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Outline of the presentation

Outline:
I statement of the result;

I pebble games for bounded width problems;
I systems;
I V-games;
I an unreasonable assumption;
I V-systems;
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Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 2 / 22



Outline of the presentation

Outline:
I statement of the result;
I pebble games for bounded width problems;

I systems;
I V-games;
I an unreasonable assumption;
I V-systems;
I the algebraic result.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 2 / 22



Outline of the presentation

Outline:
I statement of the result;
I pebble games for bounded width problems;
I systems;

I V-games;
I an unreasonable assumption;
I V-systems;
I the algebraic result.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 2 / 22



Outline of the presentation

Outline:
I statement of the result;
I pebble games for bounded width problems;
I systems;
I V-games;

I an unreasonable assumption;
I V-systems;
I the algebraic result.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 2 / 22



Outline of the presentation

Outline:
I statement of the result;
I pebble games for bounded width problems;
I systems;
I V-games;
I an unreasonable assumption;

I V-systems;
I the algebraic result.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 2 / 22



Outline of the presentation

Outline:
I statement of the result;
I pebble games for bounded width problems;
I systems;
I V-games;
I an unreasonable assumption;
I V-systems;

I the algebraic result.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 2 / 22



Outline of the presentation

Outline:
I statement of the result;
I pebble games for bounded width problems;
I systems;
I V-games;
I an unreasonable assumption;
I V-systems;
I the algebraic result.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 2 / 22



The result

Theorem

Let R be a relational structure with a near-unanimity polymorphism
n(x1, . . . , x17)

n(x , . . . , x , y) ≈ n(x , . . . , x , y , x) ≈ · · · ≈ n(y , x , . . . , x) ≈ x

There exists a number k such that, for any relational structure S similar
to R, if duplicator has a winning strategy for a k-pebble V-game then S
maps homomorphically to R.

And
I Dalmau and Krokhin proved this result for majority,
I the V-game corresponds to a linear Datalog program,
I by Barto’s result we cover all the finite relational structures in

congruence distributive varieties.
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Restrictions of the talk

Additional restrictions:
I all the relational structures are digraphs

I the template is G and the algebra of polymorphisms is G;
I the input graph is H

I a mysterious “unreasonable assumption”.
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Pebble game for bounded width problems – 2 pebbles

Duplicator wins
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Pebble game for bounded width problems – 3 pebbles

Spoiler wins
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About the games

The games:
I are due to Feder and Vardi;

I a homomorphism implies a winning strategy for the duplicator;
I once upon a time the goal was to classify templates for which

there exists a number k , such that whenever duplicator wins every
k -pebble game then the homomorphism exists;

I an existence of such a number implies that the corresponding
CSP is in P.
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What is duplicator wins – 2 pebbles

If duplicator wins we can define
a system:

I for v ∈ V (H) we put
Pv ⊆ V (G) to consist of
the responses to placing
the first pebble on v which
give the duplicator a
winning game;

I for every v ,w ∈ V (H) let
Evw ⊆ Pv × Pw be:

I {(a,a) ∈ P2
v } if v = w ;

I {(a,b)|(a,b) ∈ E(G)} if
(v ,w) ∈ E(H);

I {(a,b)|(b,a) ∈ E(G)} if
(w , v) ∈ E(H);

I Pv × Pw otherwise.
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About that system

In the system:

I each Pv is a subuniverse of G;
I each Evw is a subuniverse of G×G;

Every Evw is subdirect in Pv × Pw — it is a (1,2)-system.

A solution is:
I a homomorphism from H to G;
I a |V (H)|-element clique in the system (which is a graph).
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The V-game

The V- game

The only difference is
that the spoiler announces his game-plan in advance.

I the V-game is due to Dalmau;
I the V-game is easier for duplicator;
I the V-game is not really a game;
I a homomorphism implies a winning strategy for the duplicator;
I the goal is to classify templates for which there exists a number k ,

such that whenever duplicator wins every k -pebble V-game then
the homomorphism exists;

I if such a number is found the CSP defined by the template is in
NL.
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Tree patterns

Definition

A tree pattern T is an undirected tree with vertices indexed by
elements of V (H).

