On the Usefulness of Predicates

Per Austrin
austrin@cs.toronto.edu
University of Toronto

Fields Workshop on CSPs, 2011-08-15
(joint work with Johan Håstad)

The Max 4-Lin problem:

```
(\mp@subsup{x}{1}{}\oplus\overline{\mp@subsup{x}{2}{}}\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{})}\wedge(\overline{\mp@subsup{x}{1}{}}\oplus\mp@subsup{x}{2}{}\oplus\overline{\mp@subsup{x}{3}{}}\oplus\overline{\mp@subsup{x}{4}{}})
(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}\oplus\overline{\mp@subsup{x}{3}{}}\oplus\overline{\mp@subsup{x}{5}{\prime}})}\wedge(\mp@subsup{x}{1}{}\oplus\overline{\mp@subsup{x}{2}{}}\oplus\mp@subsup{x}{4}{}\oplus\overline{\mp@subsup{x}{5}{\prime}})
(\overline{\mp@subsup{x}{1}{}}\oplus\overline{\mp@subsup{x}{2}{}}\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{5}{\prime})}\wedge(\mp@subsup{x}{1}{}\oplus\overline{\mp@subsup{x}{2}{}}\oplus\mp@subsup{x}{4}{}\oplus\overline{\mp@subsup{x}{6}{}}) 
(\mp@subsup{x}{1}{}\oplus\overline{\mp@subsup{x}{2}{}}\oplus\mp@subsup{x}{5}{}\oplus\mp@subsup{x}{6}{\prime})}\wedge(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{3}{}\oplus\overline{\mp@subsup{x}{4}{}}\oplus\overline{\mp@subsup{x}{5}{\prime}})
(\overline{\mp@subsup{x}{2}{}}\oplus\mp@subsup{x}{3}{}\oplus\overline{\mp@subsup{x}{4}{}}\oplus\overline{\mp@subsup{x}{6}{}})}\\(\overline{\mp@subsup{x}{2}{}}\oplus\overline{\mp@subsup{x}{3}{}}\oplus\overline{\mp@subsup{x}{4}{}}\oplus\overline{\mp@subsup{x}{6}{}}) 
(\overline{\mp@subsup{x}{2}{}}\oplus\mp@subsup{x}{3}{}\oplus\overline{\mp@subsup{x}{5}{\prime}}\oplus\overline{\mp@subsup{x}{6}{}})}\wedge(\mp@subsup{x}{2}{}\oplus\overline{\mp@subsup{x}{4}{}}\oplus\mp@subsup{x}{5}{}\oplus\mp@subsup{x}{6}{}) 
(x3}\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{5}{}\oplus\overline{\mp@subsup{x}{6}{}}) \wedge (\overline{\mp@subsup{x}{3}{}}\oplus\mp@subsup{x}{4}{}\oplus\overline{\mp@subsup{x}{5}{\prime}}\oplus\overline{\mp@subsup{x}{6}{}}
```

The Max 4-Lin problem:

$$
\begin{aligned}
& \left(x_{1} \oplus \overline{x_{2}} \oplus x_{3} \oplus x_{4}\right) \wedge\left(\overline{x_{1}} \oplus x_{2} \oplus \overline{x_{3}} \oplus \overline{x_{4}}\right) \wedge \\
& \left(x_{1} \oplus x_{2} \oplus \overline{x_{3}} \oplus \overline{x_{5}}\right) \wedge\left(x_{1} \oplus \overline{x_{2}} \oplus x_{4} \oplus \overline{x_{5}}\right) \wedge \\
& \left(\overline{x_{1}} \oplus \overline{x_{2}} \oplus x_{4} \oplus x_{5}\right) \wedge\left(x_{1} \oplus \overline{x_{2}} \oplus x_{4} \oplus \overline{x_{6}}\right) \wedge \\
& \left(x_{1} \oplus \overline{x_{2}} \oplus x_{5} \oplus x_{6}\right) \wedge\left(x_{1} \oplus x_{3} \oplus \overline{x_{4}} \oplus \overline{x_{5}}\right) \wedge \\
& \left(\overline{x_{2}} \oplus x_{3} \oplus \overline{x_{4}} \oplus \overline{x_{6}}\right) \wedge\left(\overline{x_{2}} \oplus \overline{x_{3}} \oplus \overline{x_{4}} \oplus \overline{x_{6}}\right) \wedge \\
& \left(\overline{x_{2}} \oplus x_{3} \oplus \overline{x_{5}} \oplus \overline{x_{6}}\right) \wedge\left(x_{2} \oplus \overline{x_{4}} \oplus x_{5} \oplus x_{6}\right) \wedge \\
& \left(x_{3} \oplus x_{4} \oplus x_{5} \oplus \overline{x_{6}}\right) \wedge\left(\overline{x_{3}} \oplus x_{4} \oplus \overline{x_{5}} \oplus \overline{x_{6}}\right)
\end{aligned}
$$

