CSPs with near-unanimity polymorphisms are solvable by linear Datalog

Marcin Kozik

joint work with Libor Barto and Ross Willard

Theoretical Computer Science Jagiellonian University Kraków, Poland

Fields Institute, August 2011

Outline:

statement of the result;

- statement of the result;
- pebble games for bounded width problems;

- statement of the result;
- pebble games for bounded width problems;
- systems;

- statement of the result;
- pebble games for bounded width problems;
- systems;
- V-games;

- statement of the result;
- pebble games for bounded width problems;
- systems;
- V-games;
- an unreasonable assumption;

- statement of the result;
- pebble games for bounded width problems;
- systems;
- V-games;
- an unreasonable assumption;
- V-systems;

- statement of the result;
- pebble games for bounded width problems;
- systems;
- V-games;
- an unreasonable assumption;
- V-systems;
- the algebraic result.

Theorem

Let \mathbb{R} be a relational structure with a near-unanimity polymorphism $n(x_1, \ldots, x_{17})$

$$n(x,\ldots,x,y)\approx n(x,\ldots,x,y,x)\approx\cdots\approx n(y,x,\ldots,x)\approx x$$

Theorem

Let \mathbb{R} be a relational structure with a near-unanimity polymorphism $n(x_1, \ldots, x_{17})$

$$n(x,\ldots,x,y)\approx n(x,\ldots,x,y,x)\approx\cdots\approx n(y,x,\ldots,x)\approx x$$

There exists a number k such that, for any relational structure $\mathbb S$ similar to $\mathbb R$, if duplicator has a winning strategy for a k-pebble V-game then $\mathbb S$ maps homomorphically to $\mathbb R$.

Theorem

Let \mathbb{R} be a relational structure with a near-unanimity polymorphism $n(x_1, \ldots, x_{17})$

$$n(x,\ldots,x,y)\approx n(x,\ldots,x,y,x)\approx\cdots\approx n(y,x,\ldots,x)\approx x$$

There exists a number k such that, for any relational structure $\mathbb S$ similar to $\mathbb R$, if duplicator has a winning strategy for a k-pebble V-game then $\mathbb S$ maps homomorphically to $\mathbb R$.

And

Dalmau and Krokhin proved this result for majority,

Theorem

Let \mathbb{R} be a relational structure with a near-unanimity polymorphism $n(x_1, \ldots, x_{17})$

$$n(x,\ldots,x,y)\approx n(x,\ldots,x,y,x)\approx\cdots\approx n(y,x,\ldots,x)\approx x$$

There exists a number k such that, for any relational structure $\mathbb S$ similar to $\mathbb R$, if duplicator has a winning strategy for a k-pebble V-game then $\mathbb S$ maps homomorphically to $\mathbb R$.

And

- Dalmau and Krokhin proved this result for majority,
- ▶ the V-game corresponds to a linear Datalog program,

Theorem

Let \mathbb{R} be a relational structure with a near-unanimity polymorphism $n(x_1, \ldots, x_{17})$

$$n(x,\ldots,x,y)\approx n(x,\ldots,x,y,x)\approx \cdots \approx n(y,x,\ldots,x)\approx x$$

There exists a number k such that, for any relational structure $\mathbb S$ similar to $\mathbb R$, if duplicator has a winning strategy for a k-pebble V-game then $\mathbb S$ maps homomorphically to $\mathbb R$.

And

- Dalmau and Krokhin proved this result for majority,
- the V-game corresponds to a linear Datalog program,
- by Barto's result we cover all the finite relational structures in congruence distributive varieties.

Additional restrictions:

all the relational structures are digraphs

Additional restrictions:

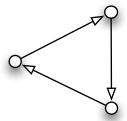
- all the relational structures are digraphs
 - ▶ the template is G and the algebra of polymorphisms is G;

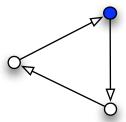
Additional restrictions:

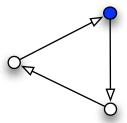
- all the relational structures are digraphs
 - ▶ the template is 𝔾 and the algebra of polymorphisms is **G**;
 - ightharpoonup the input graph is \mathbb{H}

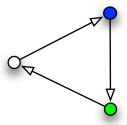
Additional restrictions:

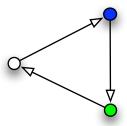
- all the relational structures are digraphs
 - ▶ the template is ℂ and the algebra of polymorphisms is **G**;
 - ightharpoonup the input graph is \mathbb{H}
- a mysterious "unreasonable assumption".