A realization of a tree pattern is a function f from vertices of T into
V (G) such that if:

I r , s are adjacent vertices of T,
I r is indexed by a and s is indexed by b (a,b ∈ V (H)),
I (a,b) ∈ E(H)

then (f (a), f (b)) ∈ E(G).

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 12 / 22



Tree patterns

Definition

A tree pattern T is an undirected tree with vertices indexed by
elements of V (H).
A realization of a tree pattern is a function f from vertices of T into
V (G) such that if:

I r , s are adjacent vertices of T,
I r is indexed by a and s is indexed by b (a,b ∈ V (H)),
I (a,b) ∈ E(H)

then (f (a), f (b)) ∈ E(G).

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 12 / 22



Tree patterns

Definition

A tree pattern T is an undirected tree with vertices indexed by
elements of V (H).
A realization of a tree pattern is a function f from vertices of T into
V (G) such that if:

I r , s are adjacent vertices of T,

I r is indexed by a and s is indexed by b (a,b ∈ V (H)),
I (a,b) ∈ E(H)

then (f (a), f (b)) ∈ E(G).

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 12 / 22



Tree patterns

Definition

A tree pattern T is an undirected tree with vertices indexed by
elements of V (H).
A realization of a tree pattern is a function f from vertices of T into
V (G) such that if:

I r , s are adjacent vertices of T,
I r is indexed by a and s is indexed by b (a,b ∈ V (H)),

I (a,b) ∈ E(H)

then (f (a), f (b)) ∈ E(G).

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 12 / 22



Tree patterns

Definition

A tree pattern T is an undirected tree with vertices indexed by
elements of V (H).
A realization of a tree pattern is a function f from vertices of T into
V (G) such that if:

I r , s are adjacent vertices of T,
I r is indexed by a and s is indexed by b (a,b ∈ V (H)),
I (a,b) ∈ E(H)

then (f (a), f (b)) ∈ E(G).

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 12 / 22



Tree patterns

Definition

A tree pattern T is an undirected tree with vertices indexed by
elements of V (H).
A realization of a tree pattern is a function f from vertices of T into
V (G) such that if:

I r , s are adjacent vertices of T,
I r is indexed by a and s is indexed by b (a,b ∈ V (H)),
I (a,b) ∈ E(H)

then (f (a), f (b)) ∈ E(G).

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 12 / 22



V-game and an unreasonable assumption

Fix a vertex v ∈ V (H),

let T v
0 , T v

1 . . . be a list of all the tree patterns
such that:

I each tree has 16 leaves;
I each leaf is indexed by v and
I no other vertex is indexed by v .

Spoiler declares putting a stone at v and then “playing tree patterns
T v

0 , T v
1 , . . . ” and a ∈ V (G) is in Pv if it gives the duplicator a winning

game.

This V-game can be played with 17 pebbles.

The unreasonable assumption

Let assume that in all the games the duplicator, for any v ∈ V (H), is
always choosing an element of Pv .
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The system

For every v ,w ∈ V (H) let Evw ⊆ Pv × Pw be:

I {(a,a) ∈ P2
v } if v = w ;

I {(a,b)|(a,b) ∈ E(G)} if (v ,w) ∈ E(H);
I {(a,b)|(b,a) ∈ E(G)} if (w , v) ∈ E(H);
I Pv × Pw otherwise.

Then
I each Pv is a subuniverse of G;
I each Evw is a subuniverse of G×G;

A |V (H)|-element clique in the system defines a homomorphism from
H to G.
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V-system

A realization of a tree pattern T in a system is a graph-homomorphism
sending vertices of T indexed by v ’s inside appropriate Pv ’s.

The unreasonable assumption implies that:
I for every v ∈ V (H),
I for every a ∈ Pv ,
I and every T v

i

T v
i can be realized (in the system) sending all the leaves to a (in

particular it is a (1,2)-system).

We call such a system a V-system. And the goal is to show that every
V-system has a solution.
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All the trees

Claim

Let v ∈ V (H), a ∈ Pv and T be any pattern with all the leaves indexed
by v . There exists a realization of T in the V-system sending all the
leaves to a.
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Choosing the solution

Choose a v ∈ V (H) and a ∈ Pv

and consider a neighbourhood of a (in
the system) split into sets P ′

w ⊆ Pw for w ∈ V (H).

