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Constraint Satisfaction Problems

A classic example – Max Cut

Given a (weighted) graph G = (V ,E ), partition the vertices into

two pieces V = S ∪ S̄ such that the number(fraction) of crossing

edges |E (S , S̄)| is maximized.

General Max-CSPs:

Domain {0, 1, ..., q − 1}
Payoff Functions Pi : [q]k 7→ [0, 1]

Objective: Find an assignment that maximizes the

total(average) payoff

Examples: Max-3SAT, Max-DiCut, Metric Labeling, Label

Cover, Unique Games...
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Approximability of Max-CSPs

Following a long line of works, Raghavendra gave optimal

hardness/algorithm for all Max-CSPs.

Theorem(Raghavendra 08)

Assuming UGC, every Max-CSP has a sharp approximation

threshold τ that matches with the integrality gap of a natural SDP

relaxation.

Raghavendra and Steurer also gave a simple and unified way to

optimally round every CSP
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Beyond Local Constraints...

The SDP algorithm and hardness analysis for CSPs highly

relies on the locality of the constraints

A lot of problems can be formulated as CSPs with global

cardinality constraints

Max(Min)-Bisection

Graph Expansion

Balanced Separator/Sparsest Cut

Densest Subgraph

...

Max-Bisection

Given a (weighted) graph G = (V ,E ), partition the vertices into

two equal pieces V = S ∪ S̄ such that the number(fraction) of

crossing edges |E (S , S̄)| is maximized.
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Approximating Max-Bisection

Approximation Ratio

0.6514 [Frieze-Jerrum97]

0.699 [Ye01]

0.7016 [Halperin-Zwick02]

0.7027 [Feige-Langberg06]

UG-Hardness: αGW ≈ 0.878

Almost Perfect Bisection

1− ε v.s 1− O(ε1/3 log(1/ε))

[Guruswami-Makarychev-Raghavendra-Steurer-Zhou11]

UG-Hardness: 1− ε v.s 1− O(
√
ε)

Our Results

0.85-approximation

1− ε v.s 1− O(
√
ε)
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Goemans-Williamson Algorithm for Max-Cut

SDP Relaxation

max
∑

(i ,j)∈E

1− vi · vj
2

s.t ‖vi‖ = 1

Rounding Scheme: Random hyperplane

Observation

Each vertex has half probability to fall on each side of the

hyperplane.

Do we get a bisection?

No, b/c the vertices are correlated.
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Algorithms for Max-Bisection

How do we fix this?

Attempt 1. Different Rounding Scheme (lower the correlation)

The idea in [FJ97],[Ye01],[HZ02],[FL06]

However, low correlation ⇒ low cut value

Guruswami et al. showed an integrality gap instance

[GMRSZ11]

Attempt 2. ”Hope” the variables in the solution are already

close to being independent

Can indeed be achieved

Similar idea is used in the SDP-based sub-exponential algorithm

for Unique Games by Barak, Steurer and Raghavendra
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Lasserre’s Hierarchy

Given a Max-Bisection instance G = (V ,E ), k-rounds of Lasserre’s

hierarchy solution consists of:

µS : Given any subset of vertices S with size at most k , the

SDP provides a probability distribution over the assignments

of S

v{S ,α}: For each subset of vertices S with size at most k and

an assignment α of S , an indicator vector vector v{S ,α}. (In

the intended solution, v{S ,α} = I if S is assigned to be α,

v{S ,α} = 0 otherwise)
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Lasserre’s Hierarchy (cont.)

The constraints for Max-Bisection are

For S ,T ⊂ V such that |S ∪T | ≤ k , α ∈ {0, 1}S , β ∈ {0, 1}T

v{S ,α} · v{T ,β} = PµS∪T
[XS = α,XT = β]

The distributions are consistent among subsets

For S ⊂ V , |S | ≤ k ∑
α∈{0,1}S

v{S ,α} = I

Balance constraints: for any S ⊂ V , |S | ≤ k − 1 and

α ∈ {0, 1}S

E[P(Xi = 0|XS = α)] = 1
2

The objective is to maximize

E(i ,j)∈EPµ{Xi ,Xj}(Xi 6= Xj)
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Lasserre’s Hierarchy (cont.)

Remarks:

1 The variables in Lasserre’s Hierarchy are not jointly distributed

(i.e, there is no way to sample the variables such that the

marginal distributions are preserved)

2 Locally indistinguishable from joint distribution

3 One can condition on one variable and get a (k − 1)-rounds

Lasserre’s solution w.r.t the conditional distribution
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Globally Uncorrelated Solution

Recall that we want to construct SDP solution such that the

variables are close to being independent globally

Several measure of dependence: Covariance, Correlation,

Statistical Distance, Mutual Information...

All the definitions are local, therefore well-defined

We use mutual information in this work



Globally Uncorrelated Solution

Recall that we want to construct SDP solution such that the

variables are close to being independent globally

Several measure of dependence: Covariance, Correlation,

Statistical Distance, Mutual Information...

All the definitions are local, therefore well-defined

We use mutual information in this work



Globally Uncorrelated Solution

Recall that we want to construct SDP solution such that the

variables are close to being independent globally

Several measure of dependence: Covariance, Correlation,

Statistical Distance, Mutual Information...

All the definitions are local, therefore well-defined

We use mutual information in this work



Globally Uncorrelated Solution

Recall that we want to construct SDP solution such that the

variables are close to being independent globally

Several measure of dependence: Covariance, Correlation,

Statistical Distance, Mutual Information...

