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Valeriote’s conjecture

Conjecture

For structures of finite signature:
Gumm operations ⇒ edge operation
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Reduction

It suffices to prove the conjecture for binary structures.

The conjecture is open even for digraphs.
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Miklós Maróti and László Zádori Near Unanimity and Total Symmetry for Reflexive Digraphs



The case of reflexive digraphs

Theorem (Maroti, Zadori)

For reflexive digraphs:
Gumm operations ⇒ near unanimity operation
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A consequence

Theorem (Maroti, Zadori)

For reflexive digraphs:
near unanimity operation ⇒ totally symmetric idempotent
operations of all arities

Already known for posets (Larose, Zadori) and for reflexive
symmetric digraphs (Feder, Hell)

Theorem (equivalent formulation)

Over retraction problems for reflexive digraphs:
bounded strict width ⇒ width 1
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The sketch of the proof of the theorem
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Special operations

We call an n-ary operation f a near unanimity operation, if n ≥ 3
and f satisfies the identities

f (y , x , . . . , x) = f (x , y , x , . . . ) = · · · = f (x , . . . , x , y) = x

in two variables x and y .

f is a cyclic operation if it satisfies the identity

f (x1, x2, . . . , xn) = f (x2, . . . , xn, x1).

f is a totally symmetric operation if

{x1, x2, . . . , xn} = {y1, y2, . . . , yn} ⇒ f (x1, x2, . . . , xn) = f (y1, y2, . . . , yn).
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Dismantlability

A homomorphism between two digraphs is an edge preserving map.
A polymorphism is a homomorphism from Gn to G , and when
n = 1 we call it an endomorphism. For f , g : H → G we write
f → g if whenever a→ b in H, then f (a)→ f (b) in G .

An endomorphism r of G is a one point elementary retraction,
if r fixes all but one element of G , and
either idG → r or r → idG .

Digraph G is dismantlable, if there is a sequence Gi , i = 0, . . . , n,
of digraphs such that G0 = G , Gn is a singleton, and for each
i = 1, 2, . . . , n, Gi is the image of Gi−1 under some one point
elementary retraction of Gi−1.

Miklós Maróti and László Zádori Near Unanimity and Total Symmetry for Reflexive Digraphs



Dismantlability

A homomorphism between two digraphs is an edge preserving map.
A polymorphism is a homomorphism from Gn to G , and when
n = 1 we call it an endomorphism. For f , g : H → G we write
f → g if whenever a→ b in H, then f (a)→ f (b) in G .

An endomorphism r of G is a one point elementary retraction,
if r fixes all but one element of G , and
either idG → r or r → idG .

Digraph G is dismantlable, if there is a sequence Gi , i = 0, . . . , n,
of digraphs such that G0 = G , Gn is a singleton, and for each
i = 1, 2, . . . , n, Gi is the image of Gi−1 under some one point
elementary retraction of Gi−1.
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Near unanimity implies dismantlability for certain digraphs

Theorem (Maroti, Zadori)

For connected acyclic reflexive digraphs:
near unanimity ⇒ dismantlability

Theorem (Larose, Loten, Zadori)

For connected symmetric reflexive digraphs:
near unanimity ⇒ dismantlability
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Fixed clique and fixed point properties

A digraph has the fixed clique property, if every endomorphism
preserves some clique of the digraph.

A digraph has the fixed point property, if every endomorphism has
a fixed vertex.
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Dismantlability implies fixed points or fixed cliques

Theorem (Duffus, Rival)

For acyclic reflexive digraphs:
dismantlability ⇒ fixed point property

Theorem (Bandelt)

For symmetric reflexive digraphs:
dismantlability ⇒ fixed clique property
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Near unanimity implies fixed cliques for reflexive digraphs

Corollary

For connected acyclic reflexive digraphs:
near unanimity ⇒ fixed point property

Corollary

For connected symmetric reflexive digraphs:
near unanimity ⇒ fixed clique property

Corollary

For connected reflexive digraphs:
near unanimity ⇒ fixed clique property
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Proof of the third corollary

Suppose G is connected and admits an nu operation and f ∈
EndG . Let θ be the strong connectivity equivalence of G . Then θ
is a congruence and f induces a map fθ ∈ End(G/θ).

G/θ is connected, acyclic and admits an nu operation, so, by the
1st corollary, fθ fixes a strong component B ∈ G/θ. So f (B) ⊆ B.
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Example: a digraph and its symmetric skeleton
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Proof of the third corollary

Suppose G is connected and admits an nu operation and f ∈
EndG . Let θ be the strong connectivity equivalence of G . Then θ
is a congruence and f induces a map fθ ∈ End(G/θ).

G/θ is connected, acyclic and admits an nu operation, so, by the
1st corollary, fθ fixes a strong component B ∈ G/θ. So f (B) ⊆ B.

As B admits an nu, its symmetric skeleton is connected. The
symmetric skeleton is preserved by f |B and, by the 2nd corollary,
has a fixed clique.
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NU implies cyclic idempotent

Theorem (Maroti, Zadori)

For reflexive digraphs:
near unanimity operation ⇒ cyclic idempotent operations of all
arities.
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Proof of that NU implies cyclic idempotent

Suppose that H is connected and admits an nu operation.

Our goal is to construct a binary cyclic (commutative) idempotent
polymorphism of H.

Define a digraph:
vertex set: G = {g : H2 → H| g is an idempotent polymorphism}
edge relation: f → g

Fact: G is a connected reflexive digraph that admits a near
unanimity operation.
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Proof continued

Then α : G → G , f (x1, x2) 7→ f (x2, x1) is a endomorphism of G .
By the corollary α has a fixed clique C .

Let f (x1, x2) ∈ C . Then f (x2, x1) ∈ C . Since C is a clique
f (x1, x2)↔ f (x2, x1).

Let then g : H2 → H be defined by f (x1, x2) on {(x1, x2), (x2, x1)}.
Clearly, g is commutative and idempotent. Because of
f (x1, x2)↔ f (x2, x1), g is a polymorphism of H.
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G -colored digraphs

A pair (H, f ) where H is a finite digraph and f is a partial map
from H to G is called a G -colored digraph. The elements in the
domain of f are called colored elements

A G -colored digraph (H, f ) is called extendible, if f extends to a
fully defined homomorphism from H to G .

Map g is a homomorphism from (H, f ) to (H ′, f ′), if g is a
homomorphism from H to H ′ and f = f ′g .
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G -obstructions

A G -colored digraph contains an other, if its vertex set, edge set
and partial coloring contains the vertex set, edge set and partial
coloring of the other, respectively.

A G -colored digraph (H, f ) is called a G -obstruction,
if (H, f ) is non-extendible, but
any (H ′, f ′) properly contained in (H, f ) is extendible.
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Miklós Maróti and László Zádori Near Unanimity and Total Symmetry for Reflexive Digraphs



Characterizations of NU and TSI via obstructions

Theorem

Let G be any finite digraph. TFAE:

1 G admits a near unanimity operation.

2 The numbers of colored elements of G -obstructions have a
finite upper bound.

Theorem (Feder and Vardi, Dalmau and Pearson)

Let G be a finite digraph. TFAE:

1 G admits totally symmetric idempotent operations of all
arities.

2 Every G -obstruction is a homomorphic image of a tree
obstruction.
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NU implies TSI for all arities

Theorem (Maroti, Zadori)

Every finite reflexive digraph that admits a near unanimity
operation, admits totally symmetric idempotent operations of all
arities.
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