Robust Algorithms for CSPs

Andrei Krokhin Durham University

Joint work with Víctor Dalmau (UPF Barcelona)

Notation

Fix a finite set DConstraint language Γ = finite set of relations on D

- CSP(Γ): given constraints $R_1(\mathbf{x}_1), \ldots, R_q(\mathbf{x}_q)$ over a set of variables V, and such that each $R_i \in \Gamma$, decide if there is $\varphi: V \to D$ satisfying all constraints
- MAX $CSP(\Gamma)$: optimisation, can repeat constraints
- Want: classify the complexity and approximability
- Many algorithmic and hardness results
- Many approaches: algebra, logic, graphs, analysis etc
- Many open questions

Algorithms for (Max) CSP: Good and Bad

- Exact polynomial-time algorithm for $CSP(\Gamma)$
 - Good: correctly identifies (un)satisfiable instances
 - Bad: 0.999-satisfiable vs. (< 0.001)-satisfiable?
- Approx polynomial-time algorithm for MAX $\operatorname{CSP}(\Gamma)$
 - Good: treats all instances uniformly
 - Bad: satisfiable vs. 0.999-satisfiable?

Is there a good natural compromise between those two?

Robust Algorithms

- Call an algorithm for $\text{CSP}(\Gamma)$ robust [Zwick'98] if
 - it correctly identifies satisfiable instances, and
 - for a (1ϵ) -satisfiable instance, it outputs a $(1 - g(\epsilon))$ -satisfying assignment, where $g() \to 0$,
 - running time is polynomial in the size of instance, does not depend on ϵ
- Robust algorithms:
 - (almost) untouched for 12 years
 - meeting point of algebra and approximation

Previous Negative Results

3-LINp: systems of linear 3-variable equations mod p

- Easy as a CSP
- Trivial 1/*p*-approximation algorithm for MAX CSP: assign values to variables uniformly at random
- Best possible [Håstad'01]
- For any $\epsilon, \gamma > 0$, it is **NP**-hard to approximate within $1/p + \gamma$, even on (1ϵ) -satisfiable instances
- Hence no robust algorithm

Previous Positive Results

Restrict MAX $\text{CSP}(\Gamma)$ to $(1 - \epsilon)$ -satisfiable instances, algorithm finds, in expectation, $(1 - g(\epsilon))$ -sat assignment

- HORN-k-SAT $g(\epsilon) = \frac{\log k}{\log(1/\epsilon)}$ (LP-based) [Zwick'98]
- 2-Sat
 - $g(\epsilon) = 5 \cdot \epsilon^{1/3}$ (SDP-based) [Zwick'98]
 - $g(\epsilon) = O(\epsilon^{1/2})$

[Charikar, Makarychev²'09]

• Unique Games-k

- $g(\epsilon) = O(k^2 \epsilon^{1/5} \sqrt{\log(1/\epsilon)})$ [Khot'02]

- $g(\epsilon) \approx 1 - O(k^{-\epsilon/2})$ [Charikar,Makarychev²'06]

The Issue with Equality

- Let $CSP(\Gamma)$ admit a robust algorithm with some $g(\epsilon)$
- Let $\Gamma_{=}$ denote $\Gamma \cup \{=\}$.
- Assumption (A): $CSP(\Gamma_{=})$ admits a robust algorithm
 - need (A) to build general algebraic theory
 - current conjecture about RA does not rely on (A)
- Stronger A (SA): ditto + with $g' = \Omega(g)$

- might need (SA) to study $g(\epsilon)$ quantitatively

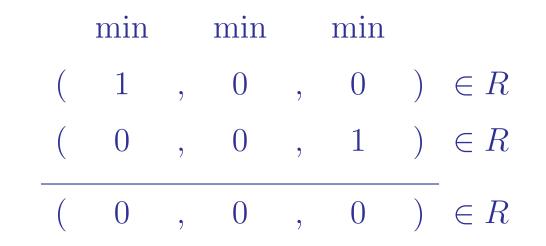
Primitive Positive Definability

- Let Γ be a constraint language on D
- Let G be a sat instance of $CSP(\Gamma)$ with c constraints
- Let R be a projection of Sol(G) on some coordinates
- Assume $CSP(\Gamma)$ admits RA with some $g(\epsilon)$
- Then $CSP(\Gamma \cup \{R\})$ admits RA with $c \cdot g(c\epsilon)$
- The same if G is an instance of CSP(Γ₌) + (A)/(SA)
 logic/algebra lingo: R is pp-definable in Γ
- If Γ_1 and Γ_2 pp-define each other, treat them the same
- What controls pp-definability?

