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A classic example — Max Cut

Given a (weighted) graph G = (V, E), partition the vertices into
two pieces V = S U S such that the number(fraction) of crossing

edges |E(S, S)| is maximized.

@ General Max-CSPs:
e Domain {0,1,...,g — 1}
Payoff Functions P; : [g]* ~ [0, 1]

Objective: Find an assignment that maximizes the

total(average) payoff
o Examples: Max-3SAT, Max-DiCut, Metric Labeling, Label

Cover, Unique Games...



Approximability of Max-CSPs

Following a long line of works, Raghavendra gave optimal

hardness/algorithm for all Max-CSPs.

Theorem(Raghavendra 08)

Assuming UGC, every Max-CSP has a sharp approximation
threshold 7 that matches with the integrality gap of a natural SDP

relaxation.
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hardness/algorithm for all Max-CSPs.

Theorem(Raghavendra 08)

Assuming UGC, every Max-CSP has a sharp approximation
threshold 7 that matches with the integrality gap of a natural SDP

relaxation.

Raghavendra and Steurer also gave a simple and unified way to

optimally round every CSP
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Beyond Local Constraints...

@ The SDP algorithm and hardness analysis for CSPs highly
relies on the locality of the constraints

@ A lot of problems can be formulated as CSPs with global
cardinality constraints

Max(Min)-Bisection

Graph Expansion

Balanced Separator/Sparsest Cut

o Densest Subgraph

Max-Bisection
Given a (weighted) graph G = (V/, E), partition the vertices into

two equal pieces V = S U S such that the number(fraction) of

crossing edges |E(S, S)| is maximized.
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Approximating Max-Bisection

@ Approximation Ratio

0.6514 [Frieze-Jerrum97]
0.699 [Ye01]

0.7016 [Halperin-Zwick02]
0.7027 [Feige-Langberg06]
UG-Hardness: agyw ~ 0.878

@ Almost Perfect Bisection
o 1—cvsl— O(e3log(1/e))
[Guruswami-Makarychev-Raghavendra-Steurer-Zhoull]
UG-Hardness: 1 — € v.s 1 — O(y/€)

@ Our Results

o 0.85-approximation

o l—cvsl—O0(/e)
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Goemans-Williamson Algorithm for Max-Cut

SDP Relaxation

1—vi-v;
ma Y LYY

(ig)EE

s.t lvil| =1

Rounding Scheme: Random hyperplane

Observation

Each vertex has half probability to fall on each side of the
hyperplane.

@ Do we get a bisection?

@ No, b/c the vertices are correlated.
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Algorithms for Max-Bisection

How do we fix this?

o Attempt 1. Different Rounding Scheme (lower the correlation)

o The idea in [FJ97],[Ye01],[HZ02],[FLO6]
o However, low correlation = low cut value
o Guruswami et al. showed an integrality gap instance
[GMRSZ11]
o Attempt 2. "Hope" the variables in the solution are already
close to being independent
e Can indeed be achieved
o Similar idea is used in the SDP-based sub-exponential algorithm

for Unique Games by Barak, Steurer and Raghavendra



Lasserre’s Hierarchy

Given a Max-Bisection instance G = (V, E), k-rounds of Lasserre's

hierarchy solution consists of:



Lasserre’s Hierarchy

Given a Max-Bisection instance G = (V, E), k-rounds of Lasserre's

hierarchy solution consists of:

@ us: Given any subset of vertices S with size at most k, the
SDP provides a probability distribution over the assignments
of S



Lasserre’s Hierarchy

Given a Max-Bisection instance G = (V, E), k-rounds of Lasserre's

hierarchy solution consists of:

@ us: Given any subset of vertices S with size at most k, the

SDP provides a probability distribution over the assignments
of S

® V(s,q): For each subset of vertices S with size at most k and
an assignment « of S, an indicator vector vector vis 3. (In
the intended solution, vis 3 = I if S is assigned to be «,

V({s,a} = 0 otherwise)
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Lasserre's Hierarchy (cont.)

The constraints for Max-Bisection are

@ For S, T C Vsuchthat [SUT| <k, a € {0,1}°, 3 € {0,1} T

Visa} VT8 = Pus,7[Xs = a, X7 =[]

@ The distributions are consistent among subsets
e ForScV, |5 <k
> Visap=!
ae{0,1}5
e Balance constraints: forany S C V, |S| < k—1 and
ac{0,1}°
E[P(X; =0[Xs = a)] = 3

The objective is to maximize

E(i,j)GEPH{X,-,Xj} (Xf # XJ)
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Lasserre's Hierarchy (cont.)

Remarks:

© The variables in Lasserre's Hierarchy are not jointly distributed
(i.e, there is no way to sample the variables such that the
marginal distributions are preserved)

@ Locally indistinguishable from joint distribution

© One can condition on one variable and get a (k — 1)-rounds

Lasserre's solution w.r.t the conditional distribution
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Globally Uncorrelated Solution

@ Recall that we want to construct SDP solution such that the

variables are close to being independent globally

@ Several measure of dependence: Covariance, Correlation,

Statistical Distance, Mutual Information...
@ All the definitions are local, therefore well-defined

@ We use mutual information in this work



Information Theoretical Background

Let X be a random variable taking value in [g]. The entropy of X

is defined as

H(X) ==Y Pr(X =i)logPr(X =)
i€[q]

Mutual Information

Let X and Y be two jointly distributed variables taking value in

[q]. The mutual information of X and Y is defined as

Pr(X =1Y =)
(X=NP(Y =)

IX:Y)= Y Pr(X=iY= J)log 5
ij€lq]




Information Theoretical Background (cont.)

