On the Densest k-Subgraph problem

Aravindan Vijayaraghavan

Princeton University & Center for Computational Intractability

Based on joint work

[Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uri Feige, V '10]

[Aditya Bhaskara, Moses Charikar, Venkat Guruswami, V, Yuan Zhou '11]

The Dense Subgraph Problem

Related problems

- Max-density subgraph (no size restriction):
 Polynomial time algorithm [GGT'87]
- Small set expansion

Dense subgraphs are everywhere!

A useful subroutine for many applications

- Social networks: Trawling the Web for emerging cyber-communities [KRRT '99]
 - Web communities are characterized by dense bipartite subgraphs
- Computational biology: Mining dense subgraphs across massive biological networks for functional discovery [HYHHZ '05]
 - dense protein interaction subgraph corresponds to a protein complex [BD'03] [SM'03][SS '05]

Dense subgraphs are everywhere!

A useful subroutine for many applications.

A useful candidate hard problem with many consequences

Average case hardness assumption

- [ABW '10] Variant was used as the hardness assumption in Public Key Cryptography.
 - Non-expanding small set private key.
- [ABBG'10] Toxic assets can be hidden in complex financial derivatives to commit undetectable fraud
- [KZ'II,CMVZ'II] Evidence of inapproximability for many problems assuming hardness of planted variants.

How does DkS fit in?

Densest k-subgraph as a CSP with a strict budget:

DkS = (trivial) Max 2-AND
at most k-variables
set to 1

Reeling in the years...

Problem. Given G, find a subgraph of size k with the maximum number of edges (think of k as n^{ρ})

Algorithms:

[FKP 93] give an O(n^{1/3 - 1/90}) approximation algorithm

<u>Inapproximability:</u>

[Feige 03] No PTAS under the Random 3-SAT assumption

[Khot 05] No PTAS unless NP ⊆ BPTIME(sub-exp)

[RS 10] No constant factor approx assuming Small Set Expansion Conjecture

[FS 97] Natural SDP has an $\Omega(n^{1/3})$ integrality gap

Algorithm

[Bhaskara, Charikar, Chlamtac, Feige, V'10]

Theorem. $O(n^{1/4+\epsilon})$ approximation for DkS in time $O(n^{1/\epsilon})$

(Informal) Theorem. Can efficiently detect subgraphs of high log-density.

Strong Hierarchy Integrality gaps

[Bhaskara, Charikar, Guruswami, V, Zhou'll]

Theorem. $\Omega^{\sim}(n^{1/4})$ approximation for DkS for $\Omega(\log n/\log \log n)$ levels of SA+ (Sherali-Adams +SDP)

Theorem. $n^{\Omega(\epsilon)}$ gap for $n^{1-\epsilon}$ levels of Lasserre hierarchy

Outline

- Notion of log-density
- Algorithms for DkS:
 - S Planted DkS: 'Local counting' based algorithms.
 - S LP hierarchies to imitate arguments in worst case.
- Integrality gaps for strong hierarchies
- Open problems

Log density

A graph on n vertices has \log -density δ if the average degree is n^{δ}

$$\delta = \frac{\log d_{avg}}{\log |V|}$$

Question. Given G, can we detect the presence of a subgraph on k vertices, with higher log-density?

Planted versions of DkS

- Assume G does not have dense subgraphs
- Good algorithm for DkS \Rightarrow we can distinguish

Problem. Distinguish between

NO: G(n,p) of log-density δ

YES: G(n,p) (same p) with k-

subgraph of log-density δ + ϵ

Note:

In G(n,p), a k-subgraph H has density~ $kp = k (n^{\delta}/n) < k^{\delta}$

Main idea

Example. Say $\delta = 2/3$, i.e., degree = $n^{2/3}$

 $(p=n^{-1/3})$

random graph $G(n, n^{-1/3})$:

any three vertices have $O(\log n)$ common neighbors w.h.p. $(n.p^3 \text{ in expectation})$

planted exists hipsezwith leg-considered glists hipsezwith leg-con

Princeton University

Main idea (contd.)