Claim

There exist (and we take maximal) sets P ′′
w ⊆ P ′

w such that the
restriction of the V-system to these sets is a non-empty (1,2)-system.

Claim

For every w ∈ V (H) the set P ′
w is a subuniverse of Pw and the P ′′

w is a
subuniverse of P ′

w .

and so on. . . not quite.
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Choosing the solution

Definition

Let A be an algebra, a subuniverse B of A is absorbing if there exists a
term t(x1, . . . , x17) such that:

t(a1, . . . ,a17) ∈ B whenever |{i : ai /∈ B}| ≤ 1.

Claim

For every w ∈ V (H) the set P ′
w is an absorbing subuniverse of Pw and

the P ′′
w is an absorbing subuniverse of Pw as well.
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Choosing the solution

Let T be a tree pattern with all the 16 leaves indexed by w .

Put (a1, . . . ,a16) ∈ B ⊆ (P ′′
w )

16 iff
there is a realization of T in Pu sending leaves to a1, . . . ,a16.

Then:
I B is a subuniverse of G16;
I for every a ∈ P ′′

w we have (a, . . . ,a) ∈ B.

Put (a1, . . . ,a16) ∈ S ⊆ (P ′′
w )

16 iff
there is a realization of T in P ′′

u sending leaves to a1, . . . ,a16.

Then:
I S is a subuniverse of B;
I S is subdirect in P ′′16

w ;
I S absorbs B.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 19 / 22



Choosing the solution

Let T be a tree pattern with all the 16 leaves indexed by w .

Put (a1, . . . ,a16) ∈ B ⊆ (P ′′
w )

16 iff
there is a realization of T in Pu sending leaves to a1, . . . ,a16.

Then:
I B is a subuniverse of G16;
I for every a ∈ P ′′

w we have (a, . . . ,a) ∈ B.

Put (a1, . . . ,a16) ∈ S ⊆ (P ′′
w )

16 iff
there is a realization of T in P ′′

u sending leaves to a1, . . . ,a16.

Then:
I S is a subuniverse of B;
I S is subdirect in P ′′16

w ;
I S absorbs B.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 19 / 22



Choosing the solution

Let T be a tree pattern with all the 16 leaves indexed by w .

Put (a1, . . . ,a16) ∈ B ⊆ (P ′′
w )

16 iff
there is a realization of T in Pu sending leaves to a1, . . . ,a16.

Then:
I B is a subuniverse of G16;

I for every a ∈ P ′′
w we have (a, . . . ,a) ∈ B.

Put (a1, . . . ,a16) ∈ S ⊆ (P ′′
w )

16 iff
there is a realization of T in P ′′

u sending leaves to a1, . . . ,a16.

Then:
I S is a subuniverse of B;
I S is subdirect in P ′′16

w ;
I S absorbs B.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 19 / 22



Choosing the solution

Let T be a tree pattern with all the 16 leaves indexed by w .

Put (a1, . . . ,a16) ∈ B ⊆ (P ′′
w )

16 iff
there is a realization of T in Pu sending leaves to a1, . . . ,a16.

Then:
I B is a subuniverse of G16;
I for every a ∈ P ′′

w we have (a, . . . ,a) ∈ B.

Put (a1, . . . ,a16) ∈ S ⊆ (P ′′
w )

16 iff
there is a realization of T in P ′′

u sending leaves to a1, . . . ,a16.

Then:
I S is a subuniverse of B;
I S is subdirect in P ′′16

w ;
I S absorbs B.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 19 / 22



Choosing the solution

Let T be a tree pattern with all the 16 leaves indexed by w .

Put (a1, . . . ,a16) ∈ B ⊆ (P ′′
w )

16 iff
there is a realization of T in Pu sending leaves to a1, . . . ,a16.

Then:
I B is a subuniverse of G16;
I for every a ∈ P ′′

w we have (a, . . . ,a) ∈ B.

Put (a1, . . . ,a16) ∈ S ⊆ (P ′′
w )

16 iff
there is a realization of T in P ′′

u sending leaves to a1, . . . ,a16.

Then:
I S is a subuniverse of B;
I S is subdirect in P ′′16

w ;
I S absorbs B.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 19 / 22



Choosing the solution

Let T be a tree pattern with all the 16 leaves indexed by w .

