
A Galois Connection
for Valued Constraints

Peter Jeavons
University of Oxford

Joint work with
David Cohen, Martin Cooper, Páidí Creed, Standa Živný

Outline

• Background CSP is good, but…

• Generalizing CSP → VCSP

• Algebra Polymorphisms →
Multimorphisms

• Generalizing again Multimorphisms→
Weighted Polymorphisms

• Galois connection and where it takes us…

Background

Birth of Complexity Theory

“The progress of
science is the
discovery at each
step of a new order
which gives unity to
what had seemed
unlike”

Jacob Bronowski

CSP

“Basic” Problems

3D-Matching

Vertex Cover

Partition

3-SAT

Hamiltonian Circuit

Clique

Colouring

Complexity Classification

CSP
3D-Matching

Vertex Cover

Partition

3-SAT

Hamiltonian Circuit

Clique

Colouring

A Bigger Picture

Travelling Salesperson

Scheduling

Min-Cut

Max-SAT

Max-Flow

Linear Programming

Max-Cut

ILP

Max-Clique

CSP
3D-Matching

Vertex Cover

Partition

3-SAT

Hamiltonian Circuit

Clique

Colouring

Generalization

So let’s generalize…

Definition 1a:
• An instance of CSP is defined to be

a first order formula:

R1(s1) ∧ R2(s2) ∧ … ∧ Rm(sm)
where each Ri ∈ L

• The question is whether the formula can be
satisfied by finding an assignment of values to
the variables

So let’s generalize…

Definition 1b:

• An instance of CSP is defined to be
a pair of similar relational structures:

(V,E1,…,Em) , (D,R1,…,Rm)
where each Ri ∈ L

• The question is whether there exists a
homomorphism from V to D

So let’s generalize…
Definition 1c:

• An instance of VCSP is a 3-tuple (V,D,C,Ω), where
– V is a set of variables
– D is a single domain of possible values
– C is a set of constraints
 is a set of costs

Each constraint in C is a pair (s,R) where
• s is a list of variables defining the scope
• R is a relation defining the allowed

combinations of values

Definition of VCSP

• An instance of VCSP is a 3-tuple (V,D,C,Ω), where
– V is a set of variables
– D is a single domain of possible values
– C is a set of constraints
 is a set of costs

Each constraint in C is a pair (s,R) where
• s is a list of variables defining the scope
• R is a relation defining the allowed

combinations of values

Definition of VCSP

• An instance of VCSP is a 4-tuple (V,D,C,Ω), where
– V is a set of variables
– D is a single domain of possible values
– C is a set of constraints
– Ω is a set of costs (ordered, can be added)

Each constraint in C is a pair (s,φ) where
• s is a list of variables defining the scope
• φ is a function defining the cost

__associated with each combination of values

∞111

0011

0101

∞001

0110

∞010

∞100

0000

zyx

X111

ü011

ü101

X001

ü110

X010

X100

ü000

zyxSAT
x + y + z = 0x + y + z = 0

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z) ≡

valued Boolean constraints valued

1111

0011

0101

1001

0110

1010

1100

0000

zyxMAX-SAT
x + y + z = 0x + y + z = 0

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z) ≡

valued Boolean constraints valued

0111

∞011

⅓101

∞001

1110

7010

⅝100

0000

zyxVSAT

valued Boolean constraints valued

Ø Very general discrete
optimization problem

Ø NP-hard

A Bigger Picture

Travelling Salesperson

Scheduling

Min-Cut

Max-SAT

Max-Flow

Linear Programming

Max-Cut

ILP

Max-Clique

CSP
3D-Matching

Vertex Cover

Partition

3-SAT

Hamiltonian Circuit

Clique

Colouring

VCSP

Valued Constraint Languages

For every valued constraint language, L, we have
a corresponding class of instances, VCSP(L)…

Definition: A valued constraint language is

a set of functions from Dn to Ω, for some

fixed finite set D and some set of costs Ω.

Where the question is to find an assignment with

minimal total cost.

Valued Constraint Languages

For every valued constraint language, L, we have
a corresponding class of instances, VCSP(L)…

Definition: A valued constraint language is

a set of functions from Dn to ℚ+∪ ∪ ∪ ∪ {∞}{∞}{∞}{∞} for

some fixed finite set D.

Where the question is to find an assignment with

minimal total cost.

General Question

• Having a general formulation for all of
these problems allows us to ask general

complexity questions:

When is VCSP(L)
tractable?