$x_{1}=$ FALSE
$x_{2}=$ FALSE
$x_{3}=$ FALSE
$x_{4}=$ FALSE
$x_{5}=$ TRUE
$x_{6}=$ TruE

By [Hås01], it is NP-hard to
find assignment α satisfying $1 / 2+\epsilon$ equations assuming there is some α satisfying $1-\epsilon$ equations.

NP-hard to do anything non-trivial!

Example 2: MAx GLST

$$
\operatorname{GLST}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}x_{2} \oplus x_{3} & \text { if } x_{1}=\text { False } \\ x_{2} \oplus x_{4} & \text { if } x_{1}=\text { True }\end{cases}
$$

The Max GLST problem:
$\operatorname{GLST}\left(x_{1}, \overline{x_{2}}, x_{3}, x_{4}\right) \wedge \operatorname{GLST}\left(\overline{x_{1}}, x_{2}, \overline{x_{3}}, \overline{x_{4}}\right) \wedge$
$\operatorname{GLST}\left(x_{1}, x_{2}, \overline{x_{3}}, \overline{x_{5}}\right) \wedge \operatorname{GLST}\left(x_{1}, \overline{x_{2}}, x_{4}, \overline{x_{5}}\right) \wedge$
$\operatorname{GLST}\left(\overline{x_{1}}, \overline{x_{2}}, x_{4}, x_{5}\right) \wedge \operatorname{GLST}\left(x_{1}, \overline{x_{2}}, x_{4}, \overline{x_{6}}\right) \wedge$
$\operatorname{GLST}\left(x_{1}, \overline{x_{2}}, x_{5}, x_{6}\right) \wedge \operatorname{GLST}\left(x_{1}, x_{3}, \overline{x_{4}}, \overline{x_{5}}\right) \wedge$
$\operatorname{GLST}\left(\overline{x_{2}}, x_{3}, \overline{x_{4}}, \overline{x_{6}}\right) \wedge \operatorname{GLST}\left(\overline{x_{2}}, \overline{x_{3}}, \overline{x_{4}}, \overline{x_{6}}\right) \wedge$
$\operatorname{GLST}\left(\overline{x_{2}}, x_{3}, \overline{x_{5}}, \overline{x_{6}}\right) \wedge \operatorname{GLST}\left(x_{2}, \overline{x_{4}}, x_{5}, x_{6}\right) \wedge$
$\operatorname{GLST}\left(x_{3}, x_{4}, \bar{x}_{5}, \overline{x_{6}}\right) \wedge \operatorname{GLST}\left(\overline{x_{3}}, x_{4}, \overline{x_{5}}, \overline{x_{6}}\right)$

Example 2: MAx GLST

$$
\operatorname{GLST}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}x_{2} \oplus x_{3} & \text { if } x_{1}=\text { False } \\ x_{2} \oplus x_{4} & \text { if } x_{1}=\text { True }\end{cases}
$$