Polymorphisms by Example

Consider the relation $R = \{(0, 0, 0), (1, 0, 0), (0, 0, 1)\}.$

• The binary operation min is a polymorphism of R.



• The binary operation max is not.

Polymorphisms in Control

Let $Pol(\Gamma) = \{ f \mid f \text{ is a polymorphism of each } R \in \Gamma \}$

Theorem 1 (Geiger'68; Bodnarchuk et al'69) $\Gamma_1 \ pp\text{-defines} \ \Gamma_2 \ iff \operatorname{Pol}(\Gamma_1) \subseteq \operatorname{Pol}(\Gamma_2).$

- Need to look at $Pol(\Gamma)$ rather than Γ
- "Nice" operations in $Pol(\Gamma) \Rightarrow$ "easy" $CSP(\Gamma)$
- Actually, algebra goes much deeper than that
- "Nice" = good identities, e.g. - f(x, y) = f(y, x) min for HORN k-SAT - m(x, x, y) = m(x, y, x) = m(y, x, x) = x 2-SAT
- Good identities \Rightarrow structure in relations/algebras

Important Technicalities

- Assume $f \in Pol(\Gamma)$ is unary non-bijective
- Apply f to any assignment, preserve sat constraints
- So, can ignore values in $D \setminus Range(f)$
- Take f with minimum range, remove $D \setminus Range(f)$
- What remains is the core of Γ (unique up to isomorph)
- If Γ_0 is the core of Γ then $\text{CSP}(\Gamma) = \text{CSP}(\Gamma_0)$
- If Γ is a core (of itself), and $\Gamma^c = \Gamma \cup \{\{a\} \mid a \in D\}$

– Lemma: If Γ admits RA, then so does Γ^c

Bounded Width

For $l \leq k$, an (l, k)-strategy S for I is a non-empty set of partial assignments with domain size $\leq l$ or k satisfying:

- 1. If $q \in S$ and $p \subseteq q$ (i.e. q extends p) then $p \in S$.
- 2. If $p \in S$ and $|dom(p)| \leq l$ then, for each $u \in V$, there is $q \in S$ with |dom(q) = k| s.t. $p \subseteq q$ and $u \in dom(q)$.
- 3. If $p \in S$ and C is a constraint in I whose variables are all contained in dom(p) then p satisfies C.

Any satisfiable instance has an (l, k)-strategy for any l, k: restrictions of any fixed satisfying assignment $CSP(\Gamma)$ has width (l, k) if, $\forall I, (l, k)$ -strategy \Rightarrow satisfiable

Bounded Width Theorems

Bounded width = width (l, k) for some l, k

Wlog assume $\Gamma = \Gamma^c$.

Theorem 2 (Larose,Zádori'06; Valeriote'09) If Γ pp-defines a constraint language whose core is 3LIN-pfor some p then $CSP(\Gamma)$ does not have bounded width.

The above pp-definition can be chosen without equality.

Theorem 3 (Barto,Kozik'09; Bulatov'09) In all other cases, $CSP(\Gamma)$ has width (2, k) where $k = \max(3, maxar)$.

The Guruswami-Zhou Conjecture

Guruswami and Zhou observed that

- the obstructions for bounded width are the same as the known obstructions for robust algorithms: 3LIN-p
- For Boolean CSPs, BW=RA

Conjecture 1 (Guruswami,Zhou'11) $CSP(\Gamma)$ admits a robust algorithm iff it has bounded width.

- The \Rightarrow direction holds by [Håstad] + previous slide.
- The \Leftarrow direction is the conjecture.

