
On the Usefulness of Predicates

Per Austrin
austrin@cs.toronto.edu

University of Toronto

Fields Workshop on CSPs, 2011-08-15

(joint work with Johan Håstad)

Per Austrin (UoT) Usefulness



MAX 4-LIN

The MAX 4-LIN problem:

(x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧ (x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧
(x1 ⊕ x2 ⊕ x3 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧
(x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x6) ∧
(x1 ⊕ x2 ⊕ x5 ⊕ x6) ∧ (x1 ⊕ x3 ⊕ x4 ⊕ x5) ∧
(x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧ (x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x2 ⊕ x3 ⊕ x5 ⊕ x6) ∧ (x2 ⊕ x4 ⊕ x5 ⊕ x6) ∧
(x3 ⊕ x4 ⊕ x5 ⊕ x6) ∧ (x3 ⊕ x4 ⊕ x5 ⊕ x6)

Per Austrin (UoT) Usefulness



MAX 4-LIN

The MAX 4-LIN problem:

(x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧ (x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧
(x1 ⊕ x2 ⊕ x3 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧
(x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x6) ∧
(x1 ⊕ x2 ⊕ x5 ⊕ x6) ∧ (x1 ⊕ x3 ⊕ x4 ⊕ x5) ∧
(x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧ (x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x2 ⊕ x3 ⊕ x5 ⊕ x6) ∧ (x2 ⊕ x4 ⊕ x5 ⊕ x6) ∧
(x3 ⊕ x4 ⊕ x5 ⊕ x6) ∧ (x3 ⊕ x4 ⊕ x5 ⊕ x6)

x1 = FALSE

x2 = FALSE

x3 = FALSE

x4 = FALSE

x5 = TRUE

x6 = TRUE

Per Austrin (UoT) Usefulness



Hardness of MAX 4-LIN

By [Hås01], it is NP-hard to
find assignment α satisfying 1/2 + ε equations

assuming there is some α satisfying 1− ε equations.

NP-hard to do anything non-trivial!

Per Austrin (UoT) Usefulness



Example 2: MAX GLST

GLST (x1, x2, x3, x4) =

{
x2 ⊕ x3 if x1 = False
x2 ⊕ x4 if x1 = True

The MAX GLST problem:

GLST (x1, x2, x3, x4) ∧ GLST (x1, x2, x3, x4) ∧
GLST (x1, x2, x3, x5) ∧ GLST (x1, x2, x4, x5) ∧
GLST (x1, x2, x4, x5) ∧ GLST (x1, x2, x4, x6) ∧
GLST (x1, x2, x5, x6) ∧ GLST (x1, x3, x4, x5) ∧
GLST (x2, x3, x4, x6) ∧ GLST (x2, x3, x4, x6) ∧
GLST (x2, x3, x5, x6) ∧ GLST (x2, x4, x5, x6) ∧
GLST (x3, x4, x5, x6) ∧ GLST (x3, x4, x5, x6)

Per Austrin (UoT) Usefulness



Example 2: MAX GLST

GLST (x1, x2, x3, x4) =

{
x2 ⊕ x3 if x1 = False
x2 ⊕ x4 if x1 = True

The MAX GLST problem:

GLST (x1, x2, x3, x4) ∧ GLST (x1, x2, x3, x4) ∧
GLST (x1, x2, x3, x5) ∧ GLST (x1, x2, x4, x5) ∧
GLST (x1, x2, x4, x5) ∧ GLST (x1, x2, x4, x6) ∧
GLST (x1, x2, x5, x6) ∧ GLST (x1, x3, x4, x5) ∧
GLST (x2, x3, x4, x6) ∧ GLST (x2, x3, x4, x6) ∧
GLST (x2, x3, x5, x6) ∧ GLST (x2, x4, x5, x6) ∧
GLST (x3, x4, x5, x6) ∧ GLST (x3, x4, x5, x6)

x1 = FALSE

x2 = TRUE

x3 = TRUE

x4 = TRUE

x5 = TRUE

x6 = TRUE

Per Austrin (UoT) Usefulness



Hardness of MAX GLST

By [GLST’98], it is NP-hard to
find assignment α satisfying 1/2 + ε constraints

assuming there is some α satisfying 1− ε constraints.

