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MAX 4-LIN

The MAX 4-LIN problem:

(x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧ (x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧
(x1 ⊕ x2 ⊕ x3 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧
(x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x6) ∧
(x1 ⊕ x2 ⊕ x5 ⊕ x6) ∧ (x1 ⊕ x3 ⊕ x4 ⊕ x5) ∧
(x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧ (x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x2 ⊕ x3 ⊕ x5 ⊕ x6) ∧ (x2 ⊕ x4 ⊕ x5 ⊕ x6) ∧
(x3 ⊕ x4 ⊕ x5 ⊕ x6) ∧ (x3 ⊕ x4 ⊕ x5 ⊕ x6)
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x1 = FALSE
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Hardness of MAX 4-LIN

By [Hås01], it is NP-hard to
find assignment α satisfying 1/2 + ε equations

assuming there is some α satisfying 1− ε equations.

NP-hard to do anything non-trivial!
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Example 2: MAX GLST

GLST (x1, x2, x3, x4) =

{
x2 ⊕ x3 if x1 = False
x2 ⊕ x4 if x1 = True

The MAX GLST problem:

GLST (x1, x2, x3, x4) ∧ GLST (x1, x2, x3, x4) ∧
GLST (x1, x2, x3, x5) ∧ GLST (x1, x2, x4, x5) ∧
GLST (x1, x2, x4, x5) ∧ GLST (x1, x2, x4, x6) ∧
GLST (x1, x2, x5, x6) ∧ GLST (x1, x3, x4, x5) ∧
GLST (x2, x3, x4, x6) ∧ GLST (x2, x3, x4, x6) ∧
GLST (x2, x3, x5, x6) ∧ GLST (x2, x4, x5, x6) ∧
GLST (x3, x4, x5, x6) ∧ GLST (x3, x4, x5, x6)
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Hardness of MAX GLST

By [GLST’98], it is NP-hard to
find assignment α satisfying 1/2 + ε constraints

assuming there is some α satisfying 1− ε constraints.

NP-hard to do anything non-trivial!
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Give up?

Ok so these problems appear as hard as they can be

Let us relax the conditions of the algorithm

1 The algorithm chooses Q : {0,1}k → [0,1]

2 Instead of maximizing ∑
P(. . .)

seek to maximize ∑
Q(. . .)
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Notation

instance is pair (P,L) for
k -ary predicate P : {0,1}k → {0,1}
list of k -tuples of literals L

optimum Opt(P,L) ∈ [0,1] max fraction satisfied constraints

expectation EP = E[P(x)] over uniform x
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Usefulness

P : {0,1}k → {0,1} is useful for Q : {0,1}k → [0,1] if we can
find assignment α to (Q,L) with value EQ + ε

assuming Opt(P,L) ≥ 1− ε.

P is useless if it is not useful for any Q.
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Motivation

If you can’t win, change the rules.

Some analogues

Balanced separators
Degree bounded spanning trees
Learning concept class FOO by concept class BAR

Typically Q would be relaxation of P or at least have something
to do with P

E.g., “weak majority” instead of “strong majority”

But we’re generous and allow any Q
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Example 1

GLST (x1, x2, x3, x4) =

{
x2 ⊕ x3 if x1 = False
x2 ⊕ x4 if x1 = True

GLST (x1, x2, x3, x4) ∧ GLST (x1, x2, x3, x4) ∧
GLST (x1, x2, x3, x5) ∧ GLST (x1, x2, x4, x5) ∧
GLST (x1, x2, x4, x5) ∧ GLST (x1, x2, x4, x6) ∧
GLST (x1, x2, x5, x6) ∧ GLST (x1, x3, x4, x5) ∧
GLST (x2, x3, x4, x6) ∧ GLST (x2, x3, x4, x6) ∧
GLST (x2, x3, x5, x6) ∧ GLST (x2, x4, x5, x6) ∧
GLST (x3, x4, x5, x6) ∧ GLST (x3, x4, x5, x6)

GLST (x1, x2, x3, x4) GLST (x1, x2, x3, x4)

x1 = FALSE

x2 = TRUE

x3 = TRUE

x4 = TRUE

x5 = TRUE

x6 = TRUE

(NAE = Not All Equal)

GLST (x1, x2, x3, x4) is useful for NAE(·, x2, x3, x4).
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Example 2

What about MAX 4-LIN?

(x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧ (x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧
(x1 ⊕ x2 ⊕ x3 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧
(x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x6) ∧
(x1 ⊕ x2 ⊕ x5 ⊕ x6) ∧ (x1 ⊕ x3 ⊕ x4 ⊕ x5) ∧
(x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧ (x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x2 ⊕ x3 ⊕ x5 ⊕ x6) ∧ (x2 ⊕ x4 ⊕ x5 ⊕ x6) ∧
(x3 ⊕ x4 ⊕ x5 ⊕ x6) ∧ (x3 ⊕ x4 ⊕ x5 ⊕ x6)

x1 = FALSE

x2 = FALSE

x3 = FALSE

x4 = FALSE

x5 = TRUE

x6 = TRUE

MAX 4-LIN is useless
– no matter what objective we use we can’t do anything useful
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Variations

adaptive or non-adaptive usefulness:
does the algorithm choose Q before or after seeing L?

computational or information-theoretic usefulness.
– will focus on computational

more general classes of CSPs
– more on that later
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Quick Conclusions

Most approximation resistance results in fact show the stronger
property of uselessness

[Hås’01, ST’99, EH’08, ST’06, AM’09]
but clearly not [GLST’98]

In particular from [AM’09] follows that:

assuming UGC, P is useless if it supports a pairwise
independent distribution.

