Min CSP on Four Elements: Moving Beyond Submodularity

Johan Thapper

LIX, École Polytechnique

joint work with Peter Jonsson (IDA, Linköping University) and Fredrik Kuivinen

> Workshop on Algebra and CSPs The Fields Institute, Toronto, August 2011

Outline

- Problem Definition
- 2 Tractable Cases
- Cores and Constants
- Multimorphism Graph
- Binary to General
- 6 Open Problems

Outline

- Problem Definition
- 2 Tractable Cases
- Cores and Constants
- 4 Multimorphism Graph
- Binary to Genera
- Open Problems

Max CSP

Definition (MAX $CSP(\Gamma)$)

Let Γ be a finite constraint language over a finite domain D.

Instance: A CSP(Γ)-instance I.

Goal: Find an assignment to the variables in I which maximises the

number of satisfied constraints.

Max CSP

Definition (MAX $CSP(\Gamma)$)

Let Γ be a finite constraint language over a finite domain D.

Instance: A CSP(Γ)-instance I.

Goal: Find an assignment to the variables in I which maximises the

number of satisfied constraints.

Some (NP-hard) examples:

- Max cut $(\Gamma = \{XOR\})$
- Max k-cut $(\Gamma = \{ \neq_k \})$
- Max k-SAT ($\Gamma = \{OR_{i,j} \mid 0 \le j \le i \le k\}$)

where XOR :=
$$\{(0,1), (1,0)\}, \neq_k := \{(a,b) \in D^2 \mid a \neq b\} \ (k = |D|),$$

and $OR_{i,j} := \{(x_1, \ldots, x_i) \in \{0,1\}^i \mid \neg x_1 \lor \cdots \lor \neg x_j \lor x_{j+1} \lor \cdots \lor x_i\}.$

• The algorithms of Raghavendra (2008), and Raghavendra and Steurer (2009) give optimal approximation ratios for $Max\ CSP(\Gamma)$ under the assumption of the **Unique Games Conjecture** (UGC).

- The algorithms of Raghavendra (2008), and Raghavendra and Steurer (2009) give optimal approximation ratios for $Max\ CSP(\Gamma)$ under the assumption of the **Unique Games Conjecture** (UGC).
- For problems in PO these techniques give a PTAS, but it is not clear how to determine in general when this is the case.

- The algorithms of Raghavendra (2008), and Raghavendra and Steurer (2009) give optimal approximation ratios for $\operatorname{Max} \operatorname{CSP}(\Gamma)$ under the assumption of the **Unique Games Conjecture** (UGC).
- For problems in PO these techniques give a PTAS, but it is not clear how to determine in general when this is the case.
- We address the problem of tracing the boundary between problems inside and outside of PO.

- The algorithms of Raghavendra (2008), and Raghavendra and Steurer (2009) give optimal approximation ratios for $\operatorname{Max} \operatorname{CSP}(\Gamma)$ under the assumption of the **Unique Games Conjecture** (UGC).
- For problems in PO these techniques give a PTAS, but it is not clear how to determine in general when this is the case.
- We address the problem of tracing the boundary between problems inside and outside of PO.
- We find a dichotomy for constraint languages with domain size 4 between problems in PO and NP-hard problems.

- The algorithms of Raghavendra (2008), and Raghavendra and Steurer (2009) give optimal approximation ratios for $\operatorname{Max} \operatorname{CSP}(\Gamma)$ under the assumption of the **Unique Games Conjecture** (UGC).
- For problems in PO these techniques give a PTAS, but it is not clear how to determine in general when this is the case.
- We address the problem of tracing the boundary between problems inside and outside of PO.
- We find a dichotomy for constraint languages with domain size 4 between problems in PO and NP-hard problems.
- ullet We identify a new type of tractable problems which has not previously shown up in classifications of MAX CSP.

MAX CSP using {0,1}-functions

We represent a k-ary relation $R \in \Gamma$ by its characteristic function $f: D^k \to \{0, 1\}$, with $f(\mathbf{x}) = 1$ iff $\mathbf{x} \in R$.

Definition ((Weighted) MAX $CSP(\Gamma)$)

Let Γ be a set of $\{0,1\}$ -valued functions over D.

Instance: A formal sum $\sum_{i=1}^{n} w_i f_i(\mathbf{x_i})$, where $w_i \in \mathbb{Q}_{\geq 0}$, f_i is a k_i -ary cost function in Γ , and $\mathbf{x_i} \in V^{k_i}$.

Solution: A function $\sigma: V \to D$.

Measure: $\sum_{i=1}^{n} w_i f_i(\sigma(\mathbf{x_i}))$, where σ is applied componentwise.

MIN CSP

In order to study $\rm MAX~CSP$ in the $\rm VCSP$ -framework, we choose to work with $\rm MIN~CSP$ instead. The reason for this is to keep certain terminology consistent (multimorphisms, submodularity, etc.).

Observation

Let $\Gamma^c = \{1 - f \mid f \in \Gamma\}$. The problems $\operatorname{Max} \operatorname{CSP}(\Gamma)$ and $\operatorname{Min} \operatorname{CSP}(\Gamma^c)$ are polynomial-time equivalent.

Note that the two problems may differ with respect to approximability.