Reductions

R1

Expressive Power

• If we can combine the relations
R1,R2,…,Rk to obtain a derived constraint
relation R0, then we say that R0 can be
expressed using R1,R2,…,Rk

R0

R2

R3 R4

φ1

Expressive Power

• If we can combine the functions
φ1, φ2,…, φk to obtain a derived cost
function φ0, then we say that φ0 can be
expressed using φ1, φ2,…, φk

φ0

φ2

φ3 φ4

Expressive Power

Definition:

The “expressive power” of a valued
constraint language L, denoted 〈L〉, is
defined to be the set of relations that can
be obtained from relations in L using:
– Conjunction
– Existential quantification

Expressive Power

Definition:

The “expressive power” of a valued
constraint language L, denoted 〈L〉, is
defined to be the set of functions that can
be obtained from functions in L using
– Summation
– Minimisation

CSP(L)

R1

CSP(L′)

Expressive Power and Reduction

R2

R3 R4

Theorem: (J. 98) For any constraint languages L, L′,

if L′ finite, and L′ ⊆ 〈L〉

then CSP(L′) is polynomial-time reducible to CSP(L)

Expressive Power and Reduction

Theorem: (J. 98) For any constraint languages L, L′,

if L′ finite, and L′ ⊆ 〈L〉

then CSP(L′) is polynomial-time reducible to CSP(L)

Theorem: (Cohen, Cooper, J. 06) For any valued constraint

languages L, L′, if L′ finite, and L′ ⊆ 〈L〉

then VCSP(L′) is polynomial-time reducible to VCSP(L)

Closure

Definition:

The “closure” of a valued constraint
language L, denoted 〈〈L〉〉, is defined to be
the set of functions that can be obtained
from functions in L using
– Summation
– Minimisation
– Multiplication by a non-negative rational
– Addition of a constant

Closure and Reduction

Theorem: (Cohen, Cooper, J. 06) For any valued constraint

languages L, L′, if L′ finite, and L′ ⊆ 〈〈L〉〉

then VCSP(L′) is polynomial-time reducible to VCSP(L)

Corollary: A valued constraint language L is (locally)

tractable if and only if 〈〈L〉〉 is tractable;

similarly, L is NP-hard if and only if 〈〈L〉〉 is NP-hard.

Algebra?

Pol and Inv

∅

RD

L

Sets of
relations

Pol(L)

Compute the
polymorphisms

of L

Compute the
invariant relations

of Pol(L)

Inv(Pol(L))

=〈L〉

0111

∞011

3101

∞001

1110

7010

1100

0000

zyx

Defining Pol

1100

101 Maximum

∞001

s

t

0111

∞011

0101

0001

∞110

0010

0100

0000

zyx

Generalizing Pol

0100

0001

0101 Maximum

∀s,t Cost(Max(s,t)) ≤ Cost(s) + Cost(t)

0111

∞011

3101

5001

∞110

7010

1100

0000

zyx

Generalizing Pol

1100

5001

3101 Maximum

0000 Minimum

+ = 3

+ = 6

∀s,t Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t)

0111

∞011

3101

5001

∞110

7010

1100

0000

zyx

Generalizing Pol
∀s,t Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t)

We say that the cost function has
the multimorphism 〈Min,Max〉

(any cost function with this
particular multimorphism

is called submodular)

Tractable Cases

1) 〈Min,Max〉
2) 〈Max,Max〉
3) 〈Min,Min〉
4) 〈Majority,Majority,Majority〉
5) 〈Minority,Minority,Minority〉
6) 〈Majority,Majority,Minority〉
7) 〈Constant 0〉
8) 〈Constant 1 〉

Note: These are tractable
cases for all
finite domains

If the cost functions all have
one of these eight
multimorphisms, then the
problem is tractable:

(Cohen et al, CP’03)

Boolean Dichotomy Theorem

In all other Boolean cases
the cost functions have

no significant common
multimorphisms and the
problem is NP-hard.

1) 〈Min,Max〉
2) 〈Max,Max〉
3) 〈Min,Min〉
4) 〈Majority,Majority,Majority〉
5) 〈Minority,Minority,Minority〉
6) 〈Majority,Majority,Minority〉
7) 〈Constant 0〉
8) 〈Constant 1 〉

If the cost functions all have
one of these eight
multimorphisms, then the
problem is tractable:

(Cohen, Cooper, J. CP’04)

Special Cases

1) 〈Min,Max〉
2) 〈Max,Max〉
3) 〈Min,Min〉
4) 〈Majority,Majority,Majority〉
5) 〈Minority,Minority,Minority〉
6) 〈Majority,Majority,Minority〉
7) 〈Constant 0〉
8) 〈Constant 1 〉

If the cost functions all have
one of these eight
multimorphisms, then the
problem is tractable: SAT

Max-SAT

Min-Ones SAT

Max-Ones SAT

Pol and Inv

∅

RD

L

Sets of

relations

Pol(L)

Compute the
polymorphisms

of L

Compute the
invariant relations

of Pol(L)

Inv(Pol(L))

〈L〉

Mul and Imp

∅

ΦD

L

Sets of
cost

functions

Mul(L)

Compute the
multimorphisms

of L

Compute the
functions improved

by Mul(L)

Imp(Mul(L))

?〈〈L〉〉

?

Sets of
collections

of functions

Mul and Imp

∅

ΦD

L

Sets of
cost

functions

Mul(L)

Imp(Mul(L))

〈〈L〉〉 ?
?

