Approximating CSPs with Global Cardinality Constraints

Prasad Raghavendra Ning Tan

Georgia Tech

August 15, 2011

Constraint Satisfaction Problems

A classic example – Max Cut

Given a (weighted) graph G=(V,E), partition the vertices into two pieces $V=S\cup \bar{S}$ such that the number(fraction) of crossing edges $|E(S,\bar{S})|$ is maximized.

Constraint Satisfaction Problems

A classic example – Max Cut

Given a (weighted) graph G = (V, E), partition the vertices into two pieces $V = S \cup \bar{S}$ such that the number(fraction) of crossing edges $|E(S, \bar{S})|$ is maximized.

- General Max-CSPs:
 - Domain $\{0, 1, ..., q 1\}$
 - Payoff Functions $P_i:[q]^k\mapsto [0,1]$
 - Objective: Find an assignment that maximizes the total(average) payoff
 - Examples: Max-3SAT, Max-DiCut, Metric Labeling, Label Cover, Unique Games...

Approximability of Max-CSPs

Following a long line of works, Raghavendra gave optimal hardness/algorithm for all Max-CSPs.

Theorem(Raghavendra 08)

Assuming UGC, every Max-CSP has a sharp approximation threshold τ that matches with the integrality gap of a natural SDP relaxation.

Approximability of Max-CSPs

Following a long line of works, Raghavendra gave optimal hardness/algorithm for all Max-CSPs.

Theorem(Raghavendra 08)

Assuming UGC, every Max-CSP has a sharp approximation threshold τ that matches with the integrality gap of a natural SDP relaxation.

Raghavendra and Steurer also gave a simple and unified way to optimally round every CSP

Beyond Local Constraints...

 The SDP algorithm and hardness analysis for CSPs highly relies on the *locality* of the constraints

Beyond Local Constraints...

- The SDP algorithm and hardness analysis for CSPs highly relies on the *locality* of the constraints
- A lot of problems can be formulated as CSPs with global cardinality constraints
 - Max(Min)-Bisection
 - Graph Expansion
 - Balanced Separator/Sparsest Cut
 - Densest Subgraph
 - ...

Beyond Local Constraints...

- The SDP algorithm and hardness analysis for CSPs highly relies on the *locality* of the constraints
- A lot of problems can be formulated as CSPs with global cardinality constraints
 - Max(Min)-Bisection
 - Graph Expansion
 - Balanced Separator/Sparsest Cut
 - Densest Subgraph
 - ...

Max-Bisection

Given a (weighted) graph G = (V, E), partition the vertices into two equal pieces $V = S \cup \bar{S}$ such that the number(fraction) of crossing edges $|E(S, \bar{S})|$ is maximized.

Approximating Max-Bisection

- Approximation Ratio
 - 0.6514 [Frieze-Jerrum97]
 - 0.699 [Ye01]
 - 0.7016 [Halperin-Zwick02]
 - 0.7027 [Feige-Langberg06]

UG-Hardness: $\alpha_{GW} \approx 0.878$

Approximating Max-Bisection

- Approximation Ratio
 - 0.6514 [Frieze-Jerrum97]
 - 0.699 [Ye01]
 - 0.7016 [Halperin-Zwick02]
 - 0.7027 [Feige-Langberg06] UG-Hardness: $\alpha_{GW} \approx 0.878$
- Almost Perfect Bisection
 - $1-\epsilon$ v.s $1-O(\epsilon^{1/3}\log(1/\epsilon))$ [Guruswami-Makarychev-Raghavendra-Steurer-Zhou11] UG-Hardness: $1-\epsilon$ v.s $1-O(\sqrt{\epsilon})$

Approximating Max-Bisection

- Approximation Ratio
 - 0.6514 [Frieze-Jerrum97]
 - 0.699 [Ye01]
 - 0.7016 [Halperin-Zwick02]
 - 0.7027 [Feige-Langberg06] UG-Hardness: $\alpha_{GW} \approx 0.878$
- Almost Perfect Bisection