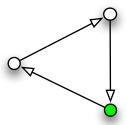


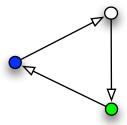


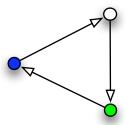


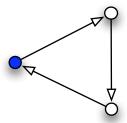






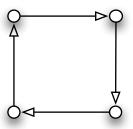


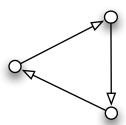


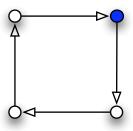


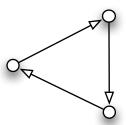


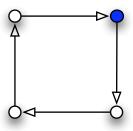
Duplicator wins

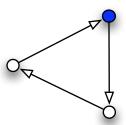


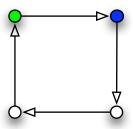


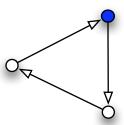


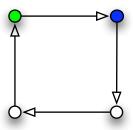


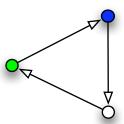


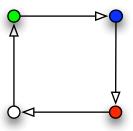


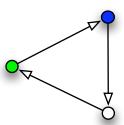


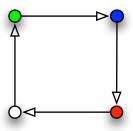


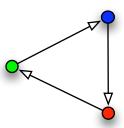


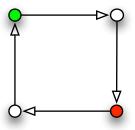


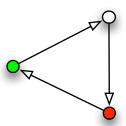


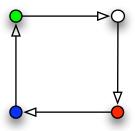


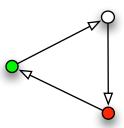




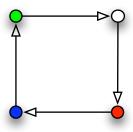


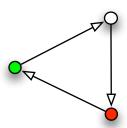






Pebble game for bounded width problems – 3 pebbles





Spoiler wins

The games:

are due to Feder and Vardi;

The games:

- are due to Feder and Vardi;
- a homomorphism implies a winning strategy for the duplicator;

The games:

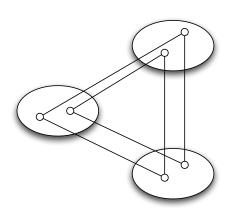
- are due to Feder and Vardi;
- a homomorphism implies a winning strategy for the duplicator;
- once upon a time the goal was to classify templates for which there exists a number k, such that whenever duplicator wins every k-pebble game then the homomorphism exists;

The games:

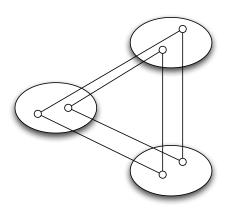
- are due to Feder and Vardi;
- a homomorphism implies a winning strategy for the duplicator;
- once upon a time the goal was to classify templates for which there exists a number k, such that whenever duplicator wins every k-pebble game then the homomorphism exists;
- an existence of such a number implies that the corresponding CSP is in P.

If duplicator wins we can define a system:

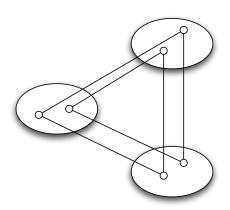
for v ∈ V(ℍ) we put P_v ⊆ V(ℍ) to consist of the responses to placing the first pebble on v which give the duplicator a winning game;



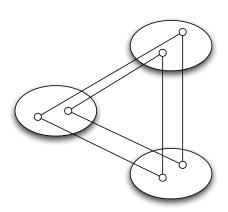
- for v ∈ V(ℍ) we put P_v ⊆ V(ℍ) to consist of the responses to placing the first pebble on v which give the duplicator a winning game;
- ▶ for every $v, w \in V(\mathbb{H})$ let $E_{vw} \subseteq P_v \times P_w$ be:



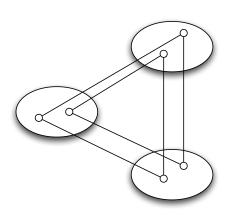
- for v ∈ V(ℍ) we put P_v ⊆ V(ℍ) to consist of the responses to placing the first pebble on v which give the duplicator a winning game;
- ▶ for every $v, w \in V(\mathbb{H})$ let $E_{vw} \subseteq P_v \times P_w$ be:
 - $\{(a,a) \in P_v^2\}$ if v = w;