Known classification results

Full classifications of Min $\mathrm{CSP}(\Gamma)$ exist for the following cases:

- 2-element domains; Creignou (1995)
- 3-element domains; Jonsson, Klasson, and Krokhin (2006)
- \bullet Γ containing a single function; Jonsson and Krokhin (2007)
- \bullet Γ containing all unary functions; Deineko, Jonsson, Klasson, and Krokhin (2008)

In each of these cases, provided that Γ is a core, $\operatorname{Min}\ \operatorname{CSP}(\Gamma)$ is tractable if and only if Γ is submodular with respect to some chain on D.

Known classification results

Full classifications of Min $\mathrm{CSP}(\Gamma)$ exist for the following cases:

- 2-element domains; Creignou (1995)
- 3-element domains; Jonsson, Klasson, and Krokhin (2006)
- \bullet Γ containing a single function; Jonsson and Krokhin (2007)
- \bullet Γ containing all unary functions; Deineko, Jonsson, Klasson, and Krokhin (2008)

In each of these cases, provided that Γ is a core, $\operatorname{Min}\ \operatorname{CSP}(\Gamma)$ is tractable if and only if Γ is submodular with respect to some chain on D.

MIN $CSP(\Gamma)$ is also tractable when

- ullet Γ is submodular with respect to any distributive lattice.
- Γ is submodular with respect to certain non-distributive lattices; Krokhin and Larose (2007), Kuivinen (2009)

Beyond submodularity

Given the previously known evidence, a tentative conjecture has been that, for a core $\boldsymbol{\Gamma},$

- MIN $\mathrm{CSP}(\Gamma)$ is tractable when Γ is submodular with respect to some lattice, and
- this is the only source of tractability for MIN $CSP(\Gamma)$.

Beyond submodularity

Given the previously known evidence, a tentative conjecture has been that, for a core Γ ,

- MIN $\mathrm{CSP}(\Gamma)$ is tractable when Γ is submodular with respect to some lattice, and
- this is the only source of tractability for MIN $CSP(\Gamma)$.

We show that the second part is false.

Counterexample

Let $D = \{a, b, c, d\}$, and let $\Gamma = \{\{a, b\}, \{a, c\}, \{b, d\}, \{c, d\}, R\}$, where $R = \{(x, y) \mid x = b \lor y = c\}$. Then Γ is a core which is not submodular with respect to any lattice on D, yet $\operatorname{Min}\ \operatorname{CSP}(\Gamma)$ is tractable.

VCSP without mixed cost functions

It will be useful to allow "crisp" constraints in some of the reductions. There will be no "mixed" constraints, i.e., cost functions taking both a non-zero finite and an infinite value.

Definition

Let Γ be a set of finite-valued cost functions on a domain D, and Δ be a set of relations on D. VCSP (Γ, Δ) is the following minimisation problem:

Instance: A formal sum $\sum_{i=1}^{n} w_i f_i(\mathbf{x_i})$, and a finite set of constraint

applications $\{(\mathbf{y_j}; R_j)\}$, where $f_i \in \Gamma$, $R_j \in \Delta$, and $\mathbf{x_i}$, $\mathbf{y_j}$ are

matching lists of variables from V.

Solution: A function $\sigma: V \to D$ such that $\sigma(\mathbf{y_j}) \in R_j$ for all j.

Measure: $\sum_{i=1}^{n} w_i f_i(\sigma(\mathbf{x_i}))$.

We write VCSP(Γ) when Δ is empty and MIN $\mathrm{CSP}(\Gamma, \Delta)$ when Γ consists of $\{0, 1\}$ -valued constraints only.

Outline

- Problem Definition
- 2 Tractable Cases
- Cores and Constants
- 4 Multimorphism Graph
- Binary to Genera
- Open Problems

Multimorphisms

Cohen, Cooper, Jeavons, and Krokhin (2006) introduced the first in a number of generalisations of polymorphisms for the purpose of investigating the VCSP.

Definition

A pair of functions $f, g: D^2 \to D$ is a (binary) **multimorphism** of a k-ary cost function $h: D^k \to \mathbb{Q}_{\geq 0}$ if, for all tuples $\mathbf{x}, \mathbf{y} \in D^k$,

$$h(\mathbf{x}) + h(\mathbf{y}) \ge h(f(\mathbf{x}, \mathbf{y})) + h(g(\mathbf{x}, \mathbf{y})),$$

where f and g are applied component-wise. It is a multimorphism of (Γ, Δ) if it is a multimorphism of each function in $\Gamma \cup \Delta$.

Multimorphisms: submodular cost functions

Example

A cost function $h: D^k \to \mathbb{Q}$ is **submodular** with respect to a lattice $L = (D; \wedge, \vee)$ if

$$f(\mathbf{a}) + f(\mathbf{b}) \ge f(\mathbf{a} \wedge \mathbf{b}) + f(\mathbf{a} \vee \mathbf{b}),$$

for all $\mathbf{a}, \mathbf{b} \in D^k$.

In this case, (\land, \lor) is a multimorphism of h.

Theorem (Schrijver (2000); Iwata, Fleischer, and Fujishige (2001))

If Γ is submodular w.r.t. a distributive lattice, then $VCSP(\Gamma)$ is tractable.