Example 2. $\delta = 1/3$, i.e., degree = $n^{1/3}$ ($p=n^{-2/3}$)

random graph $G(n, n^{-1/3})$:

any pair of vertices have $O(log^2 n)$ paths of length 3, w.h.p. $(n^2p^3$ in expectation)

planted graph: size k, log-density $1/3+\epsilon$: exists a pair of vertices with k^{ϵ} paths

Center for Computational Intractability,
Princeton University

Main idea (contd.)

General strategy: For each rational δ , consider appropriate `caterpillar' structures, count how many `supported' on fixed set of leaves

§ Random graph G(n,p), log-density δ :

every leaf tuple supports polylog(n) caterpillars

 \leq Planted graph, size k, log-density δ + ϵ :

some leaf tuple supports at least k^{ε} caterpillars

Center for Computational Intractability,
Princeton University

Analysis for NO case ($\delta = 2/5$ i.e. $p=n^{-3/5}$)

TO SHOW: Every leaf tuple supports polylog(n)

caterpillars

Idea: Upper bound #candidates for each internal node by polylog(n).

Fix tuple (a,b,c). Eg: $S_{ab}(v)$ -- candidates for v after fixing a,b.

 $\mathbf{E}[|S_{\mathbf{a}}(\mathbf{u})|] \sim D = np = n^{2/5}$, and it is concentrated.

Similarly, $\mathbf{E}[|S_a(\mathbf{v})|] \sim n^{4/5}$ and concentrated.

 $\mathbf{E}[|S_{ab}(\mathbf{v})|] \sim n^{4/5} p \sim n^{1/5}$ and it's concentrated.

Similarly, **E**[$|S_{abc}(w)|$] ~ $n^{1/5}$. np. p = O(1)

Proof for $\delta = 2/5$

- # of "candidate w's" given leaves a,b,c is < log n w.h.p.
- The same is true for "candidate v's and u's" too by similar arguments.

Thus the number of structures is $< (\log^4 n)$ w.h.p.

Dense vs. Random – conclusion

Theorem. For every $\epsilon > 0$, and $0 < \delta < 1$, we can distinguish between G(n,p) of log-density δ , and a graph with a k-subgraph of log-density $\delta + \epsilon$, in time $n^{O(1/\epsilon)}$.

(Pick a rational no. in $[\delta, \delta + \epsilon]$ and use the appropriate caterpillar)

- k-subgraphs in G(n,p) have density $\max\{1, kn^{\delta}/n\}$
- Can detect planted k-subgraphs of density $k^{\delta+}$

• Distinguishing ratio
$$\sim \max_{\delta,k} \frac{k^{\delta}}{\max\{1, kn^{\delta}/n\}} = O(n^{1/4})$$

DkS in general graphs

Moving from average case to worst case

DkS in general graphs

Input. G on n vertices, degree $\leq D$

Promise. There is a subgraph H on k vertices with average degree d

Question. How dense a k-subgraph can we find?

An algorithm in worst case by mimicking our distinguishing algorithm for random graphs.

Some simplifications

Given: A regular graph G with degree $D = n^{\delta}$ such that k.D = n

k-subgraph in G has \sim O(1) density.)

H is k-subgraph of G with min-degree $d=k^{\delta+\epsilon}$ (higher log-density)

Aim: Enough to output a k-subgraph of density ρ (ρ is a large constant)

Observation: Can return a ρ -dense subgraph with \leq k vertices (remove, repeat)

An outline of the algorithm

- Inspired by algorithm for Planted problem.
- Algorithm for each δ uses the structure Cat_δ (size s_δ)

Algorithm proceeds for s_{δ} steps.

Idea. Look at the 'set of candidates' for a non-leaf after fixing a prefix of the leaves

 S_t -- candidate vertices at step t of the caterpillar.