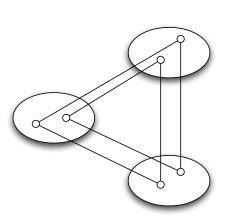
- for v ∈ V(ℍ) we put P_v ⊆ V(ℍ) to consist of the responses to placing the first pebble on v which give the duplicator a winning game;
- ▶ for every $v, w \in V(\mathbb{H})$ let $E_{vw} \subseteq P_v \times P_w$ be:
 - $\{(a, a) \in P_v^2\}$ if v = w;
 - $\{(a,b)|(a,b) \in E(\mathbb{G})\}\$ if $(v,w) \in E(\mathbb{H});$



- for v ∈ V(ℍ) we put P_v ⊆ V(ℍ) to consist of the responses to placing the first pebble on v which give the duplicator a winning game;
- ▶ for every $v, w \in V(\mathbb{H})$ let $E_{vw} \subseteq P_v \times P_w$ be:
 - $\{(a, a) \in P_v^2\}$ if v = w;
 - $\{(a,b)|(a,b)\in E(\mathbb{G})\} \text{ if } \\ (v,w)\in E(\mathbb{H});$
 - $\{(a,b)|(b,a)\in E(\mathbb{G})\}\$ if $(w,v)\in E(\mathbb{H});$



- for v ∈ V(ℍ) we put P_v ⊆ V(ℍ) to consist of the responses to placing the first pebble on v which give the duplicator a winning game;
- ▶ for every $v, w \in V(\mathbb{H})$ let $E_{vw} \subseteq P_v \times P_w$ be:
 - $\{(a,a) \in P_v^2\}$ if v = w;
 - $\{(a,b)|(a,b)\in E(\mathbb{G})\} \text{ if } \\ (v,w)\in E(\mathbb{H});$
 - $\{(a,b)|(b,a)\in E(\mathbb{G})\}\$ if $(w,v)\in E(\mathbb{H});$
 - $\triangleright P_{v} \times P_{w}$ otherwise.



In the system:

In the system:

• each P_{ν} is a subuniverse of **G**;

In the system:

- each P_v is a subuniverse of **G**;
- each E_{vw} is a subuniverse of $\mathbf{G} \times \mathbf{G}$;

In the system:

- each P_{ν} is a subuniverse of **G**;
- each E_{vw} is a subuniverse of $\mathbf{G} \times \mathbf{G}$;

Every E_{vw} is subdirect in $P_v \times P_w$ — it is a (1,2)-system.

A solution is:

▶ a homomorphism from \mathbb{H} to \mathbb{G} ;

In the system:

- each P_{ν} is a subuniverse of **G**;
- each E_{vw} is a subuniverse of $\mathbf{G} \times \mathbf{G}$;

Every E_{vw} is subdirect in $P_v \times P_w$ — it is a (1,2)-system.

A solution is:

- ▶ a homomorphism from H to G;
- ▶ a $|V(\mathbb{H})|$ -element clique in the system (which is a graph).

The V- game

The V- game

The only difference is that the spoiler announces his game-plan in advance.

the V-game is due to Dalmau;

The V- game

- the V-game is due to Dalmau;
- the V-game is easier for duplicator;

The V- game

- the V-game is due to Dalmau;
- the V-game is easier for duplicator;
- the V-game is not really a game;

The V- game

- the V-game is due to Dalmau;
- the V-game is easier for duplicator;
- the V-game is not really a game;
- a homomorphism implies a winning strategy for the duplicator;

The V- game

- the V-game is due to Dalmau;
- the V-game is easier for duplicator;
- the V-game is not really a game;
- a homomorphism implies a winning strategy for the duplicator;
- ▶ the goal is to classify templates for which there exists a number k, such that whenever duplicator wins every k-pebble V-game then the homomorphism exists;

The V- game

- the V-game is due to Dalmau;
- the V-game is easier for duplicator;
- the V-game is not really a game;
- a homomorphism implies a winning strategy for the duplicator;
- ▶ the goal is to classify templates for which there exists a number k, such that whenever duplicator wins every k-pebble V-game then the homomorphism exists;
- if such a number is found the CSP defined by the template is in NL.

Definition

A tree pattern \mathcal{T} is an undirected tree with vertices indexed by elements of $V(\mathbb{H})$.

Definition

A tree pattern \mathcal{T} is an undirected tree with vertices indexed by elements of $V(\mathbb{H})$.

A realization of a tree pattern is a function f from vertices of \mathcal{T} into $V(\mathbb{G})$ such that if:

Definition

A tree pattern \mathcal{T} is an undirected tree with vertices indexed by elements of $V(\mathbb{H})$.