NP-hard to do anything non-trivial!

Per Austrin (UoT) Usefulness



Give up?

Ok so these problems appear as hard as they can be

Let us relax the conditions of the algorithm

1 The algorithm chooses Q : {0,1}k → [0,1]

2 Instead of maximizing ∑
P(. . .)

seek to maximize ∑
Q(. . .)

Per Austrin (UoT) Usefulness



Give up?

Ok so these problems appear as hard as they can be

Let us relax the conditions of the algorithm

1 The algorithm chooses Q : {0,1}k → [0,1]

2 Instead of maximizing ∑
P(. . .)

seek to maximize ∑
Q(. . .)

Per Austrin (UoT) Usefulness



Give up?

Ok so these problems appear as hard as they can be

Let us relax the conditions of the algorithm

1 The algorithm chooses Q : {0,1}k → [0,1]

2 Instead of maximizing ∑
P(. . .)

seek to maximize ∑
Q(. . .)

Per Austrin (UoT) Usefulness



Give up?

Ok so these problems appear as hard as they can be

Let us relax the conditions of the algorithm

1 The algorithm chooses Q : {0,1}k → [0,1]

2 Instead of maximizing ∑
P(. . .)

seek to maximize ∑
Q(. . .)

Per Austrin (UoT) Usefulness



Notation

instance is pair (P,L) for
k -ary predicate P : {0,1}k → {0,1}
list of k -tuples of literals L

optimum Opt(P,L) ∈ [0,1] max fraction satisfied constraints

expectation EP = E[P(x)] over uniform x

Per Austrin (UoT) Usefulness



Notation

instance is pair (P,L) for
k -ary predicate P : {0,1}k → {0,1}
list of k -tuples of literals L

optimum Opt(P,L) ∈ [0,1] max fraction satisfied constraints

expectation EP = E[P(x)] over uniform x

Per Austrin (UoT) Usefulness



Notation

instance is pair (P,L) for
k -ary predicate P : {0,1}k → {0,1}
list of k -tuples of literals L

optimum Opt(P,L) ∈ [0,1] max fraction satisfied constraints

expectation EP = E[P(x)] over uniform x

Per Austrin (UoT) Usefulness



Usefulness

P : {0,1}k → {0,1} is useful for Q : {0,1}k → [0,1] if we can
find assignment α to (Q,L) with value EQ + ε

assuming Opt(P,L) ≥ 1− ε.

P is useless if it is not useful for any Q.

Per Austrin (UoT) Usefulness



Usefulness

P : {0,1}k → {0,1} is useful for Q : {0,1}k → [0,1] if we can
find assignment α to (Q,L) with value EQ + ε

assuming Opt(P,L) ≥ 1− ε.

P is useless if it is not useful for any Q.

Per Austrin (UoT) Usefulness



Motivation

If you can’t win, change the rules.

Some analogues

Balanced separators
Degree bounded spanning trees
Learning concept class FOO by concept class BAR

Typically Q would be relaxation of P or at least have something
to do with P

E.g., “weak majority” instead of “strong majority”

But we’re generous and allow any Q

Per Austrin (UoT) Usefulness



Motivation

If you can’t win, change the rules.

Some analogues

Balanced separators
Degree bounded spanning trees
Learning concept class FOO by concept class BAR

Typically Q would be relaxation of P or at least have something
to do with P

E.g., “weak majority” instead of “strong majority”

But we’re generous and allow any Q

Per Austrin (UoT) Usefulness



Motivation

If you can’t win, change the rules.