The MAx GLST problem:

```
GLST}(\mp@subsup{x}{1}{},\overline{\mp@subsup{x}{2}{}},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{})\wedge\operatorname{GLST}(\overline{\mp@subsup{x}{1}{}},\mp@subsup{x}{2}{},\overline{\mp@subsup{x}{3}{}},\overline{\mp@subsup{x}{4}{}})
GLST}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\overline{\mp@subsup{x}{3}{}},\overline{\mp@subsup{x}{5}{\prime}})\wedge\operatorname{GLST}(\mp@subsup{x}{1}{},\overline{\mp@subsup{x}{2}{}},\mp@subsup{x}{4}{},\overline{\mp@subsup{x}{5}{}})
GLST(\overline{x}},\overline{\mp@subsup{x}{2}{}},\mp@subsup{x}{4}{},\mp@subsup{x}{5}{})\wedge\operatorname{GLST}(\mp@subsup{x}{1}{},\overline{\mp@subsup{x}{2}{}},\mp@subsup{x}{4}{},\overline{\mp@subsup{x}{6}{}})
GLST}(\mp@subsup{x}{1}{},\overline{\mp@subsup{x}{2}{}},\mp@subsup{x}{5}{},\mp@subsup{x}{6}{})\wedge\operatorname{GLST}(\mp@subsup{x}{1}{},\mp@subsup{x}{3}{},\overline{\mp@subsup{x}{4}{}},\overline{\mp@subsup{x}{5}{}})
GLST}(\overline{\mp@subsup{x}{2}{}},\mp@subsup{x}{3}{},\overline{\mp@subsup{x}{4}{}},\overline{\mp@subsup{x}{6}{}})\wedge\operatorname{GLST}(\overline{\mp@subsup{x}{2}{}},\overline{\mp@subsup{x}{3}{}},\overline{\mp@subsup{x}{4}{}},\overline{\mp@subsup{x}{6}{}})
GLST}(\overline{\mp@subsup{x}{2}{}},\mp@subsup{x}{3}{},\overline{\mp@subsup{x}{5}{\prime}},\overline{\mp@subsup{x}{6}{}})\wedge\operatorname{GLST}(\mp@subsup{x}{2}{},\overline{\mp@subsup{x}{4}{}},\mp@subsup{x}{5}{},\mp@subsup{x}{6}{})
GLST}(\mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\mp@subsup{x}{5}{},\overline{\mp@subsup{x}{6}{}})\wedge\operatorname{GLST}(\overline{\mp@subsup{x}{3}{}},\mp@subsup{x}{4}{},\overline{\mp@subsup{x}{5}{\prime}},\overline{\mp@subsup{x}{6}{}}
```

$x_{1}=$ FALSE
$x_{2}=$ TRUE
$x_{3}=$ TRUE
$x_{4}=$ TRUE
$x_{5}=$ TRUE
$x_{6}=$ TRUE

By [GLST'98], it is NP-hard to
find assignment α satisfying $1 / 2+\epsilon$ constraints assuming there is some α satisfying $1-\epsilon$ constraints.

NP-hard to do anything non-trivial!

Give up?

Ok so these problems appear as hard as they can be

Give up?

Ok so these problems appear as hard as they can be

Let us relax the conditions of the algorithm

Give up?

Ok so these problems appear as hard as they can be

Let us relax the conditions of the algorithm
(1) The algorithm chooses $Q:\{0,1\}^{k} \rightarrow[0,1]$

Give up?

Ok so these problems appear as hard as they can be

Let us relax the conditions of the algorithm
(1) The algorithm chooses $Q:\{0,1\}^{k} \rightarrow[0,1]$
(2) Instead of maximizing

$$
\sum P(\ldots)
$$

seek to maximize

$$
\sum Q(\ldots)
$$

Notation

instance is pair (P, L) for

- k-ary predicate $P:\{0,1\}^{k} \rightarrow\{0,1\}$
- list of k-tuples of literals L

Notation

instance is pair (P, L) for

- k-ary predicate $P:\{0,1\}^{k} \rightarrow\{0,1\}$
- list of k-tuples of literals L
optimum $\operatorname{Opt}(P, L) \in[0,1]$ max fraction satisfied constraints

Notation

instance is pair (P, L) for

- k-ary predicate $P:\{0,1\}^{k} \rightarrow\{0,1\}$
- list of k-tuples of literals L
optimum $\operatorname{Opt}(P, L) \in[0,1]$ max fraction satisfied constraints
expectation $E_{P}=\mathbb{E}[P(x)]$ over uniform x

Usefulness

$P:\{0,1\}^{k} \rightarrow\{0,1\}$ is useful for $Q:\{0,1\}^{k} \rightarrow[0,1]$ if we can find assignment α to (Q, L) with value $E_{Q}+\epsilon$ assuming $\operatorname{Opt}(P, L) \geq 1-\epsilon$.

Usefulness

$P:\{0,1\}^{k} \rightarrow\{0,1\}$ is useful for $Q:\{0,1\}^{k} \rightarrow[0,1]$ if we can find assignment α to (Q, L) with value $E_{Q}+\epsilon$ assuming $\operatorname{Opt}(P, L) \geq 1-\epsilon$.
P is useless if it is not useful for any Q.

Motivation

If you can't win, change the rules.