A realization of a tree pattern is a function f from vertices of \mathcal{T} into $V(\mathbb{G})$ such that if:

r, s are adjacent vertices of T,

Definition

A tree pattern \mathcal{T} is an undirected tree with vertices indexed by elements of $V(\mathbb{H})$.

A realization of a tree pattern is a function f from vertices of \mathcal{T} into $V(\mathbb{G})$ such that if:

- r, s are adjacent vertices of T,
- r is indexed by a and s is indexed by b $(a, b \in V(\mathbb{H}))$,

Definition

A tree pattern \mathcal{T} is an undirected tree with vertices indexed by elements of $V(\mathbb{H})$.

A realization of a tree pattern is a function f from vertices of \mathcal{T} into $V(\mathbb{G})$ such that if:

- r, s are adjacent vertices of T,
- ▶ r is indexed by a and s is indexed by b ($a, b \in V(\mathbb{H})$),
- ▶ $(a,b) \in E(\mathbb{H})$

Definition

A tree pattern \mathcal{T} is an undirected tree with vertices indexed by elements of $V(\mathbb{H})$.

A realization of a tree pattern is a function f from vertices of \mathcal{T} into $V(\mathbb{G})$ such that if:

- r, s are adjacent vertices of T,
- r is indexed by a and s is indexed by b $(a, b \in V(\mathbb{H}))$,
- ▶ $(a,b) \in E(\mathbb{H})$

then $(f(a), f(b)) \in E(\mathbb{G})$.

Fix a vertex $v \in V(\mathbb{H})$,

Fix a vertex $v \in V(\mathbb{H})$, let $\mathcal{T}_0^v, \mathcal{T}_1^v \dots$ be a list of all the tree patterns such that:

Fix a vertex $v \in V(\mathbb{H})$, let $\mathcal{T}_0^v, \mathcal{T}_1^v \dots$ be a list of all the tree patterns such that:

each tree has 16 leaves;

Fix a vertex $v \in V(\mathbb{H})$, let $\mathcal{T}_0^v, \mathcal{T}_1^v \dots$ be a list of all the tree patterns such that:

- each tree has 16 leaves:
- each leaf is indexed by v and

Fix a vertex $v \in V(\mathbb{H})$, let $\mathcal{T}_0^v, \mathcal{T}_1^v \dots$ be a list of all the tree patterns such that:

- each tree has 16 leaves;
- each leaf is indexed by v and
- no other vertex is indexed by v.

Fix a vertex $v \in V(\mathbb{H})$, let $\mathcal{T}_0^v, \mathcal{T}_1^v \dots$ be a list of all the tree patterns such that:

- each tree has 16 leaves;
- each leaf is indexed by v and
- no other vertex is indexed by v.

Spoiler declares putting a stone at v and then "playing tree patterns $\mathcal{T}_0^v, \mathcal{T}_1^v, \dots$ "

Fix a vertex $v \in V(\mathbb{H})$, let $\mathcal{T}_0^v, \mathcal{T}_1^v \dots$ be a list of all the tree patterns such that:

- each tree has 16 leaves;
- each leaf is indexed by v and
- no other vertex is indexed by v.

Spoiler declares putting a stone at v and then "playing tree patterns $\mathcal{T}_0^v, \mathcal{T}_1^v, \ldots$ " and $a \in V(\mathbb{G})$ is in P_v if it gives the duplicator a winning game.

Fix a vertex $v \in V(\mathbb{H})$, let $\mathcal{T}_0^v, \mathcal{T}_1^v \dots$ be a list of all the tree patterns such that:

- each tree has 16 leaves;
- each leaf is indexed by v and
- no other vertex is indexed by v.

Spoiler declares putting a stone at v and then "playing tree patterns $\mathcal{T}_0^v, \mathcal{T}_1^v, \ldots$ " and $a \in V(\mathbb{G})$ is in P_v if it gives the duplicator a winning game.

This V-game can be played with 17 pebbles.

Fix a vertex $v \in V(\mathbb{H})$, let $\mathcal{T}_0^v, \mathcal{T}_1^v \dots$ be a list of all the tree patterns such that:

- each tree has 16 leaves;
- each leaf is indexed by v and
- no other vertex is indexed by v.

Spoiler declares putting a stone at v and then "playing tree patterns $\mathcal{T}_0^v, \mathcal{T}_1^v, \ldots$ " and $a \in V(\mathbb{G})$ is in P_v if it gives the duplicator a winning game.