All the definitions are local, therefore well-defined

We use mutual information in this work



Information Theoretical Background

Entropy

Let X be a random variable taking value in [q]. The entropy of X

is defined as

H(X ) = −
∑
i∈[q]

Pr(X = i) log Pr(X = i)

Mutual Information

Let X and Y be two jointly distributed variables taking value in

[q]. The mutual information of X and Y is defined as

I (X ;Y ) =
∑
i ,j∈[q]

Pr(X = i ,Y = j) log
Pr(X = i ,Y = j)

Pr(X = i) Pr(Y = j)



Information Theoretical Background (cont.)

Fact

Mutual information ∼ 0 ⇒ Statistical distance ∼ 0, i.e,∑
i ,j∈[q]

|P(X = i ,Y = j)− P(X = i)P(Y = j)| ∼ 0

Conditional Entropy

The connection between entropy and mutual information can be

formulated as:

H(X |Y ) = H(X )− I (X ;Y )

where H(X |Y ) is the conditional entropy.

Intuition: If the average mutual information is high, randomly

conditioning on a variable will make some progress.
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α-Independent Solution

We say a solution is close to being independent if the mutual

information between a random pair of vertices is low.

Definition

A Lasserre’s solution is α-independent if Ei ,j(I (Xi ;Xj)) ≤ α

One can construct α-independent solution via conditioning:

1 Randomly sample Xi1 , . . . ,Xik .

2 In t-th step, randomly fix variable Xi according to the

conditional probability after the first t − 1 fixings.

3 The algorithm terminates whenever the solution is

α-independent.
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α-Independent Solution (cont.)

We show the algorithm terminates with an α-independent solution

w.h.p

Proof.

Define the potential function Φ to be the average entropy of the

variables, i.e

Φ = EiH(Xi )

In each step, the (expected) decreasing of the potential function is

exactly the average mutual information

Therefore, there exists 1 ≤ i ≤ k such that the expected

decreasing(average mutual information) of entropy in step i is at

most 1/k



Structured SDP solution

Theorem

For any α > 0, we can get an α-independent solution by

conditioning on k-rounds Lasserre’s solution for some sufficiently

large k . (k = poly(1/α) suffices)

The SDP solution consists of:

For each i , two orthogonal vectors vi ,0,vi ,1 such that

vi ,0 + vi ,1 = I .

vi ,0 = Pi ,0I + wi , vi ,1 = Pi ,1I − wi for some vector wi

orthogonal to I

wi characterizes the correlation of the i-th variable and other

variables, i.e.

P(Xi = α,Xj = β)− P(Xi = α)P(Xj = β) = ±(wi · wj)
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Rounding Algorithm

Rounding Algorithm

1 Let w̄i be the normalized wi

2 Sample a standard gaussian vector g

3 Pick ti such that Φ(ti ) = Pi ,0

4 If g · w̄i < ti , assign Xi = 0, otherwise Xi = 1

Remark: the algorithm preserves the bias individually

The analysis of the algorithm consists of two parts: balance and

cut value.
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Balance of the Cut

Expected balance: 1/2 (Rounding algorithm + SDP

Constraints)

Concentration: The variance of the balance is

Ei ,jCov(F (Xi ),F (Xj))

Will show, I (Xi ;Xj) ∼ 0 ⇒ Cov(F (Xi ),F (Xj)) ∼ 0

Proof.

I (Xi ;Xj) ∼ 0⇒ Statistical distance ∼ 0⇒ wi · wj ∼ 0⇒
|wi ||wj | cos θ(w̄i , w̄j) ∼ 0

Case 1. cos θ ∼ 0

I (g · w̄i , g · w̄j) ∼ 0⇒ I (F (X1),F (X2)) ∼ 0

Case 2. |wi |(|wj |) ∼ 0

The variable is highly biased, since the rounding algorithm preserve

the bias, we’re done
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Value of the Cut

Local analysis

0.85-approximation ratio uses computer assisted proof

1− ε v.s 1− O(
√
ε) has an analytical proof but technical
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Dictatorship Test Gadget

Dictatorship Test from α-independent SDP gap

1 Sample an edge e = (u, v) ∈ E

2 Sample x , y from the distribution µRe

3 Perturb each coordinate of x , y independently with probability

ε

4 Add an edge between x and y

5 Split each vertex w.r.t its weight



Dictatorship Test Gadget (cont.)

The Dictatorship gadget satisfies:

Completeness: Dictator cuts are bisections with value ≈
sdp(G)

Soundness: If a function F : {±1}R 7→ [−1, 1] is a bisection

(i.e, E(F (x)) = 0) and all its influences are at most τ , i.e

Infµik ≤ τ

then the value of F is at most opt(G ) + C (τ, ε).



Dictatorship Test Gadget (cont.)

Proof.

Completeness:

Balance: SDP Constraints

Value: Same as in [Rag08]

Soundness: can use the function to round the SDP solution

Balance

Expected Balance: ≈ 1/2 (Invariance Principle)

Concentration: α-independence

Value: Same as in [Rag08]



Summary

SDP hierarchy helps when global cardinality constraints are

imposed

Simple framework to approximate CSPs with global

constraints (0.92-approximation of 2-SAT)

As an attempt to prove matching hardness, we give a

construction of dictatorship test via SDP gap instance

Open Questions

Is Max-Bisection 0.878 approximable?

Optimal hardness/algorithm for every Max-CSP with global

cardinality constraints?



Thanks

Questions?