Motivation

If you can't win, change the rules.
Some analogues

Motivation

If you can't win, change the rules.
Some analogues

- Balanced separators

Motivation

If you can't win, change the rules.
Some analogues

- Balanced separators
- Degree bounded spanning trees

Motivation

If you can't win, change the rules.
Some analogues

- Balanced separators
- Degree bounded spanning trees
- Learning concept class Foo by concept class BAR

Motivation

If you can't win, change the rules.
Some analogues

- Balanced separators
- Degree bounded spanning trees
- Learning concept class Foo by concept class BaR

Typically Q would be relaxation of P or at least have something to do with P

- E.g., "weak majority" instead of "strong majority"

But we're generous and allow any Q

Example 1

$$
\operatorname{GLST}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}x_{2} \oplus x_{3} & \text { if } x_{1}=\text { False } \\ x_{2} \oplus x_{4} & \text { if } x_{1}=\text { True }\end{cases}
$$

$\operatorname{GLST}\left(x_{1}, \overline{x_{2}}, x_{3}, x_{4}\right)$	\wedge	$\operatorname{GLST}\left(\overline{x_{1}}, x_{2}, \overline{x_{3}}, \overline{x_{4}}\right)$	\wedge			
$\operatorname{GLST}\left(x_{1}, x_{2}, \overline{x_{3}}, \overline{x_{5}}\right)$	\wedge	$\operatorname{GLST}\left(x_{1}, \overline{x_{2}}, x_{4}, \overline{x_{5}}\right)$	\wedge	x_{1}		False
$\operatorname{GLST}\left(\overline{x_{1}}, \overline{x_{2}}, x_{4}, x_{5}\right)$	\wedge	$\operatorname{GLST}\left(x_{1}, \overline{x_{2}}, x_{4}, \overline{x_{6}}\right)$	\wedge	χ_{2}	$=$	True
$\operatorname{GLST}\left(x_{1}, \overline{x_{2}}, x_{5}, x_{6}\right)$	\wedge	$\operatorname{GLST}\left(x_{1}, x_{3}, \overline{x_{4}}, \overline{x_{5}}\right)$	\wedge	x_{3}	$=$	True
$\operatorname{GLST}\left(\overline{x_{2}}, x_{3}, \overline{x_{4}}, \overline{x_{6}}\right)$	\wedge	$\operatorname{GLST}\left(\overline{x_{2}}, \overline{x_{3}}, \overline{x_{4}}, \overline{x_{6}}\right)$	\wedge	χ_{4}		True
$\operatorname{GLST}\left(\overline{x_{2}}, x_{3}, \overline{x_{5}}, \overline{x_{6}}\right)$	\wedge	$\operatorname{GLST}\left(x_{2}, \overline{x_{4}}, x_{5}, x_{6}\right)$	\wedge	χ_{5}		True
$\operatorname{GLST}\left(x_{3}, x_{4}, x_{5}, \overline{x_{6}}\right)$	\wedge	$\operatorname{GLST}\left(\overline{x_{3}}, x_{4}, \overline{x_{5}}, \overline{x_{6}}\right)$		χ_{6}		True

Example 1

$\operatorname{GLST}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}x_{2} \oplus x_{3} & \text { if } x_{1}=\text { False } \\ x_{2} \oplus x_{4} & \text { if } x_{1}=\text { True }\end{cases}$

(NAE $=$ Not All Equal)

Example 1

$\operatorname{GLST}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}x_{2} \oplus x_{3} & \text { if } x_{1}=\text { False } \\ x_{2} \oplus x_{4} & \text { if } x_{1}=\text { True }\end{cases}$

(NAE $=$ Not All Equal)
$\operatorname{GLST}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is useful for $\operatorname{NAE}\left(\cdot, x_{2}, x_{3}, x_{4}\right)$.

Example 2

What about MAX 4-Lin?

$$
\left.\begin{array}{l}
\left(x_{1} \oplus \overline{x_{2}} \oplus x_{3} \oplus x_{4}\right) \\
\left(x_{1} \oplus\left(\overline{x_{1}} \oplus x_{2} \oplus \overline{x_{3}} \oplus \overline{x_{5}}\right)\right. \\
\left.\overline{x_{4}}\right) \\
\left(\overline{x_{1}} \oplus \overline{x_{2}} \oplus x_{4} \oplus x_{5}\right) \\
\left.\overline{x_{2}} \oplus x_{4} \oplus \overline{x_{5}}\right) \\
\left(x_{1} \oplus \overline{x_{2}} \oplus x_{4} \oplus \overline{x_{6}}\right)
\end{array}\right)
$$