•
$$1-\epsilon$$
 v.s $1-O(\epsilon^{1/3}\log(1/\epsilon))$
 [Guruswami-Makarychev-Raghavendra-Steurer-Zhou11]
 UG-Hardness: $1-\epsilon$ v.s $1-O(\sqrt{\epsilon})$

- Our Results
 - 0.85-approximation
 - 1ϵ v.s $1 O(\sqrt{\epsilon})$

SDP Relaxation

$$\max \sum_{(i,j)\in E} rac{1-v_i\cdot v_j}{2}$$
 $s.t \qquad \|v_i\|=1$

Rounding Scheme: Random hyperplane

SDP Relaxation

$$\max \sum_{(i,j)\in E} \frac{1-v_i\cdot v_j}{2}$$

$$s.t \qquad \|v_i\|=1$$

Rounding Scheme: Random hyperplane

Observation

Each vertex has half probability to fall on each side of the hyperplane.

SDP Relaxation

$$\max \sum_{(i,j)\in E} \frac{1-v_i\cdot v_j}{2}$$

$$s.t \qquad \|v_i\|=1$$

Rounding Scheme: Random hyperplane

Observation

Each vertex has half probability to fall on each side of the hyperplane.

• Do we get a bisection?

SDP Relaxation

$$\max \sum_{(i,j)\in E} \frac{1-v_i\cdot v_j}{2}$$

$$s.t \qquad \|v_i\|=1$$

Rounding Scheme: Random hyperplane

Observation

Each vertex has half probability to fall on each side of the hyperplane.

- Do we get a bisection?
- No, b/c the vertices are correlated.

How do we fix this?

• Attempt 1. Different Rounding Scheme (lower the correlation)

- Attempt 1. Different Rounding Scheme (lower the correlation)
 - The idea in [FJ97],[Ye01],[HZ02],[FL06]

- Attempt 1. Different Rounding Scheme (lower the correlation)
 - The idea in [FJ97],[Ye01],[HZ02],[FL06]
 - \bullet However, low correlation \Rightarrow low cut value

- Attempt 1. Different Rounding Scheme (lower the correlation)
 - The idea in [FJ97],[Ye01],[HZ02],[FL06]
 - However, low correlation ⇒ low cut value
 - Guruswami et al. showed an integrality gap instance [GMRSZ11]

- Attempt 1. Different Rounding Scheme (lower the correlation)
 - The idea in [FJ97],[Ye01],[HZ02],[FL06]
 - ullet However, low correlation \Rightarrow low cut value
 - Guruswami et al. showed an integrality gap instance [GMRSZ11]
- Attempt 2. "Hope" the variables in the solution are already close to being independent

- Attempt 1. Different Rounding Scheme (lower the correlation)
 - The idea in [FJ97],[Ye01],[HZ02],[FL06]
 - However, low correlation ⇒ low cut value
 - Guruswami et al. showed an integrality gap instance [GMRSZ11]
- Attempt 2. "Hope" the variables in the solution are already close to being independent
 - Can indeed be achieved

- Attempt 1. Different Rounding Scheme (lower the correlation)
 - The idea in [FJ97],[Ye01],[HZ02],[FL06]
 - However, low correlation ⇒ low cut value
 - Guruswami et al. showed an integrality gap instance [GMRSZ11]
- Attempt 2. "Hope" the variables in the solution are already close to being independent
 - Can indeed be achieved
 - Similar idea is used in the SDP-based sub-exponential algorithm for Unique Games by Barak, Steurer and Raghavendra

Lasserre's Hierarchy

Given a Max-Bisection instance G = (V, E), k-rounds of Lasserre's hierarchy solution consists of:

Lasserre's Hierarchy

Given a Max-Bisection instance G = (V, E), k-rounds of Lasserre's hierarchy solution consists of:

• μ_S : Given any subset of vertices S with size at most k, the SDP provides a probability distribution over the assignments of S

Lasserre's Hierarchy

Given a Max-Bisection instance G = (V, E), k-rounds of Lasserre's hierarchy solution consists of:

- μ_S: Given any subset of vertices S with size at most k, the SDP provides a probability distribution over the assignments of S
- $v_{\{S,\alpha\}}$: For each subset of vertices S with size at most k and an assignment α of S, an indicator vector vector $v_{\{S,\alpha\}}$. (In the intended solution, $v_{\{S,\alpha\}}=I$ if S is assigned to be α , $v_{\{S,\alpha\}}=0$ otherwise)

The constraints for Max-Bisection are

• For
$$S,T\subset V$$
 such that $|S\cup T|\leq k$, $\alpha\in\{0,1\}^S$, $\beta\in\{0,1\}^T$
$$v_{\{S,\alpha\}}\cdot v_{\{T,\beta\}}=\mathbb{P}_{\mu_{S\cup T}}[X_S=\alpha,X_T=\beta]$$

The constraints for Max-Bisection are

• For $S,T\subset V$ such that $|S\cup T|\leq k$, $\alpha\in\{0,1\}^S$, $\beta\in\{0,1\}^T$ $v_{\{S,\alpha\}}\cdot v_{\{T,\beta\}}=\mathbb{P}_{\mu_{S\cup T}}[X_S=\alpha,X_T=\beta]$

The distributions are consistent among subsets

The constraints for Max-Bisection are

• For $S, T \subset V$ such that $|S \cup T| \le k$, $\alpha \in \{0,1\}^S$, $\beta \in \{0,1\}^T$

$$v_{\{S,\alpha\}} \cdot v_{\{T,\beta\}} = \mathbb{P}_{\mu_{S \cup T}}[X_S = \alpha, X_T = \beta]$$

- The distributions are consistent among subsets
- For $S \subset V$, $|S| \leq k$

$$\sum_{\alpha \in \{0,1\}^S} v_{\{S,\alpha\}} = I$$

The constraints for Max-Bisection are

• For $S,T\subset V$ such that $|S\cup T|\leq k$, $\alpha\in\{0,1\}^S$, $\beta\in\{0,1\}^T$ $v_{\{S,\alpha\}}\cdot v_{\{T,\beta\}}=\mathbb{P}_{\mu_{S\cup T}}[X_S=\alpha,X_T=\beta]$

- The distributions are consistent among subsets
- For $S \subset V$, $|S| \leq k$

$$\sum_{\alpha \in \{0,1\}^S} v_{\{S,\alpha\}} = I$$

• Balance constraints: for any $S \subset V$, $|S| \leq k-1$ and $\alpha \in \{0,1\}^S$

$$\mathbb{E}[\mathbb{P}(X_i=0|X_S=\alpha)]=\frac{1}{2}$$

The constraints for Max-Bisection are

• For $S,T\subset V$ such that $|S\cup T|\leq k$, $\alpha\in\{0,1\}^S$, $\beta\in\{0,1\}^T$ $v_{\{S,\alpha\}}\cdot v_{\{T,\beta\}}=\mathbb{P}_{\mu_{S\cup T}}[X_S=\alpha,X_T=\beta]$

- The distributions are consistent among subsets
- For $S \subset V$, $|S| \leq k$

$$\sum_{\alpha \in \{0,1\}^S} v_{\{S,\alpha\}} = I$$

• Balance constraints: for any $S \subset V$, $|S| \leq k-1$ and $\alpha \in \{0,1\}^S$

$$\mathbb{E}[\mathbb{P}(X_i=0|X_S=\alpha)]=\frac{1}{2}$$

The constraints for Max-Bisection are

• For $S, T \subset V$ such that $|S \cup T| \le k$, $\alpha \in \{0,1\}^S$, $\beta \in \{0,1\}^T$

$$v_{\{S,\alpha\}} \cdot v_{\{T,\beta\}} = \mathbb{P}_{\mu_{S \cup T}}[X_S = \alpha, X_T = \beta]$$