Examples include chains (total orders) and products of chains, e.g.,

Bisubmodular cost functions

Let $D = \{a, b, c\}$, and let $\sqcap, \sqcup : D \to D$ be the \land and \lor of the poset

on pairs for which they are defined, and $\sqcup(b,c)=\sqcup(c,b)=a$.

П	a	Ь	С
а	a	а	а
Ь	a	b	a
С	a	а	С

Theorem (Fujishige and Iwata (2006))

If Γ has the multimorphism (\sqcap, \sqcup) , then $VCSP(\Gamma)$ is tractable.

Congruences

Definition

Let (D; f, g) be an algebra with two binary operations, f and g.

A **congruence** of (D; f, g) is an equivalence relation θ such that

$$(x_1, x_2), (y_1, y_2) \in \theta \implies (f(x_1, y_1), f(x_2, y_2)), (g(x_1, y_1), g(x_2, y_2)) \in \theta,$$

for all $x_1, x_2, y_1, y_2 \in D$.

- D/θ denotes the set of equivalence classes in θ .
- $x[\theta] \in D/\theta$ denotes the equivalence class of $x \in D$.
- The following are well-defined operations on D/θ :

$$f/\theta(x[\theta], y[\theta]) := f(x, y)[\theta]$$
 $g/\theta(x[\theta], y[\theta]) := g(x, y)[\theta].$

Mal'tsev products

Definition

Let **V** and **W** be classes of algebras (D'; f', g'), with f' and g' binary operations. The **Mal'tsev product**, $\mathbf{V} \circ \mathbf{W}$, consists of all algebras (D; f, g) such that there is a congruence θ where every class supports a subalgebra, and

- $(x[\theta], f|_{x[\theta]}, g|_{x[\theta]}) \in \mathbf{V}$ for each $x[\theta] \in D/\theta$; and
- $(D/\theta, f/\theta, g/\theta) \in \mathbf{W}.$

Mal'tsev products

Definition

Let **V** and **W** be classes of algebras (D'; f', g'), with f' and g' binary operations. The **Mal'tsev product**, $\mathbf{V} \circ \mathbf{W}$, consists of all algebras (D; f, g) such that there is a congruence θ where every class supports a subalgebra, and

- **1** $(x[\theta], f|_{x[\theta]}, g|_{x[\theta]}) \in \mathbf{V}$ for each $x[\theta] \in D/\theta$; and
- $(D/\theta, f/\theta, g/\theta) \in \mathbf{W}.$

Example (The pentagon lattice)

MFM

Definition (Multimorphism Function Minimisation)

Let X be a finite set of triples $(D_i; f_i, g_i)$, where D_i is a finite set and $f_i, g_i : D_i^2 \to D_i$. MFM(X) is the minimisation problem:

Instance: A positive integer n, a function

$$j: \{1, \ldots, n\} \to \{1, \ldots, |X|\}$$
, and a function $h: \mathcal{D} \to \mathbb{Z}$, where $\mathcal{D} = \prod_{i=1}^n D_{i(i)}$. For all $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$h(\mathbf{x}) + h(\mathbf{y}) \ge h(f_{j(1)}(x_1, y_1), f_{j(2)}(x_2, y_2), \dots, f_{j(n)}(x_n, y_n)) + h(g_{j(1)}(x_1, y_1), g_{j(2)}(x_2, y_2), \dots, g_{j(n)}(x_n, y_n)).$$

The function h is assumed be supplied as an oracle.

Solution: A tuple $\mathbf{x} \in \mathcal{D}$.

Measure: The value of $h(\mathbf{x})$.

MFM and Mal'tsev products

- MFM(X) is said to be oracle-tractable if it can be solved in polynomial time in the number of variables of the input function h.
- If Γ has the multimorphism (f,g), and $\mathsf{MFM}(\{(D;f,g)\})$ is oracle-tractable, then $\mathsf{VCSP}(\Gamma)$ is tractable.

Theorem (cf. Krokhin and Larose (2007), Theorem 4.3)

Suppose that \mathbf{V} and \mathbf{W} are finite sets of triples (D; f, g) such that $MFM(\mathbf{V})$ and $MFM(\mathbf{W})$ are oracle-tractable. Then $MFM(\mathbf{V} \circ \mathbf{W})$ is also oracle-tractable.

MFM and Mal'tsev products

- MFM(X) is said to be **oracle-tractable** if it can be solved in polynomial time in the number of variables of the input function h.
- If Γ has the multimorphism (f,g), and $\mathsf{MFM}(\{(D;f,g)\})$ is oracle-tractable, then $\mathsf{VCSP}(\Gamma)$ is tractable.

Theorem (cf. Krokhin and Larose (2007), Theorem 4.3)

Suppose that \mathbf{V} and \mathbf{W} are finite sets of triples (D; f, g) such that $MFM(\mathbf{V})$ and $MFM(\mathbf{W})$ are oracle-tractable. Then $MFM(\mathbf{V} \circ \mathbf{W})$ is also oracle-tractable.

Example

1-defect chains

Definition

Let (D; <) be a chain, and let $b, c \in D$ be two distinct elements. Assume that $f, g: D^2 \to D$ are two commutative operations such that:

- $\bullet \ \{x,y\} \neq \{b,c\} \implies f(x,y) = \min_{<}(x,y), g(x,y) = \max_{<}(x,y);$
- $\{f(b,c),g(b,c)\} \cap \{b,c\} = \emptyset$; and
- f(b, c) < g(b, c).