$x_{1}=$ FALSE
$x_{2}=$ FALSE
$x_{3}=$ FALSE
$x_{4}=$ FALSE
$x_{5}=$ TRUE
$x_{6}=$ TRUE

Example 2

What about MAX 4-LIN?

$$
\begin{aligned}
& \left(x_{1} \oplus \overline{x_{2}} \oplus x_{3} \oplus x_{4}\right) \wedge\left(\overline{x_{1}} \oplus x_{2} \oplus \overline{x_{3}} \oplus \overline{x_{4}}\right) \wedge \\
& \left(x_{1} \oplus x_{2} \oplus \overline{x_{3}} \oplus \overline{x_{5}}\right) \wedge\left(x_{1} \oplus \overline{x_{2}} \oplus x_{4} \oplus \overline{x_{5}}\right) \wedge \\
& \left(\overline{x_{1}} \oplus \overline{x_{2}} \oplus x_{4} \oplus x_{5}\right) \wedge\left(x_{1} \oplus \overline{x_{2}} \oplus x_{4} \oplus \overline{x_{6}}\right) \wedge \\
& \left(x_{1} \oplus \overline{x_{2}} \oplus x_{5} \oplus x_{6}\right) \wedge\left(x_{1} \oplus x_{3} \oplus \overline{x_{4}} \oplus \overline{x_{5}}\right) \wedge \\
& \left(\overline{x_{2}} \oplus x_{3} \oplus \overline{x_{4}} \oplus \overline{x_{6}}\right) \wedge\left(\overline{x_{2}} \oplus \overline{x_{3}} \oplus \overline{x_{4}} \oplus \overline{x_{6}}\right) \wedge \\
& \left(\overline{x_{2}} \oplus x_{3} \oplus \overline{x_{5}} \oplus \overline{x_{6}}\right) \wedge\left(x_{2} \oplus \overline{x_{4}} \oplus x_{5} \oplus x_{6}\right) \wedge \\
& \left(x_{3} \oplus x_{4} \oplus x_{5} \oplus \overline{x_{6}}\right) \wedge\left(\overline{x_{3}} \oplus x_{4} \oplus \overline{x_{5}} \oplus \overline{x_{6}}\right)
\end{aligned}
$$

MaX 4-LIN is useless

- no matter what objective we use we can't do anything useful

Variations

- adaptive or non-adaptive usefulness: does the algorithm choose Q before or after seeing L ?

Variations

- adaptive or non-adaptive usefulness: does the algorithm choose Q before or after seeing L ?
- turns out to make very little difference

Variations

- adaptive or non-adaptive usefulness: does the algorithm choose Q before or after seeing L ?
- turns out to make very little difference
- computational or information-theoretic usefulness.
- will focus on computational

Variations

- adaptive or non-adaptive usefulness: does the algorithm choose Q before or after seeing L ?
- turns out to make very little difference
- computational or information-theoretic usefulness.
- will focus on computational
- more general classes of CSPs
- more on that later

Quick Conclusions

Most approximation resistance results in fact show the stronger property of uselessness

- [Hås'01, ST'99, EH'08, ST'06, AM'09]

Quick Conclusions

Most approximation resistance results in fact show the stronger property of uselessness

- [Hås'01, ST'99, EH'08, ST'06, AM'09]
- but clearly not [GLST'98]

Quick Conclusions

Most approximation resistance results in fact show the stronger property of uselessness

- [Hås'01, ST'99, EH'08, ST'06, AM'09]
- but clearly not [GLST'98]

In particular from [AM'09] follows that:
assuming UGC, P is useless if it supports a pairwise independent distribution.
(there exists pairwise independent distribution μ such that $\left.\operatorname{Supp}(\mu) \subseteq P^{-1}(1)\right)$

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently

0	1	\cdots	\cdots	0
1	1	\cdots	\cdots	1
\vdots	\vdots	\ddots	\ddots	\vdots
0	1	\cdots	\cdots	0

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently
(2) Let $a=\left(a_{1}, \ldots, a_{k}\right)$, where $a_{i}=f\left(X_{i}\right)$
$\left.\begin{array}{|ccccc|}\hline 0 & 1 & \cdots & \cdots & 0 \\ 1 & 1 & \cdots & \cdots & 1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 1 & \cdots & \cdots & 0\end{array}\right] a_{1}$