Some analogues

Balanced separators
Degree bounded spanning trees
Learning concept class FOO by concept class BAR

Typically Q would be relaxation of P or at least have something
to do with P

E.g., “weak majority” instead of “strong majority”

But we’re generous and allow any Q

Per Austrin (UoT) Usefulness



Motivation

If you can’t win, change the rules.

Some analogues

Balanced separators
Degree bounded spanning trees
Learning concept class FOO by concept class BAR

Typically Q would be relaxation of P or at least have something
to do with P

E.g., “weak majority” instead of “strong majority”

But we’re generous and allow any Q

Per Austrin (UoT) Usefulness



Motivation

If you can’t win, change the rules.

Some analogues

Balanced separators
Degree bounded spanning trees
Learning concept class FOO by concept class BAR

Typically Q would be relaxation of P or at least have something
to do with P

E.g., “weak majority” instead of “strong majority”

But we’re generous and allow any Q

Per Austrin (UoT) Usefulness



Motivation

If you can’t win, change the rules.

Some analogues

Balanced separators
Degree bounded spanning trees
Learning concept class FOO by concept class BAR

Typically Q would be relaxation of P or at least have something
to do with P

E.g., “weak majority” instead of “strong majority”

But we’re generous and allow any Q

Per Austrin (UoT) Usefulness



Example 1

GLST (x1, x2, x3, x4) =

{
x2 ⊕ x3 if x1 = False
x2 ⊕ x4 if x1 = True

GLST (x1, x2, x3, x4) ∧ GLST (x1, x2, x3, x4) ∧
GLST (x1, x2, x3, x5) ∧ GLST (x1, x2, x4, x5) ∧
GLST (x1, x2, x4, x5) ∧ GLST (x1, x2, x4, x6) ∧
GLST (x1, x2, x5, x6) ∧ GLST (x1, x3, x4, x5) ∧
GLST (x2, x3, x4, x6) ∧ GLST (x2, x3, x4, x6) ∧
GLST (x2, x3, x5, x6) ∧ GLST (x2, x4, x5, x6) ∧
GLST (x3, x4, x5, x6) ∧ GLST (x3, x4, x5, x6)

GLST (x1, x2, x3, x4) GLST (x1, x2, x3, x4)

x1 = FALSE

x2 = TRUE

x3 = TRUE

x4 = TRUE

x5 = TRUE

x6 = TRUE

(NAE = Not All Equal)

GLST (x1, x2, x3, x4) is useful for NAE(·, x2, x3, x4).

Per Austrin (UoT) Usefulness



Example 1

GLST (x1, x2, x3, x4) =

{
x2 ⊕ x3 if x1 = False
x2 ⊕ x4 if x1 = True

NAE(x1, x2, x3, x4) ∧ NAE(x1, x2, x3, x4) ∧
NAE(x1, x2, x3, x5) ∧ NAE(x1, x2, x4, x5) ∧
NAE(x1, x2, x4, x5) ∧ NAE(x1, x2, x4, x6) ∧
NAE(x1, x2, x5, x6) ∧ NAE(x1, x3, x4, x5) ∧
NAE(x2, x3, x4, x6) ∧ NAE(x2, x3, x4, x6) ∧
NAE(x2, x3, x5, x6) ∧ NAE(x2, x4, x5, x6) ∧
NAE(x3, x4, x5, x6) ∧ NAE(x3, x4, x5, x6)

GLST (x1, x2, x3, x4) GLST (x1, x2, x3, x4)

x1 = FALSE

x2 = TRUE

x3 = TRUE

x4 = TRUE

x5 = TRUE

x6 = TRUE

(NAE = Not All Equal)

GLST (x1, x2, x3, x4) is useful for NAE(·, x2, x3, x4).