LP(S) -- the number of vertices from H in S.

Algorithm either finds dense-subgraph from S_t or

It 'behaves' as in random case and lower bound $LP(S_{t+1})/|S_{t+1}|$

Finally, $LP(S_t)/|S_t|>1$ (contradiction)

Algorithm using Cat_{δ} (plot outline)

Procedure LocalSearch(S)
Tries to find a dense subgraph greedily between S and $\Gamma(S)$

- I. $S_0 = V$. Perform LocalSearch(S_0)
- 2. If we don't get a dense subgraph, then \exists **a** s.t. $|S_a(u)| \leq U_1$ (as in random graph) and $|LP(S_a(u))| \geq L_1$.
- 3. Do LocalSearch($S_a(u)$). If it fails then $|S_a(v)| \leq U_2$ and $|LP(S_a(v))| \geq L_2$
- 4. Do LocalSearch($S_a(v)$). If fail, $\exists b$ s.t bounds like random Keep doing this ... At the last step, the parameters give a contradiction!

LP relaxation (a hierarchy) for Cat_{δ}

Intended solution: k-subgraph H with minimum degree d Simple LP:

$$\sum_{i \in V} y_i \leq k \text{ and}$$
 (1) (size at most k)
$$\exists y_{ij} : i, j \in V \text{ s.t.}$$
 (2) (min degree d in H)
$$\forall i, j \in V \quad \sum_{j \in \Gamma(i)} y_{ij} \geq dy_i$$
 (3)
$$\forall i, j \in V \quad y_{ij} = y_{ji}$$
 (4)

LP : Simple LP + LS hierarchy for s_{δ} levels.

- Captures fixing leaves since $\{y_{ij}/y_j\}$ satisfy LP too.
- LP is feasible for any constant number of conditionings (i.e. fixing leaves).

Main Component – LocalSearch(S)

Consider $k'=LP(\Gamma(S))$ (<= k)

Edges(S,
$$S_{k'}$$
) $\geq \sum y_{j} \deg_{S}(j)$

$$j \epsilon \Gamma(S)$$

$$\geq \sum \sum y_{ij} \geq dLP(S)$$

$$i \epsilon S j \epsilon \Gamma(i) \qquad \text{(due to eq 2)}$$

Greedy algorithm:

For each k'=1...k, do:

- $S_{k'} = k'$ vertices in $\Gamma(S)$ with the most edges to S.
- Let S^* be k vertices from S with most edges into $S_{k'}$.

If S_k , U S* has density $\geq \rho$, return it. If no ρ dense subgraph is found, return Fail

Lem. LocalSearch finds a graph of density at least $= \frac{d LP(S)}{LP(\Gamma(S))+|S|}$

Round or Bound -1 (backbone edge)

Claim I: Let S be candidates, $\{y_i\}$ be LP solution, we either

- a) Output a k-subgraph of density ρ using LocalSearch
- b) else $LP(\Gamma(S)) \ge d LP(S)/\rho$ (we can set $S_{\text{new}} = \Gamma(S)$)

If we do not find ρ dense subgraph,

$$S_{\text{new}} = \Gamma(S)$$

 $LP(\Gamma(S))$ increases by at least d/ρ and $|\Gamma(S)|$ increases by at most D

(like in the random case)

Round or Bound – 2 (leaf/hair)

Claim 2: If S is candidate set, $\{y_i\}$ is LP solution, we either

- a) Find a k-subgraph of density ρ between S and $\Gamma(S)$
- b) or find leaf j if $S_{new} = S \cap \Gamma(j)$ $LP(S_{new}) \ge d LP(S)/2k$ and $|S_{new}| \le \rho(|S|+k)/k$

If we do not find a dense subgraph,

$$\begin{split} \rho(|S|+k) &\geq \sum_{j \in \Gamma(S)} y_{j} |S \cap \Gamma(j)| \geq \sum_{j \in \Gamma(S)} y_{j} |LP_{\{y_{ij}/y_{j}\}}(S \cap \Gamma(j)) \\ &= \sum_{j \in \Gamma(S)} \sum_{i \in S \cap \Gamma(j)} y_{ij} \geq dLP(S) \end{split}$$

By averaging argument, we can pick $j \in \Gamma(S)$ such that Claim follows.