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently
(2) Let $a=\left(a_{1}, \ldots, a_{k}\right)$, where $a_{i}=f\left(X_{i}\right)$
$\left.\begin{array}{|ccccc|}\hline 0 & 1 & \cdots & \cdots & 0 \\ 1 & 1 & \cdots & \cdots & 1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 1 & \cdots & \cdots & 0\end{array}\right] a_{1}$

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently
(2) Let $a=\left(a_{1}, \ldots, a_{k}\right)$, where $a_{i}=f\left(X_{i}\right)$
\(\left.\begin{array}{|ccccc|}\hline 0 \& 1 \& \cdots \& \cdots \& 0

1 \& 1 \& \cdots \& \cdots \& 1

\vdots \& \vdots \& \ddots \& \ddots \& \vdots

0 \& 1 \& \cdots \& \cdots \& 0\end{array}\right]\)| a_{1} |
| :--- |
| a_{2} |

A dictatorship test

Given $f:\{0,1\}^{n} \rightarrow\{0,1\}$
(1) Pick random $k \times n$ matrix X over $\{0,1\}$, each column sampled from μ, independently
(2) Let $a=\left(a_{1}, \ldots, a_{k}\right)$, where $a_{i}=f\left(X_{i}\right)$
(3) Output $\left(a_{1}, \ldots, a_{k}\right)$

A dictatorship test

Analysis: study the distribution η of $\left(a_{1}, \ldots, a_{k}\right)$

A dictatorship test

Analysis: study the distribution η of $\left(a_{1}, \ldots, a_{k}\right)$
Completeness If f is a dictator, then $\eta=\mu$ so $\mathbb{E}_{\eta}[P]=1$

A dictatorship test

Analysis: study the distribution η of $\left(a_{1}, \ldots, a_{k}\right)$
Completeness If f is a dictator, then $\eta=\mu$ so $\mathbb{E}_{\eta}[P]=1$ Soundness If f is far from dictator, then $\eta \approx$ uniform

Intuition behind soundness

- If f is far from dictator, can apply invariance principle [MOO05, Mos07]

Intuition behind soundness

- If f is far from dictator, can apply invariance principle [MOO05, Mos07]
- Distribution of $\left(f\left(X_{1}\right), \ldots, f\left(X_{k}\right)\right)$ does not change if μ replaced by distribution μ^{\prime} with same first and second moments

Intuition behind soundness

- If f is far from dictator, can apply invariance principle [MOO05, Mos07]
- Distribution of $\left(f\left(X_{1}\right), \ldots, f\left(X_{k}\right)\right)$ does not change if μ replaced by distribution μ^{\prime} with same first and second moments
- In particular can use $\mu^{\prime}=$ uniform

A Converse

Theorem

If P does not support a pairwise independent distribution there is a Q for which P is useful.

A Converse

Theorem

If P does not support a pairwise independent distribution there is a Q for which P is useful.

Gives complete characterization, assuming UGC.

Proof Sketch

Fact

If P does not support pairwise independence then there is a quadratic function $Q:\{0,1\}^{k} \rightarrow[0,1]$ such that $Q(x)>E_{Q}$ for all $x \in P^{-1}(1)$.

Proof Sketch

Fact

If P does not support pairwise independence then there is a quadratic function $Q:\{0,1\}^{k} \rightarrow[0,1]$ such that $Q(x)>E_{Q}$ for all $x \in P^{-1}(1)$.

In particular there is $\epsilon>0$ such that if $\operatorname{Opt}(P, L) \geq 1-\epsilon$ then $\operatorname{Opt}(Q, L) \geq E_{Q}+\epsilon$

Proof Sketch

Fact

If P does not support pairwise independence then there is a quadratic function $Q:\{0,1\}^{k} \rightarrow[0,1]$ such that $Q(x)>E_{Q}$ for all $x \in P^{-1}(1)$.

In particular there is $\epsilon>0$ such that if $\operatorname{Opt}(P, L) \geq 1-\epsilon$ then
$\operatorname{Opt}(Q, L) \geq E_{Q}+\epsilon$
Q is quadratic so we can use standard SDP techniques to find assignment with value $E_{Q}+\epsilon^{\prime}$