Per Austrin (UoT) Usefulness



Example 1

GLST (x1, x2, x3, x4) =

{
x2 ⊕ x3 if x1 = False
x2 ⊕ x4 if x1 = True

NAE(x1, x2, x3, x4) ∧ NAE(x1, x2, x3, x4) ∧
NAE(x1, x2, x3, x5) ∧ NAE(x1, x2, x4, x5) ∧
NAE(x1, x2, x4, x5) ∧ NAE(x1, x2, x4, x6) ∧
NAE(x1, x2, x5, x6) ∧ NAE(x1, x3, x4, x5) ∧
NAE(x2, x3, x4, x6) ∧ NAE(x2, x3, x4, x6) ∧
NAE(x2, x3, x5, x6) ∧ NAE(x2, x4, x5, x6) ∧
NAE(x3, x4, x5, x6) ∧ NAE(x3, x4, x5, x6)

GLST (x1, x2, x3, x4) GLST (x1, x2, x3, x4)

x1 = FALSE

x2 = TRUE

x3 = TRUE

x4 = TRUE

x5 = TRUE

x6 = TRUE

(NAE = Not All Equal)

GLST (x1, x2, x3, x4) is useful for NAE(·, x2, x3, x4).

Per Austrin (UoT) Usefulness



Example 2

What about MAX 4-LIN?

(x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧ (x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧
(x1 ⊕ x2 ⊕ x3 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧
(x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x6) ∧
(x1 ⊕ x2 ⊕ x5 ⊕ x6) ∧ (x1 ⊕ x3 ⊕ x4 ⊕ x5) ∧
(x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧ (x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x2 ⊕ x3 ⊕ x5 ⊕ x6) ∧ (x2 ⊕ x4 ⊕ x5 ⊕ x6) ∧
(x3 ⊕ x4 ⊕ x5 ⊕ x6) ∧ (x3 ⊕ x4 ⊕ x5 ⊕ x6)

x1 = FALSE

x2 = FALSE

x3 = FALSE

x4 = FALSE

x5 = TRUE

x6 = TRUE

MAX 4-LIN is useless
– no matter what objective we use we can’t do anything useful

Per Austrin (UoT) Usefulness



Example 2

What about MAX 4-LIN?

(x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧ (x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧
(x1 ⊕ x2 ⊕ x3 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧
(x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧ (x1 ⊕ x2 ⊕ x4 ⊕ x6) ∧
(x1 ⊕ x2 ⊕ x5 ⊕ x6) ∧ (x1 ⊕ x3 ⊕ x4 ⊕ x5) ∧
(x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧ (x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x2 ⊕ x3 ⊕ x5 ⊕ x6) ∧ (x2 ⊕ x4 ⊕ x5 ⊕ x6) ∧
(x3 ⊕ x4 ⊕ x5 ⊕ x6) ∧ (x3 ⊕ x4 ⊕ x5 ⊕ x6)

x1 = FALSE

x2 = FALSE

x3 = FALSE

x4 = FALSE

x5 = TRUE

x6 = TRUE

MAX 4-LIN is useless
– no matter what objective we use we can’t do anything useful

Per Austrin (UoT) Usefulness



Variations

adaptive or non-adaptive usefulness:
does the algorithm choose Q before or after seeing L?

computational or information-theoretic usefulness.
– will focus on computational

more general classes of CSPs
– more on that later

Per Austrin (UoT) Usefulness



Variations

adaptive or non-adaptive usefulness:
does the algorithm choose Q before or after seeing L?
– turns out to make very little difference

computational or information-theoretic usefulness.
– will focus on computational

more general classes of CSPs
– more on that later

Per Austrin (UoT) Usefulness



Variations

adaptive or non-adaptive usefulness:
does the algorithm choose Q before or after seeing L?
– turns out to make very little difference

computational or information-theoretic usefulness.
– will focus on computational

more general classes of CSPs
– more on that later

Per Austrin (UoT) Usefulness



Variations

adaptive or non-adaptive usefulness:
does the algorithm choose Q before or after seeing L?
– turns out to make very little difference

computational or information-theoretic usefulness.
– will focus on computational

more general classes of CSPs
– more on that later

Per Austrin (UoT) Usefulness



Quick Conclusions

Most approximation resistance results in fact show the stronger
property of uselessness

[Hås’01, ST’99, EH’08, ST’06, AM’09]
but clearly not [GLST’98]

In particular from [AM’09] follows that:

assuming UGC, P is useless if it supports a pairwise
independent distribution.