This V-game can be played with 17 pebbles.

The unreasonable assumption

Let assume that in all the games the duplicator, for any $v \in V(\mathbb{H})$, is always choosing an element of P_v .

For every $v, w \in V(\mathbb{H})$ let $E_{vw} \subseteq P_v \times P_w$ be:

▶ $\{(a,a) \in P_v^2\}$ if v = w;

- ▶ $\{(a, a) \in P_v^2\}$ if v = w;
- ▶ $\{(a,b)|(a,b) \in E(\mathbb{G})\}\ \text{if}\ (v,w) \in E(\mathbb{H});$

- ▶ $\{(a, a) \in P_v^2\}$ if v = w;
- ▶ $\{(a,b)|(a,b) \in E(\mathbb{G})\}\ \text{if}\ (v,w) \in E(\mathbb{H});$
- ▶ $\{(a,b)|(b,a) \in E(\mathbb{G})\}\ \text{if}\ (w,v) \in E(\mathbb{H});$

- ▶ $\{(a, a) \in P_v^2\}$ if v = w;
- ▶ $\{(a,b)|(a,b) \in E(\mathbb{G})\}\ \text{if } (v,w) \in E(\mathbb{H});$
- ▶ $\{(a,b)|(b,a) \in E(\mathbb{G})\}\$ if $(w,v) \in E(\mathbb{H});$
- $ightharpoonup P_v \times P_w$ otherwise.

For every $v, w \in V(\mathbb{H})$ let $E_{vw} \subseteq P_v \times P_w$ be:

- ▶ $\{(a, a) \in P_v^2\}$ if v = w;
- ▶ $\{(a,b)|(a,b) \in E(\mathbb{G})\}\$ if $(v,w) \in E(\mathbb{H});$
- ▶ $\{(a,b)|(b,a) \in E(\mathbb{G})\}\$ if $(w,v) \in E(\mathbb{H});$
- $ightharpoonup P_v \times P_w$ otherwise.

Then

each P_v is a subuniverse of G;

For every $v, w \in V(\mathbb{H})$ let $E_{vw} \subseteq P_v \times P_w$ be:

- ▶ $\{(a, a) \in P_v^2\}$ if v = w;
- ▶ $\{(a,b)|(a,b) \in E(\mathbb{G})\}\ \text{if } (v,w) \in E(\mathbb{H});$
- ▶ $\{(a,b)|(b,a) \in E(\mathbb{G})\}\$ if $(w,v) \in E(\mathbb{H});$
- $ightharpoonup P_v \times P_w$ otherwise.

Then

- each P_v is a subuniverse of G;
- each E_{vw} is a subuniverse of $\mathbf{G} \times \mathbf{G}$;

For every $v, w \in V(\mathbb{H})$ let $E_{vw} \subseteq P_v \times P_w$ be:

- ▶ $\{(a, a) \in P_v^2\}$ if v = w;
- ▶ $\{(a,b)|(a,b) \in E(\mathbb{G})\}\ \text{if } (v,w) \in E(\mathbb{H});$
- ▶ $\{(a,b)|(b,a) \in E(\mathbb{G})\}\ \text{if}\ (w,v) \in E(\mathbb{H});$
- $ightharpoonup P_v \times P_w$ otherwise.

Then

- each P_v is a subuniverse of G;
- each E_{vw} is a subuniverse of $\mathbf{G} \times \mathbf{G}$;

A $|V(\mathbb{H})|$ -element clique in the system defines a homomorphism from \mathbb{H} to \mathbb{G} .

A realization of a tree pattern \mathcal{T} in a system is a graph-homomorphism sending vertices of \mathcal{T} indexed by v's inside appropriate P_v 's.

A realization of a tree pattern \mathcal{T} in a system is a graph-homomorphism sending vertices of \mathcal{T} indexed by v's inside appropriate P_v 's.

The unreasonable assumption implies that:

A realization of a tree pattern \mathcal{T} in a system is a graph-homomorphism sending vertices of \mathcal{T} indexed by v's inside appropriate P_v 's.

The unreasonable assumption implies that:

▶ for every $v \in V(\mathbb{H})$,

A realization of a tree pattern \mathcal{T} in a system is a graph-homomorphism sending vertices of \mathcal{T} indexed by v's inside appropriate P_v 's.

The unreasonable assumption implies that:

- for every $v \in V(\mathbb{H})$,
- ▶ for every $a \in P_{\nu}$,

A realization of a tree pattern \mathcal{T} in a system is a graph-homomorphism sending vertices of \mathcal{T} indexed by v's inside appropriate P_v 's.