Without negations

What if we don't have negations?
E.g., Max Cut, Max 4-Lin ${ }^{+}$

```
(x1\oplus\mp@subsup{x}{2}{}\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{\prime})\wedge(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{7}{})}
(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}\oplus\mp@subsup{x}{6}{}\oplus\mp@subsup{x}{7}{\prime})}\wedge(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{6}{})
```



```
(x2\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{5}{\prime})}\wedge(\mp@subsup{x}{2}{}\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{6}{})
(x2\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{5}{}\oplus\mp@subsup{x}{7}{\prime})}\wedge(\mp@subsup{x}{2}{}\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{6}{}\oplus\mp@subsup{x}{7}{})
(x2\oplus\mp@subsup{x}{5}{}\oplus\mp@subsup{x}{6}{}\oplus\mp@subsup{x}{7}{})}\wedge(\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{6}{}\oplus\mp@subsup{x}{7}{}
```


Without negations

What if we don't have negations?
E.g., Max Cut, Max 4-Lin ${ }^{+}$

$\left(x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}\right)$	$\wedge\left(x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{7}\right)$	\wedge	$x_{1}=$ FALSE
$\left(x_{1} \oplus x_{2} \oplus x_{6} \oplus x_{7}\right)$	$\wedge\left(x_{1} \oplus x_{3} \oplus x_{4} \oplus x_{6}\right)$	\wedge	$x_{2}=$ FALSE
$\left(x_{1} \oplus x_{3} \oplus x_{5} \oplus x_{7}\right)$	$\wedge\left(x_{1} \oplus x_{3} \oplus x_{6} \oplus x_{7}\right)$	\wedge	$x_{3}=$ FALSE
$\left(x_{1} \oplus x_{4} \oplus x_{5} \oplus x_{6}\right)$	$\wedge\left(x_{1} \oplus x_{5} \oplus x_{6} \oplus x_{7}\right)$	\wedge	$x_{4}=$ TRUE
$\left(x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{5}\right)$	$\wedge\left(x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{6}\right)$	\wedge	$x_{5}=$ FALSE
$\left(x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{7}\right)$	$\wedge\left(x_{2} \oplus x_{3} \oplus x_{6} \oplus x_{7}\right)$	\wedge	$x_{6}=$ FALSE
$\left(x_{2} \oplus x_{5} \oplus x_{6} \oplus x_{7}\right)$	$\wedge\left(x_{3} \oplus x_{4} \oplus x_{6} \oplus x_{7}\right)$		$x_{7}=$ TRUE

Without negations

What if we don't have negations?
E.g., Max Cut, Max 4-Lin ${ }^{+}$

A caveat: need to be careful about how to define what is trivial

Without negations

What if we don't have negations?
E.g., Max Cut, Max 4-Lin ${ }^{+}$

A caveat: need to be careful about how to define what is trivial
Natural definition

$$
E_{Q}^{+}=\max _{p \in[0,1]} \frac{\mathbb{E}}{p}[Q(x)]
$$

expectation under p-biased distribution

Without negations

What if we don't have negations?
E.g., Max Cut, Max 4-Lin ${ }^{+}$

A caveat: need to be careful about how to define what is trivial
Natural definition

$$
E_{Q}^{+}=\max _{p \in[0,1]} \underset{p}{\mathbb{E}}[Q(x)]
$$

expectation under p-biased distribution
Trivial to achieve value E_{Q}^{+}

Without negations

Definition

A distribution μ over $\{0,1\}^{k}$ is pairwise symmetric if there is b, ρ such that $\mathbb{E}_{\mu}\left[x_{i}\right]=b$ for all i and $\mathbb{E}_{\mu}\left[x_{i} x_{j}\right]=\rho$ for all $i \neq j$.

Without negations

Definition

A distribution μ over $\{0,1\}^{k}$ is pairwise symmetric if there is b, ρ such that $\mathbb{E}_{\mu}\left[x_{i}\right]=b$ for all i and $\mathbb{E}_{\mu}\left[x_{i} x_{j}\right]=\rho$ for all $i \neq j$.
Positively pairwise symmetric if $\rho \geq b^{2}$

Without negations

Definition

A distribution μ over $\{0,1\}^{k}$ is pairwise symmetric if there is b, ρ such that $\mathbb{E}_{\mu}\left[x_{i}\right]=b$ for all i and $\mathbb{E}_{\mu}\left[x_{i} x_{j}\right]=\rho$ for all $i \neq j$.
Positively pairwise symmetric if $\rho \geq b^{2}$
E.g., (possibly biased) pairwise independent distribution

Without negations

Definition

A distribution μ over $\{0,1\}^{k}$ is pairwise symmetric if there is b, ρ such that $\mathbb{E}_{\mu}\left[x_{i}\right]=b$ for all i and $\mathbb{E}_{\mu}\left[x_{i} x_{j}\right]=\rho$ for all $i \neq j$.
Positively pairwise symmetric if $\rho \geq b^{2}$

Theorem

Assuming the UGC, P without negations is useless if and only if P supports a positively pairwise symmetric distribution.