Put (a1, . . . ,a16) ∈ B ⊆ (P ′′
w )

16 iff
there is a realization of T in Pu sending leaves to a1, . . . ,a16.

Then:
I B is a subuniverse of G16;
I for every a ∈ P ′′

w we have (a, . . . ,a) ∈ B.

Put (a1, . . . ,a16) ∈ S ⊆ (P ′′
w )

16 iff
there is a realization of T in P ′′

u sending leaves to a1, . . . ,a16.

Then:
I S is a subuniverse of B;

I S is subdirect in P ′′16
w ;

I S absorbs B.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 19 / 22



Choosing the solution

Let T be a tree pattern with all the 16 leaves indexed by w .

Put (a1, . . . ,a16) ∈ B ⊆ (P ′′
w )

16 iff
there is a realization of T in Pu sending leaves to a1, . . . ,a16.

Then:
I B is a subuniverse of G16;
I for every a ∈ P ′′

w we have (a, . . . ,a) ∈ B.

Put (a1, . . . ,a16) ∈ S ⊆ (P ′′
w )

16 iff
there is a realization of T in P ′′

u sending leaves to a1, . . . ,a16.

Then:
I S is a subuniverse of B;
I S is subdirect in P ′′16

w ;

I S absorbs B.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 19 / 22



Choosing the solution

Let T be a tree pattern with all the 16 leaves indexed by w .

Put (a1, . . . ,a16) ∈ B ⊆ (P ′′
w )

16 iff
there is a realization of T in Pu sending leaves to a1, . . . ,a16.

Then:
I B is a subuniverse of G16;
I for every a ∈ P ′′

w we have (a, . . . ,a) ∈ B.

Put (a1, . . . ,a16) ∈ S ⊆ (P ′′
w )

16 iff
there is a realization of T in P ′′

u sending leaves to a1, . . . ,a16.

Then:
I S is a subuniverse of B;
I S is subdirect in P ′′16

w ;
I S absorbs B.

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 19 / 22



The algebraic theorem

Theorem

Let A be an algebra. There exists a ∈ A such that, for any S,B ≤s An if
I all the constants belong to B;
I S absorbs B

then the constant (a, . . . ,a) belongs to S.

Proof:
I it suffices to find C, a proper subalgebra of A,
I such that S ∩ Cn is subdirect in Cn,
I and it can be done.
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Coup de grâce

Let a be given by the algebraic theorem for P′′
w .

I Every T with 16 leaves indexed by w can be realized in P ′′
u

sending all the leaves to a.
I Every T with leaves indexed by w can be realized in P ′′

u sending
all the leaves to a.

I Graph neighbourhood of a in the system contains a (1,2) system.

and so on. . .

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 21 / 22



Coup de grâce

Let a be given by the algebraic theorem for P′′
w .

I Every T with 16 leaves indexed by w can be realized in P ′′
u

sending all the leaves to a.

I Every T with leaves indexed by w can be realized in P ′′
u sending

all the leaves to a.
I Graph neighbourhood of a in the system contains a (1,2) system.

and so on. . .

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 21 / 22



Coup de grâce

Let a be given by the algebraic theorem for P′′
w .

I Every T with 16 leaves indexed by w can be realized in P ′′
u

sending all the leaves to a.
I Every T with leaves indexed by w can be realized in P ′′

u sending
all the leaves to a.

I Graph neighbourhood of a in the system contains a (1,2) system.

and so on. . .

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 21 / 22



Coup de grâce

Let a be given by the algebraic theorem for P′′
w .

I Every T with 16 leaves indexed by w can be realized in P ′′
u

sending all the leaves to a.
I Every T with leaves indexed by w can be realized in P ′′

u sending
all the leaves to a.

I Graph neighbourhood of a in the system contains a (1,2) system.

and so on. . .

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 21 / 22



Coup de grâce

Let a be given by the algebraic theorem for P′′
w .

I Every T with 16 leaves indexed by w can be realized in P ′′
u

sending all the leaves to a.
I Every T with leaves indexed by w can be realized in P ′′

u sending
all the leaves to a.

I Graph neighbourhood of a in the system contains a (1,2) system.

and so on. . .

Marcin Kozik (TCS@Jagiellonian) nu implies linear Datalog Fields Institute, August 2011 21 / 22