We call (D; f, g) a **1-defect chain**, and we say that (f, g) is a **1-defect chain multimorphism**.

1-defect chains

Definition

Let (D; <) be a chain, and let $b, c \in D$ be two distinct elements. Assume that $f, g: D^2 \to D$ are two commutative operations such that:

- $\{x,y\} \neq \{b,c\} \implies f(x,y) = \min_{<}(x,y), g(x,y) = \max_{<}(x,y);$
- $\{f(b,c),g(b,c)\} \cap \{b,c\} = \emptyset$; and
- f(b, c) < g(b, c).

We call (D; f, g) a **1-defect chain**, and we say that (f, g) is a **1-defect chain multimorphism**.

Example

Tractability for 1-defect chain multimorphisms

Proposition

If Γ has a 1-defect chain multimorphism, then VCSP(Γ) is tractable.

Let $D/\theta = \{A, B, C\}$ with $A = D \setminus \{b, c\}, B = \{b\}, C = \{c\}.$

- θ is a congruence;
- $(A; f|_A, g|_A)$, $(B; f|_B, g|_B)$, and $(C; f|_C, g|_C)$ are chains; and
- $(D/\theta; f/\theta, g/\theta)$ is isomorphic to $(\{a, b, c\}; \sqcap, \sqcup)$.

Example

• $D = \{a, b, c, d\}$

$$\bullet \ \Gamma = \left\{ \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) \right\}.$$

• Γ is a core which is not submodular with respect to any lattice on D, but it has the following 1-defect chain multimorphisms.

Outline

- Problem Definition
- 2 Tractable Cases
- Cores and Constants
- 4 Multimorphism Graph
- Binary to Genera
- Open Problems

Weighted pp-definitions

Let I be an instance of $VCSP(\Gamma, \Delta)$ with variables (v_1, \ldots, v_n) .

$$\mathrm{Optsol}(I) := \{ (\sigma(v_1), \dots, \sigma(v_n)) \mid \sigma \text{ is an optimal solution to } I \}$$

A relation has a **weighted pp-definition** over (Γ, Δ) if it is equal to $\pi_{\mathbf{x}} \mathrm{Optsol}(I)$ for some I and sequence \mathbf{x} of variables from I.

Let $\langle \Gamma, \Delta \rangle_w$ denote the set of all such relations.

Proposition

Let $\Delta' \subseteq \langle \Gamma, \Delta \rangle_w$ be a finite subset. Then $VCSP(\Gamma, \Delta')$ is polynomial-time reducible to $VCSP(\Gamma, \Delta)$.

Endomorphisms and cores for $\operatorname{Min}\ \operatorname{CSP}$

Let Γ be a finite set of $\{0,1\}$ -valued cost functions.

• An operation $f:D\to D$ is an **endomorphism** of Γ if

$$h(\mathbf{a}) = 0 \implies h(f(\mathbf{a})) = 0.$$

- An automorphism is a surjective endomorphism.
- The set of endomorphisms (automorphisms) of Γ is denoted by $\operatorname{End}(\Gamma)$ (Aut(Γ)).
- ullet Γ is called a **core** if all of its endomorphisms are automorphisms.

Lemma

Let $f \in \text{End}(\Gamma)$, D' = f(D), and $\Gamma' = \{h|_{D'} \mid h \in \Gamma\}$. Then $MIN \operatorname{CSP}(\Gamma)$ and $MIN \operatorname{CSP}(\Gamma')$ are polynomial-time equivalent.

So we may assume that Γ is a core.

Cores and constants

Let $\mathcal{C}_D = \{\{a\} \mid a \in D\}.$

Proposition

Let Γ be a core over D. Then MIN $\mathrm{CSP}(\Gamma, \mathcal{C}_D)$ is polynomial-time reducible to MIN $\mathrm{CSP}(\Gamma)$.

The endomorphisms of Γ are encoded as the optimal solutions to an instance I of $\operatorname{Min}\ \operatorname{CSP}(\Gamma)$ with

- variables $X_D = \{x_a | a \in D\}$, and
- sum $\sum_{f_i \in \Gamma} \sum_{\mathbf{a} \in f_i^{-1}(0)} f_i(\mathbf{x_a})$, where $\mathbf{x_a} = (x_{a_1}, \dots x_{a_k}) \in X_D^k$.

When Γ is a core, and $\mathbf{d} = (d_1, \dots, d_n)$ is an enumeration of D, we have

$$\{(f(d_1),\ldots,f(d_n))\mid f\in \operatorname{Aut}(\Gamma)\}=\pi_{\mathbf{x_d}}\operatorname{Optsol}(I)\in \langle\Gamma\rangle_w.$$

Add a copy of I to the instance of MIN $\mathrm{CSP}(\Gamma, \mathcal{C}_D)$, identify variables, solve, and apply an inverse automorphism.