(there exists pairwise independent distribution µ such that
Supp(µ) ⊆ P−1(1))

Per Austrin (UoT) Usefulness



Quick Conclusions

Most approximation resistance results in fact show the stronger
property of uselessness

[Hås’01, ST’99, EH’08, ST’06, AM’09]
but clearly not [GLST’98]

In particular from [AM’09] follows that:

assuming UGC, P is useless if it supports a pairwise
independent distribution.

(there exists pairwise independent distribution µ such that
Supp(µ) ⊆ P−1(1))

Per Austrin (UoT) Usefulness



Quick Conclusions

Most approximation resistance results in fact show the stronger
property of uselessness

[Hås’01, ST’99, EH’08, ST’06, AM’09]
but clearly not [GLST’98]

In particular from [AM’09] follows that:

assuming UGC, P is useless if it supports a pairwise
independent distribution.

(there exists pairwise independent distribution µ such that
Supp(µ) ⊆ P−1(1))

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

sam
p
le
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

sam
p
le
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

sam
p
le
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

sam
p
le
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

sam
p
le
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

sam
p
le
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

sam
p
le
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .
sam

p
le
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .
sam

p
le
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

sam
p
le
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

f a1

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

a1

f a2

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

a1

a2

...

f ak

Per Austrin (UoT) Usefulness



A dictatorship test

Given f : {0,1}n → {0,1}
1 Pick random k × n matrix X over {0,1}, each column

sampled from µ, independently
2 Let a = (a1, . . . ,ak ), where ai = f (Xi)

3 Output (a1, . . . ,ak )

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

a1

a2

...

ak

f

f

f

∼
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Analysis: study the distribution η of (a1, . . . ,ak )

Completeness If f is a dictator, then η = µ so Eη[P] = 1
Soundness If f is far from dictator, then η ≈ uniform

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

a1

a2

...

ak

f

f

f

∼
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Analysis: study the distribution η of (a1, . . . ,ak )

Completeness If f is a dictator, then η = µ so Eη[P] = 1
Soundness If f is far from dictator, then η ≈ uniform

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

a1

a2

...

ak

f

f

f

∼
µ

Per Austrin (UoT) Usefulness



A dictatorship test

Analysis: study the distribution η of (a1, . . . ,ak )

Completeness If f is a dictator, then η = µ so Eη[P] = 1
Soundness If f is far from dictator, then η ≈ uniform

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

a1

a2

...

ak

f

f

f

∼
µ

Per Austrin (UoT) Usefulness



Intuition behind soundness

If f is far from dictator, can apply invariance principle
[MOO05, Mos07]
Distribution of (f (X1), . . . , f (Xk )) does not change if µ
replaced by distribution µ′ with same first and second
moments
In particular can use µ′ = uniform

Per Austrin (UoT) Usefulness



Intuition behind soundness

If f is far from dictator, can apply invariance principle
[MOO05, Mos07]
Distribution of (f (X1), . . . , f (Xk )) does not change if µ
replaced by distribution µ′ with same first and second
moments
In particular can use µ′ = uniform

Per Austrin (UoT) Usefulness



Intuition behind soundness

If f is far from dictator, can apply invariance principle
[MOO05, Mos07]
Distribution of (f (X1), . . . , f (Xk )) does not change if µ
replaced by distribution µ′ with same first and second
moments
In particular can use µ′ = uniform

Per Austrin (UoT) Usefulness



A Converse

Theorem
If P does not support a pairwise independent distribution there
is a Q for which P is useful.

Gives complete characterization, assuming UGC.

Per Austrin (UoT) Usefulness



A Converse

Theorem
If P does not support a pairwise independent distribution there
is a Q for which P is useful.