Mutual information ~ 0 = Statistical distance ~ 0, i.e,

STB(X =i, Y = j) — B(X = DB(Y = j)| ~ 0
i.j€lq]
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Information Theoretical Background (cont.)

Mutual information ~ 0 = Statistical distance ~ 0, i.e,

dIPX =i, Y =j)-P(X=0)P(Y =j)|~0
ij€lql

Conditional Entropy

The connection between entropy and mutual information can be
formulated as:
H(X|Y)=H(X)—-I(X;Y)

where H(X|Y) is the conditional entropy.

Intuition: If the average mutual information is high, randomly

conditioning on a variable will make some progress,
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information between a random pair of vertices is low.
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a-Independent Solution

We say a solution is close to being independent if the mutual

information between a random pair of vertices is low.

Definition

A Lasserre's solution is a-independent if E; ;(/(Xj; X)) < «

One can construct a-independent solution via conditioning:

© Randomly sample X ,..., X, .
@ In t-th step, randomly fix variable X; according to the

conditional probability after the first t — 1 fixings.

© The algorithm terminates whenever the solution is

a-independent.



a-Independent Solution (cont.)

We show the algorithm terminates with an a-independent solution

w.h.p

Proof.

Define the potential function ® to be the average entropy of the
variables, i.e
o =E;H(X))

In each step, the (expected) decreasing of the potential function is
exactly the average mutual information

Therefore, there exists 1 < i < k such that the expected
decreasing(average mutual information) of entropy in step i is at
most 1/k
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Structured SDP solution

For any v > 0, we can get an a-independent solution by

conditioning on k-rounds Lasserre's solution for some sufficiently

large k. (k = poly(1/«) suffices)

The SDP solution consists of:
@ For each i, two orthogonal vectors v; g,v; 1 such that
vio+vii=1
® vio = Piol +w;, vi1 = Pj1l — w; for some vector w;
orthogonal to /
@ w; characterizes the correlation of the j-th variable and other

variables, i.e.
P(X; = o, Xj = B) = P(X; = )P(X; = 8) = +(w; - w))



Rounding Algorithm

Rounding Algorithm

@ Let w; be the normalized w;

@ Sample a standard gaussian vector g
© Pick t; such that (D(t,') = P,'70
Q If g-w; < tj, assign X; = 0, otherwise X; =1

Remark: the algorithm preserves the bias individually



Rounding Algorithm

Rounding Algorithm

@ Let w; be the normalized w;
@ Sample a standard gaussian vector g

@ Pick t; such that ®(t;) = Pig

Q If g-w; < tj, assign X; = 0, otherwise X; =1

Remark: the algorithm preserves the bias individually
The analysis of the algorithm consists of two parts: balance and

cut value.
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Balance of the Cut

e Expected balance: 1/2 (Rounding algorithm + SDP
Constraints)
o Concentration: The variance of the balance is
E, ,Cov(F(X,). F(X,))
Will show, /(Xi; Xj) ~ 0 = Cov(F(X;), F(Xj)) ~0
Proof.
I(Xi; X;) ~ 0 = Statistical distance ~ 0 = w; - wj ~ 0 =

[willwj| cos O, %) ~ 0
Case 1. cosf ~ 0

I(g - wi, g - wj) ~ 0= I(F(X1), F(X2)) ~ 0
Case 2. |wj|(|wj]) ~ 0

The variable is highly biased, since the rounding algorithm preserve

the bias, we're done
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Value of the Cut

o Local analysis
@ 0.85-approximation ratio uses computer assisted proof

@ 1 —€ev.s1— O(y/e) has an analytical proof but technical



Dictatorship Test Gadget

Dictatorship Test from a-independent SDP gap

© Sample an edge e = (u,v) € E
@ Sample x, y from the distribution

© Perturb each coordinate of x, y independently with probability

€

© Add an edge between x and y

© Split each vertex w.r.t its weight




Dictatorship Test Gadget (cont.)

The Dictatorship gadget satisfies:

@ Completeness: Dictator cuts are bisections with value ~
sdp(G)
o Soundness: If a function F : {#1}R s [~1,1] is a bisection

(i.e, E(F(x)) = 0) and all its influences are at most 7, i.e
Infy <7

then the value of F is at most opt(G) + C(7,¢€).



Dictatorship Test Gadget (cont.)

Completeness:
@ Balance: SDP Constraints
@ Value: Same as in [Rag08]

Soundness: can use the function to round the SDP solution
@ Balance
o Expected Balance: ~ 1/2 (Invariance Principle)

o Concentration: a-independence

@ Value: Same as in [Rag08]




@ SDP hierarchy helps when global cardinality constraints are
imposed

@ Simple framework to approximate CSPs with global
constraints (0.92-approximation of 2-SAT)

@ As an attempt to prove matching hardness, we give a
construction of dictatorship test via SDP gap instance

Open Questions
o Is Max-Bisection 0.878 approximable?

e Optimal hardness/algorithm for every Max-CSP with global

cardinality constraints?



Questions?