Outline

- Problem Definition
- 2 Tractable Cases
- Cores and Constants
- Multimorphism Graph
- Binary to Genera
- Open Problems

Expressive power

We say that a function $h: D^k \to \mathbb{Q}_{\geq 0}$ is **expressible** over (Γ, Δ) if there is an instance I of $\mathrm{VCSP}(\Gamma, \Delta)$ and a sequence of variables (v_1, \ldots, v_k) such that

$$h(a_1,\ldots,a_k)=\operatorname{Opt}(I\cup\{v_i=a_i\})$$

for all $(a_1, \ldots, a_k) \in D^k$, and h is a total function.

Let $\langle \Gamma, \Delta \rangle_{fn}$ denote the set of all such functions.

Proposition

Let $\Gamma' \subseteq \langle \Gamma, \Delta \rangle_{fn}$ be a finite subset. Then $\mathrm{VCSP}(\Gamma', \Delta)$ is polynomial-time reducible to $\mathrm{VCSP}(\Gamma, \Delta)$.

Proposition

If (f,g) is a binary multimorphism of (Γ,Δ) , then it is also a multimorphism of $(\Gamma,\Delta)_{fn}$.

We now proceed as follows.

• We first define a graph G which encodes the binary multimorphisms of the binary functions in $\langle \Gamma, \mathcal{C}_D \rangle_{fn}$ in certain independent sets. (This is a slight extension of a construction by Kolmogorov and Živný (2010) for conservative finite-valued VCSP.)

We now proceed as follows.

- We first define a graph G which encodes the binary multimorphisms of the binary functions in $\langle \Gamma, \mathcal{C}_D \rangle_{fn}$ in certain independent sets. (This is a slight extension of a construction by Kolmogorov and Živný (2010) for conservative finite-valued VCSP.)
- From this graph, it is easy to determine whether there is a reduction from MAX CUT.

We now proceed as follows.

- We first define a graph G which encodes the binary multimorphisms of the binary functions in $\langle \Gamma, \mathcal{C}_D \rangle_{fn}$ in certain independent sets. (This is a slight extension of a construction by Kolmogorov and Živný (2010) for conservative finite-valued VCSP.)
- ullet From this graph, it is easy to determine whether there is a reduction from ${
 m Max}$ ${
 m CUT}.$
- Otherwise we can argue, using the graph G, that the binary functions in $\langle \Gamma, \mathcal{C}_D \rangle_{\mathit{fn}}$ have one of a small number of binary mulitmorphisms which are known to imply tractability.

We now proceed as follows.

- We first define a graph G which encodes the binary multimorphisms of the binary functions in $\langle \Gamma, \mathcal{C}_D \rangle_{fn}$ in certain independent sets. (This is a slight extension of a construction by Kolmogorov and Živný (2010) for conservative finite-valued VCSP.)
- From this graph, it is easy to determine whether there is a reduction from MAX CUT.
- Otherwise we can argue, using the graph G, that the binary functions in $\langle \Gamma, \mathcal{C}_D \rangle_{fn}$ have one of a small number of binary mulitmorphisms which are known to imply tractability.
- Finally, we need to show that these multimorphisms are in fact multimorphisms of all of Γ .

Graph definition

Definition

Let G = (V, E) be the following undirected graph. V is set of pairs of partial functions $f, g: D^2 \to D$ such that

- f and g are defined on a subset $\{a, b\} \subseteq D$;
- f and g are idempotent and commutative; and
- $\{f(a,b),g(a,b)\} = \{a,b\}$ or $\{f(a,b),g(a,b)\} \cap \{a,b\} = \emptyset$. $\{(f_1,g_1),(f_2,g_2)\} \in E(G)$ if there is a binary function $h \in \langle \Gamma, C_D \rangle_{f_0}$ s.t.

$$\min\{h(a_1, a_2) + h(b_1, b_2), h(a_1, b_2) + h(b_1, a_2)\}\$$

$$< h(f_1(a_1, b_1), f_2(a_2, b_2)) + h(g_1(a_1, b_1), g_2(a_2, b_2))$$

Note that a and b are allowed to be equal.

Encoding of multimorphisms

For i=1,2, let $(f_i,g_i)\in V$ be defined on $\{a_i,b_i\}$. Then the edge $\{(f_1,g_1),(f_2,g_2)\}\in E$ means that any pair of operations $(f,g):D^2\to D^2$ such that $(f|_{\{a_i,b_i\}},g|_{\{a_i,b_i\}})=(f_i,g_i)$ fails to be a multimorphism of $\langle\Gamma,\mathcal{C}_D\rangle_{fn}$.

Lemma

Let $\{(f_{\{a,b\}},g_{\{a,b\}})\}\subseteq V$ be an independent set in G containing precisely one vertex for each subset $\{a,b\}\subseteq D$. Then, every binary function in $\langle \Gamma,\mathcal{C}_D\rangle_{fn}$ has the multimorphism (f,g), where f and g are given by

$$f(x, y) = f_{\{x,y\}}(x, y)$$
, and $g(x, y) = g_{\{x,y\}}(x, y)$.

NP-hardness

Let \overrightarrow{xy} denote the vertex (f,g) for which f(x,y)=x and g(x,y)=y. We say that \overrightarrow{xy} is **conservative**.

Proposition

Let Γ be a core over D. If $\{x,y\} \in \langle \Gamma, \mathcal{C}_D \rangle_w$ and the vertex \overrightarrow{xy} has a self-loop in the graph G, for some $x,y \in D$, then $\operatorname{Min}\ \operatorname{CSP}(\Gamma)$ is NP-hard.

