [KRRT ‘99]
– Web communities are characterized by dense

bipartite subgraphs

• Computational biology: Mining dense
subgraphs across massive biological networks
for functional discovery [HYHHZ ’05]
– dense protein interaction subgraph corresponds to a

protein complex [BD’03] [SM’03][SS ‘05]

Center for Computational Intractability,
Princeton University

Dense subgraphs are everywhere !

• A useful subroutine for many applications.

• A useful candidate hard problem with many
consequences

Center for Computational Intractability,
Princeton University

Average case hardness assumption

• [ABW ‘10] Variant was used as the hardness
assumption in Public Key Cryptography.
Non-expanding small set – private key.

• [ABBG’10] Toxic assets can be hidden in
complex financial derivatives to commit
undetectable fraud

• [KZ’11,CMVZ’11] Evidence of inapproximability
for many problems assuming hardness of
planted variants.

Center for Computational Intractability,
Princeton University

How does DkS fit in?

Densest k-subgraph

as a CSP with a strict

budget:

DkS = (trivial) Max 2-AND with

at most k-variables

set to 1

Reeling in the years…
Problem. Given G, find a subgraph of size k with the

maximum number of edges (think of k as n½)

Algorithms:

[FKP 93] give an O(n1/3 - 1/90) approximation algorithm

Inapproximability:

[Feige 03] No PTAS under the Random 3-SAT assumption
[Khot 05] No PTAS unless NP µ BPTIME(sub-exp)

[RS 10] No constant factor approx assuming Small Set
Expansion Conjecture

[FS 97] Natural SDP has an Ω(n1/3) integrality gap

Algorithm

Theorem. O(n1/4 +ε) approximation for DkS in
time O(n1/ε)

Center for Computational Intractability,
Princeton University

(Informal) Theorem. Can efficiently detect
subgraphs of high log-density.

[Bhaskara, Charikar, Chlamtac, Feige, V‘10]

Strong Hierarchy Integrality gaps

Theorem. Ω~(n1/4) approximation for DkS for

Ω(logn/loglogn) levels of SA+ (Sherali-Adams +SDP)

Center for Computational Intractability,
Princeton University

Theorem. nΩ(ε) gap for n1-ε levels of Lasserre

hierarchy

[Bhaskara, Charikar, Guruswami,V, Zhou‘11]

Outline

• Notion of log-density

• Algorithms for DkS:
§ Planted DkS: ‘Local counting’ based
algorithms.
§ LP hierarchies to imitate arguments in worst
case.

• Integrality gaps for strong hierarchies

• Open problems

Log density

A graph on n vertices has log-density ± if the
average degree is n±

± =
||log

log

V

davg

Question. Given G, can we detect the presence of a subgraph on
k vertices, with higher log-density?

Planted versions of DkS

G(n,p)

G(n,p)+HYe
s

No • Assume G does not have dense
subgraphs
• Good algorithm for DkS) we
can distinguish

H,
k

Problem. Distinguish between
NO: G(n,p) of log-density ±

YES: G(n,p) (same p) with k-
subgraph of log-density ±+²

Note:
In G(n,p), a k-subgraph H has density~ kp

= k (n±/n) < k±

Example. Say δ = 2/3, i.e., degree = n2/3

(p=n-1/3)

random graph G(n, n-1/3):
any three vertices have O(log n) common
neighbors w.h.p. (n.p3 in expectation)

planted graph: size k, log-density 2/3+ε:

Main idea

exists triple with k3ε common neighbors
Center for Computational Intractability,

Princeton University

u v w

Main idea (contd.)
Example 2. δ = 1/3, i.e., degree = n1/3 (p=n-2/3)

random graph G(n, n-1/3):
any pair of vertices have O(log2 n) paths of
length 3, w.h.p. (n2p3 in expectation)

planted graph: size k, log-density 1/3+ε:
exists a pair of vertices with kε paths

Center for Computational Intractability,
Princeton University

u v

Main idea (contd.)

General strategy: For each rational δ, consider
appropriate `caterpillar’ structures, count how
many `supported’ on fixed set of leaves

…

§Random graph G(n,p), log-density δ:
every leaf tuple supports polylog(n) caterpillars

§Planted graph, size k, log-density δ+ε :
some leaf tuple supports at least kε caterpillars

Center for Computational Intractability,
Princeton University

u1 u2 u3 ur

Analysis for NO case (± = 2/5 i.e. p=n-3/5)

Idea: Upper bound #candidates for each internal node by polylog(n).