- The distributions are consistent among subsets
- For $S \subset V$, $|S| \leq k$

$$\sum_{\alpha \in \{0,1\}^S} v_{\{S,\alpha\}} = I$$

• Balance constraints: for any $S \subset V$, $|S| \leq k-1$ and $\alpha \in \{0,1\}^S$

$$\mathbb{E}[\mathbb{P}(X_i = 0 | X_S = \alpha)] = \frac{1}{2}$$

The objective is to maximize

$$\mathbb{E}_{(i,j)\in E}\mathbb{P}_{\mu_{\{X_i,X_j\}}}(X_i
eq X_j)$$

Remarks:

• The variables in Lasserre's Hierarchy are not jointly distributed (i.e, there is no way to sample the variables such that the marginal distributions are preserved)

Remarks:

- The variables in Lasserre's Hierarchy are not jointly distributed (i.e, there is no way to sample the variables such that the marginal distributions are preserved)
- Locally indistinguishable from joint distribution

Remarks:

- The variables in Lasserre's Hierarchy are not jointly distributed (i.e, there is no way to sample the variables such that the marginal distributions are preserved)
- Locally indistinguishable from joint distribution
- **3** One can *condition* on one variable and get a (k-1)-rounds Lasserre's solution w.r.t the conditional distribution

Globally Uncorrelated Solution

 Recall that we want to construct SDP solution such that the variables are close to being independent globally

Globally Uncorrelated Solution

- Recall that we want to construct SDP solution such that the variables are close to being independent globally
- Several measure of dependence: Covariance, Correlation,
 Statistical Distance, Mutual Information...

Globally Uncorrelated Solution

- Recall that we want to construct SDP solution such that the variables are close to being independent globally
- Several measure of dependence: Covariance, Correlation,
 Statistical Distance, Mutual Information...
- All the definitions are local, therefore well-defined

Globally Uncorrelated Solution

- Recall that we want to construct SDP solution such that the variables are close to being independent globally
- Several measure of dependence: Covariance, Correlation,
 Statistical Distance, Mutual Information...
- All the definitions are local, therefore well-defined
- We use mutual information in this work

Information Theoretical Background

Entropy

Let X be a random variable taking value in [q]. The *entropy* of X is defined as

$$H(X) = -\sum_{i \in [q]} \Pr(X = i) \log \Pr(X = i)$$

Mutual Information

Let X and Y be two jointly distributed variables taking value in [q]. The mutual information of X and Y is defined as

$$I(X; Y) = \sum_{i,j \in [q]} \Pr(X = i, Y = j) \log \frac{\Pr(X = i, Y = j)}{\Pr(X = i) \Pr(Y = j)}$$

Information Theoretical Background (cont.)

Fact

Mutual information \sim 0 \Rightarrow Statistical distance \sim 0, i.e,

$$\sum_{i,j\in[q]} |\mathbb{P}(X=i,Y=j) - \mathbb{P}(X=i)\mathbb{P}(Y=j)| \sim 0$$

Information Theoretical Background (cont.)

Fact

Mutual information $\sim 0 \Rightarrow$ Statistical distance \sim 0, i.e,

$$\sum_{i,j\in[q]} |\mathbb{P}(X=i,Y=j) - \mathbb{P}(X=i)\mathbb{P}(Y=j)| \sim 0$$

Conditional Entropy

The connection between entropy and mutual information can be formulated as:

$$H(X|Y) = H(X) - I(X;Y)$$

where H(X|Y) is the conditional entropy.

Information Theoretical Background (cont.)

Fact

Mutual information \sim 0 \Rightarrow Statistical distance \sim 0, i.e,

$$\sum_{i,j\in[q]} |\mathbb{P}(X=i,Y=j) - \mathbb{P}(X=i)\mathbb{P}(Y=j)| \sim 0$$

Conditional Entropy

The connection between entropy and mutual information can be formulated as:

$$H(X|Y) = H(X) - I(X;Y)$$

where H(X|Y) is the conditional entropy.

Intuition: If the *average* mutual information is high, randomly conditioning on a variable will make some progress

α -Independent Solution

We say a solution is close to being independent if the mutual information between a *random pair* of vertices is low.