Reduce from Max cut, via Min $\mathrm{CSP}(\Gamma,\mathcal{C}_D)$, to Min $\mathrm{CSP}(\Gamma)$.

If we assume that this proposition does not apply, but $\{x,y\} \in \langle \Gamma, \mathcal{C}_D \rangle_w$, then we can exclude a self-loop on \overrightarrow{xy} in G.

So which 2-element subsets $\{x, y\}$ are in $\langle \Gamma, \mathcal{C}_D \rangle_w$?

Expressible 2-element subsets

Let $e_{ab}: D \to D$ denote the operation $e_{ab}(x) = \begin{cases} b & \text{if } x = a \\ x & \text{otherwise.} \end{cases}$

Lemma

If $e_{ab} \notin \operatorname{End}(\Gamma)$, then $\langle \Gamma, \mathcal{C}_D \rangle_{fn}$ contains a unary $\{0,1\}$ -valued function u such that u(a) = 0 and u(b) = 1.

- Let $h: D^k \to \{0,1\} \in \Gamma$ and $a_1, \ldots, a_k \in D$ be such that $h(a_1, \ldots, a_k) = 0$, but $h(e_{ab}(a_1), \ldots, e_{ab}(a_k)) = 1$.
- $a_i = a$ for at least one i; replace these by a variable x.
- $u(x) = h(a_1, ..., x, ..., a_k)$ expresses the desired function.

Thus, when Γ is a core, we have access to a number of unary $\{0,1\}$ -valued functions. We can use these functions to determine the 2-element subsets of $\langle \Gamma, \mathcal{C}_D \rangle_w$ when $D = \{a, b, c, d\}$.

e_{ba}	e_{ca}	e_{bd}	e_{cd}
(1,0,0,0)	(1,0,0,0)	(0,0,0,1)	(0,0,0,1)
(1,0,0,1)	(1,0,0,1)	(0,0,1,1)	(0,1,0,1)
(1,0,1,0)	(1,1,0,0)	(1,0,0,1)	(1,0,0,1)
(1,0,1,1)	(1,1,0,1)	(1,0,1,1)	(1,1,0,1)

e_{ba}	e_{ca}	e_{bd}	e_{cd}
(1,0,0,0)	(1,0,0,0)	(0,0,0,1)	(0,0,0,1)
(1,0,0,1)	(1,0,0,1)	(0,0,1,1)	(0,1,0,1)
(1,0,1,0)	(1,1,0,0)	(1,0,0,1)	(1,0,0,1)
(1,0,1,1)	(1,1,0,1)	(1,0,1,1)	(1,1,0,1)

e_{ba}	e_{ca}	e_{bd}	e_{cd}
(1,0,0,0)	(1,0,0,0)	(0,0,0,1)	(0,0,0,1)
(1,0,0,1)	(1,0,0,1)	(0,0,1,1)	(0,1,0,1)
(1,0,1,0)	(1,1,0,0)	(1,0,0,1)	(1,0,0,1)
(1,0,1,1)	(1,1,0,1)	(1,0,1,1)	(1,1,0,1)

$$\frac{e_{ba}}{(1,0,0,0)} \frac{e_{ca}}{(1,0,0,0)} \frac{e_{bd}}{(0,0,0,1)} \frac{e_{cd}}{(0,0,0,1)}$$

$$\frac{(1,0,0,1)}{(1,0,0,1)} \frac{(1,0,0,1)}{(0,0,1,1)} \frac{(0,0,0,1)}{(0,0,0,1)}$$

$$\frac{(1,0,1,0)}{(1,0,1,1)} \frac{(1,0,0,1)}{(1,0,0,1)} \frac{(1,0,0,1)}{(1,1,0,1)}$$

$$\frac{(0,0,1,1)}{(0,0,1,1)} + (0,1,0,1) + 2 \cdot (1,0,0,0) = (2,1,1,2)$$

$$\frac{(0,0,1,1)}{(0,0,1,1)} + (1,1,0,1) + (1,0,0,0) = (2,1,1,2)$$

$$\frac{e_{ba}}{(1,0,0,0)} \frac{e_{ca}}{(1,0,0,0)} \frac{e_{bd}}{(0,0,0,1)} \frac{e_{cd}}{(0,0,0,1)}$$

$$\frac{(1,0,0,1)}{(1,0,0,1)} \frac{(1,0,0,1)}{(0,0,1,1)} \frac{(0,0,0,1)}{(0,0,1,1)} \frac{(0,0,0,1)}{(1,0,0,1)}$$

$$\frac{(1,0,1,0)}{(1,0,1,1)} \frac{(1,0,0,1)}{(1,0,1,1)} \frac{(1,0,0,1)}{(1,0,0,1)}$$

$$\frac{(0,0,1,1)}{(0,0,1,1)} + \frac{(0,1,0,1)}{(0,0,1)} + \frac{(1,0,0,0)}{(1,0,0,0)} = \frac{(2,1,1,2)}{(2,1,1,2)}$$