Gives complete characterization, assuming UGC.

Per Austrin (UoT) Usefulness



Proof Sketch

Fact
If P does not support pairwise independence then there is a
quadratic function Q : {0,1}k → [0,1] such that Q(x) > EQ for
all x ∈ P−1(1).

In particular there is ε > 0 such that if Opt(P,L) ≥ 1− ε then
Opt(Q,L) ≥ EQ + ε

Q is quadratic so we can use standard SDP techniques to find
assignment with value EQ + ε′

Per Austrin (UoT) Usefulness



Proof Sketch

Fact
If P does not support pairwise independence then there is a
quadratic function Q : {0,1}k → [0,1] such that Q(x) > EQ for
all x ∈ P−1(1).

In particular there is ε > 0 such that if Opt(P,L) ≥ 1− ε then
Opt(Q,L) ≥ EQ + ε

Q is quadratic so we can use standard SDP techniques to find
assignment with value EQ + ε′

Per Austrin (UoT) Usefulness



Proof Sketch

Fact
If P does not support pairwise independence then there is a
quadratic function Q : {0,1}k → [0,1] such that Q(x) > EQ for
all x ∈ P−1(1).

In particular there is ε > 0 such that if Opt(P,L) ≥ 1− ε then
Opt(Q,L) ≥ EQ + ε

Q is quadratic so we can use standard SDP techniques to find
assignment with value EQ + ε′

Per Austrin (UoT) Usefulness



Without negations

What if we don’t have negations?

E.g., MAX CUT, MAX 4-LIN+

(x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧ (x1 ⊕ x2 ⊕ x3 ⊕ x7) ∧
(x1 ⊕ x2 ⊕ x6 ⊕ x7) ∧ (x1 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x1 ⊕ x3 ⊕ x5 ⊕ x7) ∧ (x1 ⊕ x3 ⊕ x6 ⊕ x7) ∧
(x1 ⊕ x4 ⊕ x5 ⊕ x6) ∧ (x1 ⊕ x5 ⊕ x6 ⊕ x7) ∧
(x2 ⊕ x3 ⊕ x4 ⊕ x5) ∧ (x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x2 ⊕ x3 ⊕ x5 ⊕ x7) ∧ (x2 ⊕ x3 ⊕ x6 ⊕ x7) ∧
(x2 ⊕ x5 ⊕ x6 ⊕ x7) ∧ (x3 ⊕ x4 ⊕ x6 ⊕ x7)

Per Austrin (UoT) Usefulness



Without negations

What if we don’t have negations?

E.g., MAX CUT, MAX 4-LIN+

(x1 ⊕ x2 ⊕ x3 ⊕ x4) ∧ (x1 ⊕ x2 ⊕ x3 ⊕ x7) ∧
(x1 ⊕ x2 ⊕ x6 ⊕ x7) ∧ (x1 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x1 ⊕ x3 ⊕ x5 ⊕ x7) ∧ (x1 ⊕ x3 ⊕ x6 ⊕ x7) ∧
(x1 ⊕ x4 ⊕ x5 ⊕ x6) ∧ (x1 ⊕ x5 ⊕ x6 ⊕ x7) ∧
(x2 ⊕ x3 ⊕ x4 ⊕ x5) ∧ (x2 ⊕ x3 ⊕ x4 ⊕ x6) ∧
(x2 ⊕ x3 ⊕ x5 ⊕ x7) ∧ (x2 ⊕ x3 ⊕ x6 ⊕ x7) ∧
(x2 ⊕ x5 ⊕ x6 ⊕ x7) ∧ (x3 ⊕ x4 ⊕ x6 ⊕ x7)

x1 = FALSE

x2 = FALSE

x3 = FALSE

x4 = TRUE

x5 = FALSE

x6 = FALSE

x7 = TRUE

Per Austrin (UoT) Usefulness



Without negations

What if we don’t have negations?