The unreasonable assumption implies that:

- ▶ for every $v \in V(\mathbb{H})$,
- for every $a \in P_{\nu}$,
- ▶ and every \mathcal{T}_i^{ν}

A realization of a tree pattern \mathcal{T} in a system is a graph-homomorphism sending vertices of \mathcal{T} indexed by v's inside appropriate P_v 's.

The unreasonable assumption implies that:

- ▶ for every $v \in V(\mathbb{H})$,
- for every a ∈ P_v,
- ▶ and every T_i^v

 T_i^{ν} can be realized (in the system) sending all the leaves to a

A realization of a tree pattern \mathcal{T} in a system is a graph-homomorphism sending vertices of \mathcal{T} indexed by v's inside appropriate P_v 's.

The unreasonable assumption implies that:

- ▶ for every $v \in V(\mathbb{H})$,
- for every a ∈ P_v,
- ▶ and every T_i^v

 T_i^{ν} can be realized (in the system) sending all the leaves to a (in particular it is a (1,2)-system).

A realization of a tree pattern \mathcal{T} in a system is a graph-homomorphism sending vertices of \mathcal{T} indexed by v's inside appropriate P_v 's.

The unreasonable assumption implies that:

- ▶ for every $v \in V(\mathbb{H})$,
- for every $a \in P_{\nu}$,
- ▶ and every T_i^v

 \mathcal{T}_i^{ν} can be realized (in the system) sending all the leaves to a (in particular it is a (1,2)-system).

We call such a system a V-system.

A realization of a tree pattern \mathcal{T} in a system is a graph-homomorphism sending vertices of \mathcal{T} indexed by v's inside appropriate P_v 's.

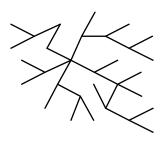
The unreasonable assumption implies that:

- ▶ for every $v \in V(\mathbb{H})$,
- for every $a \in P_{\nu}$,
- ▶ and every T_i^v

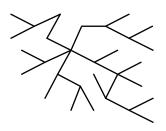
 \mathcal{T}_i^{ν} can be realized (in the system) sending all the leaves to a (in particular it is a (1,2)-system).

We call such a system a V-system. And the goal is to show that every V-system has a solution.

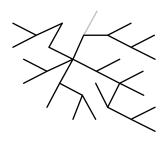
Claim



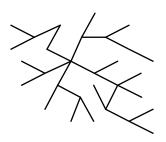
Claim



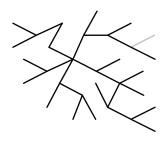
Claim



Claim



Claim



Choose a $v \in V(\mathbb{H})$ and $a \in P_v$

Choose a $v \in V(\mathbb{H})$ and $a \in P_v$ and consider a neighbourhood of a (in the system) split into sets $P'_w \subseteq P_w$ for $w \in V(\mathbb{H})$.

Choose a $v \in V(\mathbb{H})$ and $a \in P_v$ and consider a neighbourhood of a (in the system) split into sets $P'_w \subseteq P_w$ for $w \in V(\mathbb{H})$.

Claim

There exist (and we take maximal) sets $P''_w \subseteq P'_w$ such that the restriction of the V-system to these sets is a non-empty (1,2)-system.

Choose a $v \in V(\mathbb{H})$ and $a \in P_v$ and consider a neighbourhood of a (in the system) split into sets $P'_w \subseteq P_w$ for $w \in V(\mathbb{H})$.

Claim

There exist (and we take maximal) sets $P''_w \subseteq P'_w$ such that the restriction of the V-system to these sets is a non-empty (1,2)-system.

Claim

For every $w \in V(\mathbb{H})$ the set P'_w is a subuniverse of P_w

Choose a $v \in V(\mathbb{H})$ and $a \in P_v$ and consider a neighbourhood of a (in the system) split into sets $P'_w \subseteq P_w$ for $w \in V(\mathbb{H})$.

Claim

There exist (and we take maximal) sets $P''_w \subseteq P'_w$ such that the restriction of the V-system to these sets is a non-empty (1,2)-system.

Claim

For every $w \in V(\mathbb{H})$ the set P'_w is a subuniverse of P_w and the P''_w is a subuniverse of P'_w .

Choose a $v \in V(\mathbb{H})$ and $a \in P_v$ and consider a neighbourhood of a (in the system) split into sets $P'_w \subseteq P_w$ for $w \in V(\mathbb{H})$.