Definition

A Lasserre's solution is α -independent if $\mathbb{E}_{i,j}(I(X_i;X_j)) \leq \alpha$

α -Independent Solution

We say a solution is close to being independent if the mutual information between a *random pair* of vertices is low.

Definition

A Lasserre's solution is α -independent if $\mathbb{E}_{i,j}(I(X_i; X_j)) \leq \alpha$

One can construct α -independent solution via conditioning:

- Randomly sample X_{i_1}, \ldots, X_{i_k} .
- ② In t-th step, randomly fix variable X_i according to the conditional probability after the first t-1 fixings.
- $\begin{tabular}{ll} \hline \bullet & The algorithm terminates whenever the solution is \\ α-independent. \\ \hline \end{tabular}$

α -Independent Solution (cont.)

We show the algorithm terminates with an α -independent solution w.h.p

Proof.

Define the potential function Φ to be the average entropy of the variables, i.e

$$\Phi = \mathbb{E}_i H(X_i)$$

In each step, the (expected) decreasing of the potential function is exactly the average mutual information

Therefore, there exists $1 \le i \le k$ such that the expected decreasing(average mutual information) of entropy in step i is at most 1/k

Theorem

For any $\alpha>0$, we can get an α -independent solution by conditioning on k-rounds Lasserre's solution for some sufficiently large k. ($k=poly(1/\alpha)$ suffices)

Theorem

For any $\alpha>0$, we can get an α -independent solution by conditioning on k-rounds Lasserre's solution for some sufficiently large k. ($k=poly(1/\alpha)$ suffices)

The SDP solution consists of:

• For each i, two orthogonal vectors $v_{i,0}, v_{i,1}$ such that $v_{i,0} + v_{i,1} = I$.

Theorem

For any $\alpha>0$, we can get an α -independent solution by conditioning on k-rounds Lasserre's solution for some sufficiently large k. ($k=poly(1/\alpha)$ suffices)

The SDP solution consists of:

- For each i, two orthogonal vectors $v_{i,0}, v_{i,1}$ such that $v_{i,0} + v_{i,1} = I$.
- $v_{i,0} = P_{i,0}I + w_i$, $v_{i,1} = P_{i,1}I w_i$ for some vector w_i orthogonal to I

Theorem

For any $\alpha>0$, we can get an α -independent solution by conditioning on k-rounds Lasserre's solution for some sufficiently large k. ($k=poly(1/\alpha)$ suffices)

The SDP solution consists of:

- For each i, two orthogonal vectors $v_{i,0}, v_{i,1}$ such that $v_{i,0} + v_{i,1} = I$.
- $v_{i,0} = P_{i,0}I + w_i$, $v_{i,1} = P_{i,1}I w_i$ for some vector w_i orthogonal to I
- w_i characterizes the correlation of the i-th variable and other variables, i.e.

$$\mathbb{P}(X_i = \alpha, X_j = \beta) - \mathbb{P}(X_i = \alpha)\mathbb{P}(X_j = \beta) = \pm (w_i \cdot w_j)$$

Rounding Algorithm

Rounding Algorithm

- Let \bar{w}_i be the normalized w_i
- 2 Sample a standard gaussian vector g
- **3** Pick t_i such that $\Phi(t_i) = P_{i,0}$
- If $g \cdot \bar{w}_i < t_i$, assign $X_i = 0$, otherwise $X_i = 1$

Remark: the algorithm preserves the bias individually

Rounding Algorithm

Rounding Algorithm

- **1** Let \bar{w}_i be the normalized w_i
- 2 Sample a standard gaussian vector g
- **3** Pick t_i such that $\Phi(t_i) = P_{i,0}$
- If $g \cdot \bar{w}_i < t_i$, assign $X_i = 0$, otherwise $X_i = 1$

Remark: the algorithm preserves the bias individually

The analysis of the algorithm consists of two parts: balance and cut value.