Without negations

Definition

A distribution μ over $\{0,1\}^{k}$ is pairwise symmetric if there is b, ρ such that $\mathbb{E}_{\mu}\left[x_{i}\right]=b$ for all i and $\mathbb{E}_{\mu}\left[x_{i} x_{j}\right]=\rho$ for all $i \neq j$.
Positively pairwise symmetric if $\rho \geq b^{2}$

Theorem

Assuming the UGC, P without negations is useless if and only if P supports a positively pairwise symmetric distribution.

Remark: checkable in time $2^{O(k)}$ by convex optimization.

Algorithm

Claim

If P does not support a positively pairwise symmetric distribution there is a quadratic Q such that $Q(x)>E_{Q}^{+}$for all $x \in P^{-1}(1)$.

Algorithm

Claim

If P does not support a positively pairwise symmetric distribution there is a quadratic Q such that $Q(x)>E_{Q}^{+}$for all $x \in P^{-1}(1)$.

The rest similarly as before.

Algorithm

Claim

If P does not support a positively pairwise symmetric distribution there is a quadratic Q such that $Q(x)>E_{Q}^{+}$for all $x \in P^{-1}(1)$.

The rest similarly as before.
Caveat: need to be careful about Q where E_{Q}^{+}attained by $p=0$ or $p=1$.

Hardness Without Negations

Hardness Without Negations

Analysis: study the distribution η of $\left(a_{1}, \ldots, a_{k}\right)$
Completeness If f is a dictator, then $\eta=\mu$ so $\mathbb{E}_{\eta}[P]=1$ Soundness If f is far from dictator, then can replace μ by μ^{\prime} with same $1^{\text {st }}$ and $2^{\text {nd }}$ moments

Hardness Without Negations

Analysis: study the distribution η of $\left(a_{1}, \ldots, a_{k}\right)$
Completeness If f is a dictator, then $\eta=\mu$ so $\mathbb{E}_{\eta}[P]=1$ Soundness If f is far from dictator, then can replace μ by μ^{\prime} with same $1^{\text {st }}$ and $2^{\text {nd }}$ moments

- Can take $\mu^{\prime}=$ comb. of two product distributions U_{a} and U_{b}

Hardness Without Negations

Analysis: study the distribution η of $\left(a_{1}, \ldots, a_{k}\right)$
Completeness If f is a dictator, then $\eta=\mu$ so $\mathbb{E}_{\eta}[P]=1$ Soundness If f is far from dictator, then can replace μ by μ^{\prime} with same $1^{\text {st }}$ and $2^{\text {nd }}$ moments

- Can take $\mu^{\prime}=$ comb. of two product distributions U_{a} and U_{b}
- Change each column to either U_{a} or U_{b} without losing value.

0	1	\cdots
1	1	\cdots
\vdots	\vdots	\ddots
0	1	\cdots

More general CSPs

What about a general CSP?
Not quite clear what the proper definition is.

More general CSPs

What about a general CSP?
Not quite clear what the proper definition is.

- Replace all constraints by same Q

More general CSPs

What about a general CSP?
Not quite clear what the proper definition is.
© Replace all constraints by same Q
(2) Replace all constraints of type P_{1} by Q_{1}, all constraints of type P_{2} by Q_{2}, etc

More general CSPs

What about a general CSP?
Not quite clear what the proper definition is.
(0) Replace all constraints by same Q
(2) Replace all constraints of type P_{1} by Q_{1}, all constraints of type P_{2} by Q_{2}, etc
(- Some compromise?

Some Final Comments

New natural relaxation of Max-CSPs

Some Final Comments

New natural relaxation of Max-CSPs
Ultimate hardness of a CSP!
(For real this time)

Some Final Comments

New natural relaxation of Max-CSPs
Ultimate hardness of a CSP!
(For real this time)

Assuming UGC, complete characterization in the single-predicate setting (with or without negations)

Some Final Comments

New natural relaxation of Max-CSPs
Ultimate hardness of a CSP!
(For real this time)

Assuming UGC, complete characterization in the single-predicate setting (with or without negations)

Would be interesting to consider other settings

- Satisfiability
- Robust satisfiability

Thank you!