Fix tuple (a,b,c). Eg: Sab(v) -- candidates for v after fixing a,b.

E[|Sa(u)|] ~ D=np = n2/5, and it is concentrated.

Similarly, E[|Sa(v)|]~ n4/5 and concentrated.

E[|Sab(v)|]~ n4/5p ~ n1/5 and it’s concentrated.

Similarly, E[|Sabc(w)|] ~ n1/5. np. p =O(1)

a

Sa(u) Sab(v)
Sa(v)

TO SHOW: Every leaf tuple supports polylog(n)
caterpillars

u v w

b ca
b

Proof for ± = 2/5

• # of “candidate w’s” given leaves a,b,c is < log n w.h.p.

• The same is true for “candidate v’s and u’s” too by
similar arguments.

Thus the number of structures is < (log4 n) w.h.p.

u v w

b ca

Dense vs. Random – conclusion

Theorem. For every ²>0, and 0<±<1, we can
distinguish between G(n,p) of log-density ±, and a
graph with a k-subgraph of log-density ±+², in time
nO(1/²).

(Pick a rational no. in [±,±+²) and use the appropriate caterpillar)

DkS in general graphs

Moving from average case to worst case

DkS in general graphs

Input. G on n vertices, degree · D

Promise. There is a subgraph H on k vertices with
average degree d

Question. How dense a k-subgraph can we find?

An algorithm in worst case by mimicking our
distinguishing algorithm for random graphs.

Some simplifications

Observation: Can return a ½-dense subgraph with · k vertices
(remove, repeat)

G, n, D

H, k,
d

Given: A regular graph G with degree
D= n± such that k.D=n

(à k-subgraph in G has ~ O(1) density.)

H is k-subgraph of G with min-degree
d=k±+² (higher log-density)

Aim: Enough to output a k-subgraph of
density ½ (½ is a large constant)

An outline of the algorithm
G, n, D=n±

H, k, d

Algorithm proceeds for s± steps.

St -- candidate vertices at step t of the caterpillar.
LP(S) -- the number of vertices from H in S.
Algorithm either finds dense-subgraph from St or
It ‘behaves’ as in random case and lower bound

LP(St+1)/|St+1|
Finally, LP(St)/|St|>1 (contradiction) ……

• Inspired by algorithm for Planted problem.
• Algorithm for each ± uses the structure Cat± (size s±)

Idea. Look at the ‘set of candidates’ for a non-leaf after
fixing a prefix of the leaves

Algorithm using Cat± (plot outline)

1. S0=V. Perform LocalSearch(S0)

2. If we don’t get a dense subgraph,
then 9999 a s.t. |Sa(u)| · U1 (as in random graph) and
|LP(Sa(u))| ¸ L1 .

3. Do LocalSearch(Sa(u)). If it fails then |Sa(v)| · U2 and
|LP(Sa(v))| ¸ L2

4. Do LocalSearch(Sa(v)). If fail, 9999 b s.t bounds like random

Keep doing this … At the last step, the parameters give a
contradiction!

Procedure LocalSearch(S)
Tries to find a dense subgraph
greedily between S and ¡¡¡¡(S)

u v w

b ca

LP relaxation (a hierarchy) for Cat±

Intended solution: k-subgraph H with minimum degree d
Simple LP:

(size at most k)

(min degree d in H)

LP : Simple LP + LS hierarchy for s± levels.
• Captures fixing leaves since {yij /yj} satisfy LP too.

• LP is feasible for any constant number of conditionings (i.e. fixing
leaves).

Main Component – LocalSearch(S)

Greedy algorithm:

For each k’= 1…k, do:
• Sk’ = k’ vertices in ¡(S) with the

most edges to S.

• Let S* be k vertices from S with
most edges into Sk’ .

If Sk’ U S* has density ¸ ½, return it.
If no ½ dense subgraph is found,

return Fail

S
¡(S)

LP(S)
~ S Å H

Lem. LocalSearch finds a graph
of density at least = d LP(S)

LP(¡(S))+|S|

Consider k’=LP(¡(S)) (<= k)

Edges(S, Sk’) ≥ ∑ yj degS(j)

j²¡(S)

≥ ∑ ∑ yij ≥ dLP(S)

i²S j²¡(i) (due to eq 2)

j
degS(j)

Round or Bound -1 (backbone edge)
Claim1: Let S be candidates, {yi} be LP solution, we either

a) Output a k-subgraph of density ½ using LocalSearch

b) else LP(¡(S)) ≥ d LP(S)/½ (we can set Snew =¡(S))