Claim

There exist (and we take maximal) sets $P''_w \subseteq P'_w$ such that the restriction of the V-system to these sets is a non-empty (1,2)-system.

Claim

For every $w \in V(\mathbb{H})$ the set P'_w is a subuniverse of P_w and the P''_w is a subuniverse of P'_w .

and so on...

Choose a $v \in V(\mathbb{H})$ and $a \in P_v$ and consider a neighbourhood of a (in the system) split into sets $P'_w \subseteq P_w$ for $w \in V(\mathbb{H})$.

Claim

There exist (and we take maximal) sets $P''_w \subseteq P'_w$ such that the restriction of the V-system to these sets is a non-empty (1,2)-system.

Claim

For every $w \in V(\mathbb{H})$ the set P'_w is a subuniverse of P_w and the P''_w is a subuniverse of P'_w .

and so on... not quite.

Definition

Let **A** be an algebra, a subuniverse B of **A** is absorbing if there exists a term $t(x_1,...,x_{17})$ such that:

$$t(a_1, ..., a_{17}) \in B \text{ whenever } |\{i : a_i \notin B\}| \le 1.$$

Definition

Let **A** be an algebra, a subuniverse B of **A** is absorbing if there exists a term $t(x_1,...,x_{17})$ such that:

$$t(a_1, ..., a_{17}) \in B \text{ whenever } |\{i : a_i \notin B\}| \le 1.$$

Claim

For every $w \in V(\mathbb{H})$ the set P'_w is an absorbing subuniverse of P_w

Definition

Let **A** be an algebra, a subuniverse B of **A** is absorbing if there exists a term $t(x_1,...,x_{17})$ such that:

$$t(a_1, ..., a_{17}) \in B \text{ whenever } |\{i : a_i \notin B\}| \le 1.$$

Claim

For every $w \in V(\mathbb{H})$ the set P'_w is an absorbing subuniverse of P_w and the P''_w is an absorbing subuniverse of P_w as well.

Let T be a tree pattern with all the 16 leaves indexed by w.

Let T be a tree pattern with all the 16 leaves indexed by w.

Put
$$(a_1,\ldots,a_{16})\in B\subseteq (P_w'')^{16}$$
 iff there is a realization of $\mathcal T$ in P_w sending leaves to a_1,\ldots,a_{16} .

Let T be a tree pattern with all the 16 leaves indexed by w.

Put
$$(a_1,\ldots,a_{16})\in B\subseteq (P_w'')^{16}$$
 iff there is a realization of $\mathcal T$ in P_w sending leaves to a_1,\ldots,a_{16} .

Then:

B is a subuniverse of G¹⁶;

Let T be a tree pattern with all the 16 leaves indexed by w.

Put
$$(a_1,\ldots,a_{16})\in B\subseteq (P_w'')^{16}$$
 iff there is a realization of $\mathcal T$ in P_w sending leaves to a_1,\ldots,a_{16} .

- ▶ B is a subuniverse of G¹⁶;
- ▶ for every $a \in P_w''$ we have $(a, ..., a) \in B$.

Let T be a tree pattern with all the 16 leaves indexed by w.

Put
$$(a_1,\ldots,a_{16})\in B\subseteq (P_w'')^{16}$$
 iff there is a realization of $\mathcal T$ in P_u sending leaves to a_1,\ldots,a_{16} .

- ▶ B is a subuniverse of G¹⁶;
- ▶ for every $a \in P''_w$ we have $(a, ..., a) \in B$.

Put
$$(a_1,\ldots,a_{16})\in\mathcal{S}\subseteq(P''_w)^{16}$$
 iff there is a realization of \mathcal{T} in P''_u sending leaves to a_1,\ldots,a_{16} .

Let T be a tree pattern with all the 16 leaves indexed by w.

Put
$$(a_1,\ldots,a_{16})\in B\subseteq (P_w'')^{16}$$
 iff there is a realization of $\mathcal T$ in P_u sending leaves to a_1,\ldots,a_{16} .

Then:

- B is a subuniverse of G¹⁶;
- ▶ for every $a \in P''_w$ we have $(a, ..., a) \in B$.

Put
$$(a_1,\ldots,a_{16})\in \mathcal{S}\subseteq (P_w'')^{16}$$
 iff there is a realization of \mathcal{T} in P_u'' sending leaves to a_1,\ldots,a_{16} .