Width 1

- $CSP(\Gamma)$ has width 1 if, $\forall I$, (1, maxar)-strategy \Rightarrow sat
- HORN k-SAT has width 1
- 2-SAT and UG-k have bounded width, but not width 1

Theorem 4 (Kun et al'11; Dalmau,AK'11) If $CSP(\Gamma)$ has width 1 then it admits a robust algorithm. Reduction to (dual) HORN k'-SAT where $k' = maxar \cdot |D|$. Define Γ' on domain $2^D \setminus \{\emptyset\}$ as follows [Feder,Vardi'98]

•
$$\Gamma' = \{ R' \mid R \in \Gamma \}$$

• $R' = \{(A_1, \dots, A_r) \mid \exists S \subseteq R \text{ s.t. } \forall i \ A_i = pr_i S\}$

Width 1 Cont'd

Facts about Γ' [Feder,Vardi'98]:

- Function $a \to \{a\}$ maps tuples in R to tuples in R'
- If $\text{CSP}(\Gamma)$ has width 1 then there exists $f: 2^D \to D$ (aka set function) mapping tuples in R' to tuples in R.
- Can transform an instance I of $CSP(\Gamma)$ to an instance I' of MAX $CSP(\Gamma')$ by replacing each R with R'.
- Can move between assignments for *I* and *I'*, preserving satisfied constraints
- Hence can replace Γ by Γ'

Width 1 Cont'd

- Obtain Γ'' by Booleanising Γ'
 - the domain of Γ'' is $\{0,1\}$

$$-ar(R) = ar(R') = r \Rightarrow ar(R'') = r|D|.$$

– replace each $A \subseteq D$ by its characteristic vector

- MAX $\operatorname{CSP}(\Gamma')$ and MAX $\operatorname{CSP}(\Gamma'')$ are the same
- Trivially, \cup is a polymorphism of Γ'
- So, max is a polymorphism of Γ''
- Hence MAX $\text{CSP}(\Gamma'')$ is dual HORN k'-SAT where $k' = maxar \cdot |D|$
- Apply [Zwick'98], use set function f to go back to I

Beyond Width 1

Theorem 5 (Dalmau,AK'11) If $d \in Pol(\Gamma)$ then CSP(Γ) admits a robust algorithm with $g(\epsilon) = O(\epsilon^{1/10})$.

The operation d (dual discriminator) is defined as

$$d(x, y, z) = \begin{cases} x & \text{if } x = y \\ z & \text{otherwise} \end{cases}$$

Can assume that relations in Γ are of three types [JCG'96]:

1. all unary relations (wlog of the form $D \setminus \{a\}$)

2.
$$(x = a \lor y = b)$$
 where $a, b \in D$ 2-SAT-like

3. $\{(a, \pi(a) \mid a \in D\}$ where π is a permutation UG

SDP relaxation

Basic SDP for an instance I of $CSP(\Gamma)$ with vars V.

- Vector variables X_u^i , $u \in V$, $i \in D = \{1, \dots, k\}$. (Rough intuition: $||X_u^i|| \approx 1 \Leftrightarrow u$ is assigned i)
- SDP constraints

$$\begin{split} ||X_{u}^{1}||^{2} + \cdots + ||X_{u}^{k}||^{2} &= 1, \quad u \in V \\ X_{u}^{i} \cdot X_{u}^{j} &= 0, \quad u \in V, \ 1 \leq i \neq j \leq k \\ X_{u}^{i} \cdot X_{v}^{j} \geq 0, \quad u, v \in V, \ 1 \leq i, j \leq k \\ \sum_{1 \leq i, j \leq k} X_{u}^{i} \cdot X_{v}^{j} &= 1, \quad u, v \in V \end{split}$$

Goal Function

• The goal function is $\sum_{C \in I} z_C$ where $z_C =$

$$\begin{cases} \sum_{1 \le i \le k} X_u^i \cdot X_v^{\pi(i)} & \text{if } C = ((u, v), \pi) \\\\ 1 - X_u^i \cdot X_u^i & \text{if } C = (u, D \setminus \{i\}) \\\\ 1 - \overline{X}_u^i \cdot \overline{X}_v^j & \text{if } C = (u = i \lor v = j) \end{cases}$$

where \overline{X}_{u}^{i} is a shortand for $\sum_{1 \leq j \neq i \leq k} X_{u}^{j}$

2-Step Rounding

Combination of Zwick's 2-SAT and Khot's UG-k ideas.