Expected balance: 1/2 (Rounding algorithm + SDP Constraints)

- Expected balance: 1/2 (Rounding algorithm + SDP Constraints)
- Concentration: The variance of the balance is $\mathbb{E}_{i,j}\mathsf{Cov}(F(X_i),F(X_j))$ Will show, $I(X_i;X_j)\sim 0\Rightarrow \mathsf{Cov}(F(X_i),F(X_j))\sim 0$

- Expected balance: 1/2 (Rounding algorithm + SDP Constraints)
- Concentration: The variance of the balance is $\mathbb{E}_{i,j}\mathsf{Cov}(F(X_i),F(X_j))$ Will show, $I(X_i;X_j)\sim 0\Rightarrow \mathsf{Cov}(F(X_i),F(X_j))\sim 0$

- Expected balance: 1/2 (Rounding algorithm + SDP Constraints)
- Concentration: The variance of the balance is $\mathbb{E}_{i,j}\mathsf{Cov}(F(X_i),F(X_j))$ Will show, $I(X_i;X_j)\sim 0\Rightarrow \mathsf{Cov}(F(X_i),F(X_i))\sim 0$

Proof.

$$I(X_i; X_j) \sim 0 \Rightarrow \text{Statistical distance} \sim 0 \Rightarrow w_i \cdot w_j \sim 0 \Rightarrow |w_i||w_j|\cos\theta(\bar{w}_i, \bar{w}_j) \sim 0$$
Case 1. $\cos\theta \sim 0$
 $I(g \cdot \bar{w}_i, g \cdot \bar{w}_i) \sim 0 \Rightarrow I(F(X_1), F(X_2)) \sim 0$

Case 2.
$$|w_i|(|w_i|) \sim 0$$

The variable is highly biased, since the rounding algorithm preserve the bias, we're done

Value of the Cut

Local analysis

Value of the Cut

- Local analysis
- 0.85-approximation ratio uses computer assisted proof

Value of the Cut

- Local analysis
- 0.85-approximation ratio uses computer assisted proof
- ullet $1-\epsilon$ v.s $1-\mathcal{O}(\sqrt{\epsilon})$ has an analytical proof but technical

Dictatorship Test Gadget

Dictatorship Test from α -independent SDP gap

- **1** Sample an edge $e = (u, v) \in E$
- ② Sample x, y from the distribution μ_e^R
- $\begin{tabular}{ll} \bullet & \textbf{Perturb each coordinate of } \textbf{\textit{x}}, \textbf{\textit{y}} & \textbf{independently with probability} \\ \epsilon & \\ \hline & \epsilon & \\ \hline \\ \hline & \epsilon & \\$
- Add an edge between x and y
- Split each vertex w.r.t its weight

Dictatorship Test Gadget (cont.)

The Dictatorship gadget satisfies:

- \bullet Completeness: Dictator cuts are bisections with value \approx $\mathsf{sdp}(\mathsf{G})$
- Soundness: If a function $F: \{\pm 1\}^R \mapsto [-1,1]$ is a bisection (i.e, $\mathbb{E}(F(x)) = 0$) and all its influences are at most τ , i.e

$$\mathrm{Inf}_k^{\mu_i} \leq au$$

then the value of F is at most $opt(G) + C(\tau, \epsilon)$.

Dictatorship Test Gadget (cont.)

Proof.

Completeness:

Balance: SDP Constraints

Value: Same as in [Rag08]

Soundness: can use the function to round the SDP solution

Balance

ullet Expected Balance: pprox 1/2 (Invariance Principle)

• Concentration: α -independence

Value: Same as in [Rag08]

Summary

- SDP hierarchy helps when global cardinality constraints are imposed
- Simple framework to approximate CSPs with global constraints (0.92-approximation of 2-SAT)
- As an attempt to prove matching hardness, we give a construction of dictatorship test via SDP gap instance

Open Questions

- Is Max-Bisection 0.878 approximable?
- Optimal hardness/algorithm for every Max-CSP with global cardinality constraints?

Questions?