E.g., MAX CUT, MAX 4-LIN+

A caveat: need to be careful about how to define what is trivial

Per Austrin (UoT) Usefulness



Without negations

What if we don’t have negations?

E.g., MAX CUT, MAX 4-LIN+

A caveat: need to be careful about how to define what is trivial

Natural definition
E+

Q = max
p∈[0,1]

E
p
[Q(x)]

expectation under p-biased distribution

Per Austrin (UoT) Usefulness



Without negations

What if we don’t have negations?

E.g., MAX CUT, MAX 4-LIN+

A caveat: need to be careful about how to define what is trivial

Natural definition
E+

Q = max
p∈[0,1]

E
p
[Q(x)]

expectation under p-biased distribution

Trivial to achieve value E+
Q

Per Austrin (UoT) Usefulness



Without negations

Definition

A distribution µ over {0,1}k is pairwise symmetric if there is b,
ρ such that Eµ[xi ] = b for all i and Eµ[xixj ] = ρ for all i 6= j .

Positively pairwise symmetric if ρ ≥ b2

Remark: checkable in time 2O(k) by convex optimization.

Per Austrin (UoT) Usefulness



Without negations

Definition

A distribution µ over {0,1}k is pairwise symmetric if there is b,
ρ such that Eµ[xi ] = b for all i and Eµ[xixj ] = ρ for all i 6= j .

Positively pairwise symmetric if ρ ≥ b2

Remark: checkable in time 2O(k) by convex optimization.

Per Austrin (UoT) Usefulness



Without negations

Definition

A distribution µ over {0,1}k is pairwise symmetric if there is b,
ρ such that Eµ[xi ] = b for all i and Eµ[xixj ] = ρ for all i 6= j .

Positively pairwise symmetric if ρ ≥ b2

E.g., (possibly biased) pairwise independent distribution

Remark: checkable in time 2O(k) by convex optimization.

Per Austrin (UoT) Usefulness



Without negations

Definition

A distribution µ over {0,1}k is pairwise symmetric if there is b,
ρ such that Eµ[xi ] = b for all i and Eµ[xixj ] = ρ for all i 6= j .

Positively pairwise symmetric if ρ ≥ b2

Theorem
Assuming the UGC, P without negations is useless if and only if
P supports a positively pairwise symmetric distribution.

Remark: checkable in time 2O(k) by convex optimization.

Per Austrin (UoT) Usefulness



Without negations

Definition

A distribution µ over {0,1}k is pairwise symmetric if there is b,
ρ such that Eµ[xi ] = b for all i and Eµ[xixj ] = ρ for all i 6= j .

Positively pairwise symmetric if ρ ≥ b2

Theorem
Assuming the UGC, P without negations is useless if and only if
P supports a positively pairwise symmetric distribution.

Remark: checkable in time 2O(k) by convex optimization.

Per Austrin (UoT) Usefulness



Algorithm

Claim
If P does not support a positively pairwise symmetric
distribution there is a quadratic Q such that Q(x) > E+

Q for all
x ∈ P−1(1).

The rest similarly as before.

Caveat: need to be careful about Q where E+
Q attained by

p = 0 or p = 1.

Per Austrin (UoT) Usefulness



Algorithm

Claim
If P does not support a positively pairwise symmetric
distribution there is a quadratic Q such that Q(x) > E+

Q for all
x ∈ P−1(1).

The rest similarly as before.

Caveat: need to be careful about Q where E+
Q attained by

p = 0 or p = 1.

Per Austrin (UoT) Usefulness



Algorithm

Claim
If P does not support a positively pairwise symmetric
distribution there is a quadratic Q such that Q(x) > E+

Q for all
x ∈ P−1(1).

The rest similarly as before.

Caveat: need to be careful about Q where E+
Q attained by

p = 0 or p = 1.