$$\frac{(1,0,1,1)}{(1,0,1,1)} + \frac{(0,1,0,1)}{(1,0,0,0)} + \frac{(2,1,1,2)}{(1,0,1,1)} + \frac{(1,1,0,1)}{(1,0,1,1)} = \frac{(2,1,1,2)}{(2,1,1,2)}$$

$$\frac{e_{ba}}{(1,0,0,0)} \frac{e_{ca}}{(1,0,0,0)} \frac{e_{bd}}{(0,0,0,1)} \frac{e_{cd}}{(0,0,0,1)}$$

$$\frac{(1,0,0,1)}{(1,0,0,1)} \frac{(1,0,0,1)}{(0,0,1,1)} \frac{(0,0,0,1)}{(0,0,1,1)} \frac{(0,0,0,1)}{(1,0,0,1)}$$

$$\frac{(1,0,1,0)}{(1,0,1,1)} \frac{(1,1,0,0)}{(1,0,0,1)} \frac{(1,0,0,1)}{(1,0,0,1)} \frac{(1,0,0,1)}{(1,0,1,1)} \frac{(0,0,1,1)}{(1,1,0,1)} + (0,1,0,1) + 2 \cdot (1,0,0,0) = (2,1,1,2)$$

$$\frac{(0,0,1,1)}{(0,0,1,1)} + \frac{(1,1,0,1)}{(1,0,0,0)} + \frac{(2,1,1,2)}{(1,0,1,1)} + \frac{(1,1,0,1)}{(1,0,0,0)} = (2,1,1,2)$$

$$\frac{(1,0,1,1)}{(1,1,0,1)} + \frac{(1,1,0,1)}{(1,1,0,1)} = (2,1,1,2)$$

 e_{ca}

Expressible 2-element subsets of $\{a, b, c, d\}$

Let Γ be a core and assume that $\{b,c\} \notin \langle \Gamma, \mathcal{C}_D \rangle_w$.

 e_{ba}

 e_{hd}

 e_{cd}

$$\frac{e_{ba}}{(1,0,0,0)} \frac{e_{ca}}{(1,0,0,0)} \frac{e_{bd}}{(0,0,0,1)} \frac{e_{cd}}{(0,0,0,1)}$$

$$\frac{(1,0,0,1)}{(1,0,0,1)} \frac{(1,0,0,1)}{(0,0,1,1)} \frac{(0,0,0,1)}{(0,0,0,1)}$$

$$\frac{(1,0,1,0)}{(1,0,1,1)} \frac{(1,1,0,0)}{(1,0,0,1)} \frac{(1,0,0,1)}{(1,0,1,1)} \frac{(1,1,0,1)}{(1,1,0,1)}$$

$$(0,0,1,1) + (0,1,0,1) + 2 \cdot (1,0,0,0) = (2,1,1,2)$$

$$(0,0,1,1) + (1,1,0,1) + (1,0,0,0) = (2,1,1,2)$$

$$(1,0,1,1) + (0,1,0,1) + (1,0,0,0) = (2,1,1,2)$$

$$(1,0,1,1) + (1,1,0,1) = (2,1,1,2)$$

$$2 \cdot (1,0,1,1) + (1,1,0,0) + (0,1,0,1) = (3,2,2,3)$$

Let Σ be the set of all 2-subsets of $\{a,b,c,d\}$ and let $\Sigma_{\Gamma}:=\Sigma\cap\langle\Gamma,\mathcal{C}_D\rangle_w$.

We will assume that $\Sigma_{\Gamma} = \Sigma \setminus \{ad, bc\}, \Sigma \setminus \{bc\}, \text{ or } \Sigma$.

Let G' be the subgraph of G induced by all conservative vertices \overrightarrow{xy} .

• Let I be the union of one part from each non-trivial component.

- Let I be the union of one part from each non-trivial component.
- We can show that \overrightarrow{xy} , $\overrightarrow{yz} \in I$ implies $\overrightarrow{xz} \in I$, so I induces a partial order $\prec := \{(x, y) \mid \overrightarrow{xy} \in I\}$.

- Let I be the union of one part from each non-trivial component.
- We can show that \overrightarrow{xy} , $\overrightarrow{yz} \in I$ implies $\overrightarrow{xz} \in I$, so I induces a partial order $\prec := \{(x, y) \mid \overrightarrow{xy} \in I\}$.
- Extend \prec to a linear order, and add the corresponding vertices to I.

- Let I be the union of one part from each non-trivial component.
- We can show that \overrightarrow{xy} , $\overrightarrow{yz} \in I$ implies $\overrightarrow{xz} \in I$, so I induces a partial order $\prec := \{(x, y) \mid \overrightarrow{xy} \in I\}$.
- ullet Extend \prec to a linear order, and add the corresponding vertices to I.
- Add the vertex on $\{x\}$ to I, for each $x \in D$.

- Let I be the union of one part from each non-trivial component.
- We can show that \overrightarrow{xy} , $\overrightarrow{yz} \in I$ implies $\overrightarrow{xz} \in I$, so I induces a partial order $\prec := \{(x, y) \mid \overrightarrow{xy} \in I\}$.
- Extend \prec to a linear order, and add the corresponding vertices to I.
- Add the vertex on $\{x\}$ to I, for each $x \in D$.
- Otherwise $\Sigma_{\Gamma} \subseteq \Sigma \setminus \{bc\}$.