S
¡(S)

T

a b

If we do not find ½ dense subgraph,

Snew =¡(S)

LP(¡(S)) increases by at least d/½

and |¡(S)| increases by at most D

(like in the random case)

Round or Bound – 2 (leaf/hair)

Claim 2: If S is candidate set, {yi} is LP solution, we either
a) Find a k-subgraph of density ½ between S and ¡(S)

b) or find leaf j if Snew=S ∩ ¡(j)

LP(Snew) ≥ d LP(S)/2k and |Snew| ≤½(|S|+k)/k

If we do not find a dense subgraph,
½(|S|+k) ≥ ∑ yj|S ∩ ¡(j)| ≥ ∑ yj LP{yij/yj}

(S ∩ ¡(j))
j²¡(S)

= ∑ ∑ yij ≥ dLP(S)

j²¡(S) i²S∩¡(j)

By averaging argument, we can pick j²¡(S) such that
Claim follows. ¡(S)

S

j

S ∩ ¡(j)
=S’

To summarize…

Roughly speaking, if we don’t find a dense
subgraph in a step,

• every backbone step, LP(S)/|S| decreases by O(d/D)
• every hair step, LP(S)/|S| increases by at least Ω(d)

Because of choice of structure, LP(S)/|S| becomes >1 at
final step (a contradiction).

Center for Computational Intractability,
Princeton University

Completing the algorithm for ± = 2/5
1. S0=V. LP(S0)/|S0| = k/n.

2. If LocalSearch(S0) doesn’t give
a 100-dense subgraph,
9999 a to condition on so that,
LP(Sa(u))/|Sa(u)| ¸ dk/n

3. If LocalSearch(Sa(u)) fails, LP(Sa(v))/|Sa(v)| ¸ d2k/Dn

4. If LocalSearch(Sa(v)) fails, 9999 b LP(Sab(v))/|Sab(v)| ¸ d3k/Dn.

5. If LocalSearch(Sab(v)) fails, LP(Sab(w))/|Sab(w)| ¸ d4k/D2n

6. If LocalSearch(Sab(w)) fails, LP(Sabc(w))/|Sabc(w)| ¸
d5k3/n3>1

(a contradiction)

S – subset of V
u v w

b ca

Beating the log-density barrier?

• approximation in time

• Guess subsets of size for every leaf in
caterpillar structure.

• Integrality gaps suggest polytime algorithms
from Sherali-Adams (SA+) relaxations can not
beat the barrier.

Center for Computational Intractability,
Princeton University

Stronger relaxations

Center for Computational Intractability,
Princeton University

LasserreLasserre

Sherali-AdamsSherali-Adams

Lovasz-SchrijverLovasz-Schrijver

Gaps for lift-and-project
[BCCFV ’10]

rounds of Lovasz-Schrijver: gap

[BCGVZ ‘11]

• levels of Sherali-Adams:
gap

• levels of Lasserre: gap

Center for Computational Intractability,
Princeton University

Lasserre gaps

Center for Computational Intractability,
Princeton University

• First constructs gaps for Max r-CSP(q)
instances over large alphabet size r,q= nΩ(1).

• Simple reduction from Max r-CSP(q) to DkS

• Uses Tulsiani’s framework to transform the
Lasserre gaps for DkS.

Small Set Expansion (SSE) problem [RS ’10]

Given ε,δ> 0, D-regular graph G, distinguish between
(think of D as constant)

• [NO] Small subgraphs expand very well
Every subgraph of size ≤δn has density ≤ εD

• [YES] Some small subgraph does not expand
Some subgraph of size ≤δn has density ≥ (1-ε)D

Center for Computational Intractability,
Princeton University

nΩ(1) levels Lasserre gap for DkS seems to suggest that
DkS much harder than SSE

[ABS’10] exp(nO(poly(ε))) time algorithm for SSE.
[BRS’11,GS’11] distinguish using nO(poly(ε)) levels of Lasserre.

Open Problem

Center for Computational Intractability,
Princeton University

graph G

subset S
size √n

Given G, find
dense subgraph S

Degree √n

degree n¼ - ε

Open Problems

• Better algorithms using SDPs in certain ranges
of parameters? (like [Steurer’11])

• Evidence of large inapproximability of DkS?

• Stronger integrality gaps?

Maybe n1/4-ε gap for nε levels of the hierarchy?

Center for Computational Intractability,
Princeton University

Thank you!