Per Austrin (UoT) Usefulness



Hardness Without Negations

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

a1

a2

...

ak

f

f

f
∼
µ

Per Austrin (UoT) Usefulness



Hardness Without Negations

Analysis: study the distribution η of (a1, . . . ,ak )

Completeness If f is a dictator, then η = µ so Eη[P] = 1
Soundness If f is far from dictator, then can replace µ by µ′

with same 1st and 2nd moments

Can take µ′ = comb. of two product distributions Ua and Ub

Change each column to either Ua or Ub without losing
value.

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

a1

a2

...

ak

f

f

f
∼
µ
′

Per Austrin (UoT) Usefulness



Hardness Without Negations

Analysis: study the distribution η of (a1, . . . ,ak )

Completeness If f is a dictator, then η = µ so Eη[P] = 1
Soundness If f is far from dictator, then can replace µ by µ′

with same 1st and 2nd moments

Can take µ′ = comb. of two product distributions Ua and Ub

Change each column to either Ua or Ub without losing
value.

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

a1

a2

...

ak

f

f

f
∼
µ
′

Per Austrin (UoT) Usefulness



Hardness Without Negations

Analysis: study the distribution η of (a1, . . . ,ak )

Completeness If f is a dictator, then η = µ so Eη[P] = 1
Soundness If f is far from dictator, then can replace µ by µ′

with same 1st and 2nd moments

Can take µ′ = comb. of two product distributions Ua and Ub

Change each column to either Ua or Ub without losing
value.

0

1

...

0

1

1

...

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

1

...

0

a1

a2

...

ak

f

f

f

∼
U
a

∼
U
b

Per Austrin (UoT) Usefulness



More general CSPs

What about a general CSP?

Not quite clear what the proper definition is.

1 Replace all constraints by same Q

2 Replace all constraints of type P1 by Q1, all constraints of
type P2 by Q2, etc

3 Some compromise?

Per Austrin (UoT) Usefulness



More general CSPs

What about a general CSP?

Not quite clear what the proper definition is.

1 Replace all constraints by same Q

2 Replace all constraints of type P1 by Q1, all constraints of
type P2 by Q2, etc

3 Some compromise?

Per Austrin (UoT) Usefulness



More general CSPs

What about a general CSP?

Not quite clear what the proper definition is.

1 Replace all constraints by same Q

2 Replace all constraints of type P1 by Q1, all constraints of
type P2 by Q2, etc

3 Some compromise?

Per Austrin (UoT) Usefulness



More general CSPs

What about a general CSP?

Not quite clear what the proper definition is.

1 Replace all constraints by same Q

2 Replace all constraints of type P1 by Q1, all constraints of
type P2 by Q2, etc

3 Some compromise?

Per Austrin (UoT) Usefulness



Some Final Comments

New natural relaxation of Max-CSPs
Ultimate hardness of a CSP!
(For real this time)

Assuming UGC, complete characterization in the
single-predicate setting (with or without negations)

Would be interesting to consider other settings
Satisfiability
Robust satisfiability

Per Austrin (UoT) Usefulness



Some Final Comments

New natural relaxation of Max-CSPs
Ultimate hardness of a CSP!
(For real this time)

Assuming UGC, complete characterization in the
single-predicate setting (with or without negations)

Would be interesting to consider other settings
Satisfiability
Robust satisfiability

Per Austrin (UoT) Usefulness



Some Final Comments

New natural relaxation of Max-CSPs
Ultimate hardness of a CSP!
(For real this time)

Assuming UGC, complete characterization in the
single-predicate setting (with or without negations)

Would be interesting to consider other settings
Satisfiability
Robust satisfiability

Per Austrin (UoT) Usefulness



Some Final Comments

New natural relaxation of Max-CSPs
Ultimate hardness of a CSP!
(For real this time)

Assuming UGC, complete characterization in the
single-predicate setting (with or without negations)

Would be interesting to consider other settings
Satisfiability
Robust satisfiability

Per Austrin (UoT) Usefulness



Thank you!

Per Austrin (UoT) Usefulness