• $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}$ is bipartite.

- $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}\$ is bipartite.
- The vertices of a connected component again induce a partial order.

- $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}\$ is bipartite.
- The vertices of a connected component again induce a partial order.
- Either $bc \mapsto ad$ is connected to a vertex in $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}...$

- $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}\$ is bipartite.
- The vertices of a connected component again induce a partial order.
- Either $bc \mapsto ad$ is connected to a vertex in $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}...$

- $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}\$ is bipartite.
- The vertices of a connected component again induce a partial order.
- Either $bc \mapsto ad$ is connected to a vertex in $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}...$
- ... or we can pick $bc \mapsto ad$ and \overrightarrow{ad} and make sure the rest fits.

- $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}\$ is bipartite.
- The vertices of a connected component again induce a partial order.
- Either $bc \mapsto ad$ is connected to a vertex in $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}...$
- ... or we can pick $bc \mapsto ad$ and \overrightarrow{ad} and make sure the rest fits.

- $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}\$ is bipartite.
- The vertices of a connected component again induce a partial order.
- Either $bc \mapsto ad$ is connected to a vertex in $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}...$
- ... or we can pick $bc \mapsto ad$ and \overrightarrow{ad} and make sure the rest fits.

- $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}\$ is bipartite.
- The vertices of a connected component again induce a partial order.
- Either $bc \mapsto ad$ is connected to a vertex in $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}...$
- ... or we can pick $bc \mapsto ad$ and \overrightarrow{ad} and make sure the rest fits.

- $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}$ is bipartite.
- The vertices of a connected component again induce a partial order.
- Either $bc \mapsto ad$ is connected to a vertex in $G' \setminus \{\overrightarrow{bc}, \overrightarrow{cb}\}...$
- ... or we can pick $bc \mapsto ad$ and \overrightarrow{ad} and make sure the rest fits.
- Add the vertex on $\{x\}$ to I, for each $x \in D$.

Tractable cases, $D = \{a, b, c, d\}$

Assume that for each $x \neq y \in D$, either $\{x, y\} \notin \langle \Gamma, \mathcal{C}_D \rangle_w$ or the vertex \overrightarrow{xv} has no self-loop. Let $\Gamma_{\emph{bin}}$ denote the set of at most binary functions in $\langle \Gamma, \mathcal{C}_D \rangle_{fn}$.

Up to a permutation of D we have that

• If G' is bipartite, then Γ_{bin} is submodular w.r.t. a chain.

- Otherwise, either Γ_{bin} has a 1-defect chain multimorphism; or
- Γ_{bin} is submodular w.r.t. $b \stackrel{\Box}{\longleftarrow} c$

Outline

- Problem Definition
- 2 Tractable Cases
- Cores and Constants
- 4 Multimorphism Graph
- 6 Binary to General
- Open Problems

From binary to arbitrary arity

Lemma (Topkis, 1978)

A function $h: D^k \to \mathbb{Q}_{\geq 0}$ is submodular w.r.t. a chain $(D; \wedge, \vee)$ if and only if every binary function obtained from h by replacing any given k-2 arguments by constants is submodular on this chain.

If every binary function in $\langle \Gamma, \mathcal{C}_D \rangle_{fn}$ is submodular w.r.t. a chain, then in particular, every $h \in \Gamma$ fulfils the second part of the lemma, so Γ is submodular w.r.t. this chain.

From binary to arbitrary arity

We can show that the same holds for 1-defect chains.

Lemma

A function $h: D^k \to \mathbb{Q}_{\geq 0}$ has a 1-defect chain multimorphism (f,g) if and only if every binary function obtained from h by replacing any given k-2 arguments by constants has the multimorphism (f,g).

Recall that $b \stackrel{d}{\longleftarrow} c$ is a 1-defect chain.

One can also derive the property for this lattice by regarding h as a 2k-ary function over $\{ac, bd\}$ which is submodular with respect to the chain ac < bd.

Classification

To summarise, we have the following.

Theorem

Let Γ be a core with domain $D = \{a, b, c, d\}$.

- If Γ is submodular w.r.t. a chain on D;
- if Γ has a 1-defect chain multimorphism; or
- if Γ is submodular w.r.t. a lattice isomorphic to then MIN $\mathrm{CSP}(\Gamma)$ is tractable.

Otherwise MIN $CSP(\Gamma)$ is NP-hard.

Outline

- Problem Definition
- 2 Tractable Cases
- Cores and Constants
- 4 Multimorphism Graph
- Binary to Genera
- 6 Open Problems

Open problems

Problem

It now seems reasonable to expect that binary idempotent commutative multimorphisms will play a big role in the classification of MIN CSP.

- Which of these actually show up?
 (bisubmodularity does not show up for 3-element MIN CSP)
- Algorithms!

Open problems

Problem

It now seems reasonable to expect that binary idempotent commutative multimorphisms will play a big role in the classification of MIN CSP.

- Which of these actually show up?
 (bisubmodularity does not show up for 3-element MIN CSP)
- Algorithms!

Problem

Find a general class C of binary idempotent commutative multimorphisms such that: a k-ary cost function h has the multimorphism $(f,g) \in C$ iff every binary function obtained from h by replacing any given k-2 arguments by constants has the multimorphism (f,g).