To summarize...

Roughly speaking, if we don't find a dense subgraph in a step,

- every backbone step, LP(S)/|S| decreases by O(d/D)
- every hair step, LP(S)/|S| increases by at least $\Omega(d)$

Because of choice of structure, LP(S)/|S| becomes >1 at final step (a contradiction).

Completing the algorithm for $\delta = 2/5$

- I. $S_0 = V$. $LP(S_0)/|S_0| = k/n$.
- 2. If LocalSearch(S_0) doesn't give a 100-dense subgraph, \exists \boldsymbol{a} to condition on so that, $LP(S_a(u))/|S_a(u)| \geq dk/n$

- 3. If LocalSearch($S_a(u)$) fails, LP($S_a(v)$)/ $|S_a(v)| \ge d^2k/Dn$
- 4. If LocalSearch($S_a(v)$) fails, $\exists b LP(S_{ab}(v))/|S_{ab}(v)| \ge d^3k/Dn$.
- 5. If LocalSearch($S_{ab}(v)$) fails, $LP(S_{ab}(w))/|S_{ab}(w)| \ge d^4k/D^2n$
- 6. If LocalSearch($S_{ab}(w)$) fails, LP($S_{abc}(w)$)/ $|S_{abc}(w)| \ge d^5k^3/n^3 > I$

(a contradiction)

Beating the log-density barrier?

• $n^{(1-arepsilon)/4}$ approximation in time $2^{n^{6arepsilon}}$

• Guess subsets of size n^{ε} for every leaf in caterpillar structure.

 Integrality gaps suggest polytime algorithms from Sherali-Adams (SA+) relaxations can not beat the barrier.

Stronger relaxations

Lasserre

Sherali-Adams

Lovasz-Schrijver

Center for Computational Intractability,
Princeton University

Gaps for lift-and-project

[BCCFV'10]

t rounds of Lovasz-Schrijver: gap $n^{\frac{1}{4}+O(1/t)}$

[BCGVZ 'II]

 $ullet \Omega(rac{\log n}{\log \log n})$ levels of Sherali-Adams: $ext{gap } \widetilde{\Omega}(n^{rac{1}{4}})$

• $n^{\Omega(1)}$ levels of Lasserre: $n^{\Omega(1)}$ gap

Lasserre gaps

- First constructs gaps for Max r-CSP(q) instances over large alphabet size $r,q=n^{\Omega(1)}$.
- Simple reduction from Max r-CSP(q) to DkS
- Uses Tulsiani's framework to transform the Lasserre gaps for DkS.

Small Set Expansion (SSE) problem [RS '10]

Given $\varepsilon, \delta > 0$, D-regular graph G, distinguish between (think of D as constant)

- [NO] Small subgraphs expand very well
 Every subgraph of size ≤δn has density ≤ εD
- [YES] Some small subgraph does not expand Some subgraph of size $\leq \delta n$ has density $\geq (1-\epsilon)D$

[ABS'10] $\exp(n^{O(poly(\epsilon))})$ time algorithm for SSE. [BRS'11,GS'11] distinguish using $n^{O(poly(\epsilon))}$ levels of Lasserre.

 $n^{\Omega(1)}$ levels Lasserre gap for DkS seems to suggest that DkS much harder than SSE

Open Problem

Open Problems

- Better algorithms using SDPs in certain ranges of parameters? (like [Steurer'II])
- Evidence of large inapproximability of DkS?
- Stronger integrality gaps? Maybe $n^{1/4-\epsilon}$ gap for n^{ϵ} levels of the hierarchy?

Thank you!