(there exists pairwise independent distribution µ such that
Supp(µ) ⊆ P−1(1))
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A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )
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A dictatorship test

Analysis: study the distribution η of (a1, . . . ,ak )

Completeness If f is a dictator, then η = µ so Eη[P] = 1
Soundness If f is far from dictator, then η ≈ uniform
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Intuition behind soundness

If f is far from dictator, can apply invariance principle
[MOO05, Mos07]
Distribution of (f (X1), . . . , f (Xk )) does not change if µ
replaced by distribution µ′ with same first and second
moments
In particular can use µ′ = uniform
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A Converse

Theorem
If P does not support a pairwise independent distribution there
is a Q for which P is useful.

Gives complete characterization, assuming UGC.
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Proof Sketch

Fact
If P does not support pairwise independence then there is a
quadratic function Q : {0,1}k → [0,1] such that Q(x) > EQ for
all x ∈ P−1(1).

In particular there is ε > 0 such that if Opt(P,L) ≥ 1− ε then
Opt(Q,L) ≥ EQ + ε

Q is quadratic so we can use standard SDP techniques to find
assignment with value EQ + ε′
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Without negations

What if we don’t have negations?

E.g., MAX CUT, MAX 4-LIN+

(x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧ (x1 ⊕ x2 ⊕ x3 ⊕ x7) ∧
(x1 ⊕ x2 ⊕ x6 ⊕ x7) ∧ (x1 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x1 ⊕ x3 ⊕ x5 ⊕ x7) ∧ (x1 ⊕ x3 ⊕ x6 ⊕ x7) ∧
(x1 ⊕ x4 ⊕ x5 ⊕ x6) ∧ (x1 ⊕ x5 ⊕ x6 ⊕ x7) ∧
(x2 ⊕ x3 ⊕ x4 ⊕ x5) ∧ (x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x2 ⊕ x3 ⊕ x5 ⊕ x7) ∧ (x2 ⊕ x3 ⊕ x6 ⊕ x7) ∧
(x2 ⊕ x5 ⊕ x6 ⊕ x7) ∧ (x3 ⊕ x4 ⊕ x6 ⊕ x7)

Per Austrin (UoT) Usefulness



Without negations
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E.g., MAX CUT, MAX 4-LIN+

(x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧ (x1 ⊕ x2 ⊕ x3 ⊕ x7) ∧
(x1 ⊕ x2 ⊕ x6 ⊕ x7) ∧ (x1 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x1 ⊕ x3 ⊕ x5 ⊕ x7) ∧ (x1 ⊕ x3 ⊕ x6 ⊕ x7) ∧
(x1 ⊕ x4 ⊕ x5 ⊕ x6) ∧ (x1 ⊕ x5 ⊕ x6 ⊕ x7) ∧
(x2 ⊕ x3 ⊕ x4 ⊕ x5) ∧ (x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x2 ⊕ x3 ⊕ x5 ⊕ x7) ∧ (x2 ⊕ x3 ⊕ x6 ⊕ x7) ∧
(x2 ⊕ x5 ⊕ x6 ⊕ x7) ∧ (x3 ⊕ x4 ⊕ x6 ⊕ x7)

x1 = FALSE

x2 = FALSE

x3 = FALSE

x4 = TRUE

x5 = FALSE

x6 = FALSE

x7 = TRUE
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What if we don’t have negations?

E.g., MAX CUT, MAX 4-LIN+

A caveat: need to be careful about how to define what is trivial
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Q = max
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p
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What if we don’t have negations?

E.g., MAX CUT, MAX 4-LIN+

A caveat: need to be careful about how to define what is trivial

Natural definition
E+

Q = max
p∈[0,1]

E
p
[Q(x)]

expectation under p-biased distribution

Trivial to achieve value E+
Q
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Without negations

Definition

A distribution µ over {0,1}k is pairwise symmetric if there is b,
ρ such that Eµ[xi ] = b for all i and Eµ[xixj ] = ρ for all i 6= j .

Positively pairwise symmetric if ρ ≥ b2

Remark: checkable in time 2O(k) by convex optimization.
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ρ such that Eµ[xi ] = b for all i and Eµ[xixj ] = ρ for all i 6= j .

Positively pairwise symmetric if ρ ≥ b2

E.g., (possibly biased) pairwise independent distribution

Remark: checkable in time 2O(k) by convex optimization.
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Algorithm

Claim
If P does not support a positively pairwise symmetric
distribution there is a quadratic Q such that Q(x) > E+

Q for all
x ∈ P−1(1).

The rest similarly as before.

Caveat: need to be careful about Q where E+
Q attained by

p = 0 or p = 1.
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Hardness Without Negations
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Hardness Without Negations

Analysis: study the distribution η of (a1, . . . ,ak )

Completeness If f is a dictator, then η = µ so Eη[P] = 1
Soundness If f is far from dictator, then can replace µ by µ′

with same 1st and 2nd moments

Can take µ′ = comb. of two product distributions Ua and Ub

Change each column to either Ua or Ub without losing
value.
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Hardness Without Negations

Analysis: study the distribution η of (a1, . . . ,ak )

Completeness If f is a dictator, then η = µ so Eη[P] = 1
Soundness If f is far from dictator, then can replace µ by µ′

with same 1st and 2nd moments

Can take µ′ = comb. of two product distributions Ua and Ub
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More general CSPs

What about a general CSP?

Not quite clear what the proper definition is.

1 Replace all constraints by same Q

2 Replace all constraints of type P1 by Q1, all constraints of
type P2 by Q2, etc

3 Some compromise?
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Some Final Comments

New natural relaxation of Max-CSPs
Ultimate hardness of a CSP!
(For real this time)

Assuming UGC, complete characterization in the
single-predicate setting (with or without negations)

Would be interesting to consider other settings
Satisfiability
Robust satisfiability
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Thank you!
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