- Set $S = \sum_{1 \le i \le k} X_u^i$ (independent of u, ||S|| = 1)
- Set $Y_u^i = 2X_u^i S, \ u \in V, i \in D$ (again, $||Y_u^i|| = 1$)
- Apply Zwick's rounding with appropriate ϵ to Y_u^i
 - rotate vectors Y_u^i towards the line given by S
 - take vector N_1 uniformly generated from the unit sphere, replace by -N if necess to have $N_1 \cdot S > 0$
 - if there is a unique Y_u^i with $N_1 \cdot Y_u^i > 0$, set u = i
- Choose vector N_2 from distribution $N(0,1), N_2 \cdot S > 0$
- Set each undefined u to i such that $N_2 \cdot X_u^i$ is max

Mixed MAX CSP

In a mixed MAX CSP instance, constraints are of two sorts:

- Hard constraints that must be satisfied
- Soft constraints that can be falsified.

The case when all soft constraints are unary was studied:

- as MINCOSTCSP, complexity [Takhanov'10]
- as STRICT CSP, approximability [Kumar et al'11]

Robust Algorithms for MIXED CSP

- Can study robust algorithms for Mixed CSP
- Compute all fractions of the number of soft constraints
- Non-empty notion: MIXED UG-k admits RA
 - reduction to ordinary (soft) UG-k
 - eliminate all hard constraints
 - if $R_1(x, y)$ is hard, then, for each soft $R_2(y, z)$, replace $R_2(y, z)$ by $R_3(x, z)$ where $R_3 = R_1 \circ R_2$
 - eventually no soft constraint will touch y
 - now eliminate all hard constraints involving y

Mixed Horn k-Sat

Theorem 6 (Dalmau,AK'11)

If, for each fixed k', MIXED HORN k'-SAT admits RA then the Guruswami-Zhou conjecture holds.

Proof Idea: Fix Γ such that $\text{CSP}(\Gamma)$ has bounded width. Express existence of (2, maxar)-strategy for an instance I of $\text{CSP}(\Gamma)$ as an instance I' of MIXED HORN k'-SAT with $k' = \sum_{i=1}^{maxar} |D|^i$.

For each p with $|dom(p)| \leq maxar$, introduce a Boolean variable x_p stating "p is not in the strategy". Since maxar is constant, polynomially many variables.

Clauses in I'

- **1.** If $q \in S$ and $p \subseteq q$ (i.e. q extends p) then $p \in S$.
 - add hard $x_p \to x_q$
- 2. If $p \in S$ and |dom(p)| < k then for every $u \in V$ there exists some $q \in S$ with $p \subseteq q$ and $u \in dom(q)$.
 - add hard $\bigvee x_q \to x_p$ where \bigvee is over all q with $u \in dom(q) \supseteq dom(p)$
- 3. If $p \in S$ and C is a constraint in I whose scope is entirely contained in dom(p) then p satisfies C
 - add soft x_p , for each C and p falsifying the above
- 4. non-empty strategy: add hard $\bigvee_p \overline{x}_p$

More about I'

- Since k is constant, I' has polynomially many constraints
- There are at most M different soft constraints in I'where $M = \sum_{i=1}^{k} |D|^{i}$
- Each soft constraint appears at most m times where m is the number of constraints in I
- Satisfying assignment φ' for $I' \Rightarrow$ strategy $S_{\varphi'}$ for I consisting of all p with $x_p = 0$

Almost Satisfiable I'

Assume φ' fails to satisfy ϵ -fraction of soft constraints in I'.

- If a soft clause (x_p) is falsified then remove from I all constraints corresponding to it
- These form at most $(M \cdot \epsilon)$ -fraction of constraints in I
- Now $\mathcal{S}_{\varphi'}$ is a strategy for the remaining instance
- Bounded width algorithm finds a solution for it

Open Problems

- Settle the Guruswami-Zhou conjecture
- Study quantitative dependence of g(ε) on Γ
 determined by Pol(Γ), modulo (SA)
- Study Mixed CSPs
 - robust algorithm for MIXED HORN k-SAT ?
 - r-approx algorithm for MIXED HORN k-SAT ?
- Study CSPs with global constraints
 - MAX BISECTION = MAX CUT into equal parts robust algorithm with $g(\epsilon) = O(\epsilon^{1/3} \log (1/\epsilon))$ (via expander decomposition) [Guruswami et al'11]