Then:

S is a subuniverse of B:

Let T be a tree pattern with all the 16 leaves indexed by w.

Put
$$(a_1,\ldots,a_{16})\in B\subseteq (P_w'')^{16}$$
 iff there is a realization of $\mathcal T$ in P_u sending leaves to a_1,\ldots,a_{16} .

Then:

- B is a subuniverse of G¹⁶;
- ▶ for every $a \in P_w''$ we have $(a, ..., a) \in B$.

Put
$$(a_1,\ldots,a_{16})\in \mathcal{S}\subseteq (P_w'')^{16}$$
 iff there is a realization of \mathcal{T} in P_u'' sending leaves to a_1,\ldots,a_{16} .

- S is a subuniverse of B;
- S is subdirect in $P_w''^{16}$;

Let T be a tree pattern with all the 16 leaves indexed by w.

Put
$$(a_1,\ldots,a_{16})\in B\subseteq (P_w'')^{16}$$
 iff there is a realization of $\mathcal T$ in P_u sending leaves to a_1,\ldots,a_{16} .

Then:

- B is a subuniverse of G¹⁶;
- ▶ for every $a \in P_w''$ we have $(a, ..., a) \in B$.

Put
$$(a_1,\ldots,a_{16})\in\mathcal{S}\subseteq(P_w'')^{16}$$
 iff there is a realization of \mathcal{T} in P_u'' sending leaves to a_1,\ldots,a_{16} .

- S is a subuniverse of B;
- S is subdirect in P_w^{''16};
- ▶ S absorbs B.

Theorem

Let **A** be an algebra. There exists $a \in A$ such that, for any $S, B \leq_s A^n$ if

- all the constants belong to B;
- ▶ S absorbs B

then the constant (a, ..., a) belongs to **S**.

Theorem

Let **A** be an algebra. There exists $a \in A$ such that, for any $S, B \leq_s A^n$ if

- all the constants belong to B;
- ▶ S absorbs B

then the constant (a, ..., a) belongs to **S**.

Proof:

Theorem

Let **A** be an algebra. There exists $a \in A$ such that, for any $S, B \leq_s A^n$ if

- all the constants belong to B;
- ▶ S absorbs B

then the constant (a, ..., a) belongs to **S**.

Proof:

▶ it suffices to find C, a proper subalgebra of A,

Theorem

Let **A** be an algebra. There exists $a \in A$ such that, for any $S, B \leq_s A^n$ if

- all the constants belong to B;
- S absorbs B

then the constant (a, ..., a) belongs to **S**.

Proof:

- ▶ it suffices to find C, a proper subalgebra of A,
- ▶ such that $S \cap C^n$ is subdirect in C^n ,

Theorem

Let **A** be an algebra. There exists $a \in A$ such that, for any $S, B \leq_s A^n$ if

- all the constants belong to B;
- S absorbs B

then the constant (a, ..., a) belongs to **S**.

Proof:

- ▶ it suffices to find C, a proper subalgebra of A,
- ▶ such that $S \cap C^n$ is subdirect in C^n ,
- and it can be done.

Let a be given by the algebraic theorem for $\mathbf{P}_{w}^{"}$.

Let a be given by the algebraic theorem for $\mathbf{P}_{w}^{"}$.

▶ Every \mathcal{T} with 16 leaves indexed by w can be realized in P''_u sending all the leaves to a.

Let a be given by the algebraic theorem for $\mathbf{P}_{w}^{"}$.

- ▶ Every \mathcal{T} with 16 leaves indexed by w can be realized in P''_u sending all the leaves to a.
- ▶ Every \mathcal{T} with leaves indexed by w can be realized in P''_u sending all the leaves to a.

Let a be given by the algebraic theorem for $\mathbf{P}_{w}^{"}$.

- ▶ Every \mathcal{T} with 16 leaves indexed by w can be realized in P''_u sending all the leaves to a.
- ▶ Every \mathcal{T} with leaves indexed by w can be realized in P''_u sending all the leaves to a.
- ► Graph neighbourhood of *a* in the system contains a (1,2) system.

Let a be given by the algebraic theorem for $\mathbf{P}_{w}^{"}$.

- ▶ Every \mathcal{T} with 16 leaves indexed by w can be realized in P''_u sending all the leaves to a.
- ▶ Every \mathcal{T} with leaves indexed by w can be realized in P''_u sending all the leaves to a.
- ▶ Graph neighbourhood of a in the system contains a (1,2) system.

and so on...