Generalization (again)

0111

∞011

3101

5001

∞110

7010

1100

0000

zyx

Generalizing Mul

1100

5001

3101 Maximum

0000 Minimum

+ = 3

+ = 6

∀s,t Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t)

Project1

Project2

0111

∞011

3101

5001

1110

7010

1100

0000

zyx

Generalizing Mul

1100

5001

3101 Maximum

0000 Minimum

+ = 3

+ = 6
Project1-

Project2-

+

+

-3

0

0111

∞011

3101

5001

1110

7010

1100

0000

zyx

Generalizing Mul

1100

5001

3101 Maximum

0000 Minimum

Project1-

Project2-

+

+

-3

0

Maximum+1

Minimum+1

Project2
-1

Project1
-1

We now have a function that
weights the operations

Weighted Operations

Maximum

Minimum

Project1-

Project2-

+

+ Maximum+1

Minimum+1

Project2
-1

Project1
-1

Definition: A k-ary weighted operation, ω, is a
(partial) function from k-ary operations on a set D
to rational weights, such that:

1. Only projections can
have negative weights

2. The sum of all the
weights is 0

Weighted Polymorphism

1100

5001

3101 Maximum

0000 Minimum

Project1-

Project2-

+

+

-3 0

Maximum+1

Minimum+1

Project2
-1

Project1
-1

Definition: A k-ary weighted operation, ω, is a
weighted polymorphism of a cost function φ,

if, for all x1,x2,…xk, Σfω(f)φ(f(x1,x2,…xk)) ≤ 0

Sets of

weighted
operations

wPol and Imp

∅

ΦD

L

Sets of
cost

functions

wPol(L)

Compute the
weighted

polymorphisms

of L

Compute the

functions improved

by wPol(L)

Imp(wPol(L))

〈〈L〉〉

Sets of

weighted
operations

wPol and Imp

∅

ΦD
Sets of
cost

functions

wPol(Imp(W))

Compute the
functions improved

by W

Imp(W)

W

Compute the
weighted

polymorphisms
of Imp(W)

?

Clones
Definition: Given a fixed set D, a cloneclone on D is a
set of operations that contains all projections, and
is closed under composition.

Weighted Clones
Definition: Given a fixed clone C, a weighted clone

on C is a set of weighted operations that contains
all weighted operations ω: C→ {0}, and is closed
under:

1. Addition: ω1 + ω2

2. Scaling: cω (c ∈ ℚ+)

3. Translation: ω[g1,…gk]

where ω[g1,…gk](f) = Σ ω(f )

{ f  | f = f  [g1,…gk] }

Sets of

weighted
operations

wPol and Imp

∅

ΦD
Sets of
cost

functions

wPol(Imp(W))

Imp(W)

W

= wClone(W)

Minimal Weighted Clones
Sets of

weighted
operations

Definition: A non-crisp
weighted clone is minimal

if every non-zero weighted
operation it contains is a
generator

Definition: A weighted
clone is crisp if every
weighted operation in it
has range {0}

Minimal Weighted Clones

Theorem: (Rosenberg)

Every minimal clone is generated by:

1. A unary retraction or cyclic permutation; or

2. A binary idemopotent operation; or

3. A ternary minority operation; or

4. A ternary majority operation; or

5. A semiprojection.

Minimal Weighted Clones
Sets of

weighted
operations

Theorem: (Creed & Živný, CP’11)

Every minimal weighted clone
is generated by a
weighted operation where
the operations with
positive weight are:

1. Unary; or

2. Binary idempotent; or

3. Ternary sharp; or

4. Semiprojections of arity > 3.

Minimal Weighted Clones
Sets of

weighted
operations

Theorem: (Creed & Živný, CP’11)

There are precisely 9 Boolean

minimal weighted clones,
generated by:

1. { (-1,e1), (1,Const0) }
2. { (-1,e1), (1,Const1) }
3. { (-1,e1), (1,1-x) }
4. { (-1,e1), (-1,e2), (2, Min) }
5. { (-1,e1), (-1,e2), (2, Max) }
6. { (-1,e1), (-1,e2), (-1,e3), (3, Mnrty) }
7. { (-1,e1), (-1,e2), (-1,e3), (3, Mjrty) }
8. { (-1,e1), (-1,e2), (1, Min), (1,Max) }
9. { (-1,e1), (-1,e2), (-1,e3),

(1, Mnrty),(2,Mjrty) }

Minimal Weighted Clones
Sets of

weighted
operations

Theorem: (Creed & Živný, CP’11)

There are precisely 9 Boolean

minimal weighted clones,
generated by:
1. { (-1,e1), (1,Const0) }
2. { (-1,e1), (1,Const1) }
3. { (-1,e1), (1,1-x) }
4. { (-1,e1), (-1,e2), (2, Min) }
5. { (-1,e1), (-1,e2), (2, Max) }
6. { (-1,e1), (-1,e2), (-1,e3), (3, Mnrty) }
7. { (-1,e1), (-1,e2), (-1,e3), (3, Mjrty) }
8. { (-1,e1), (-1,e2), (1, Min), (1,Max) }
9. { (-1,e1), (-1,e2), (-1,e3),

(1, Mnrty),(2,Mjrty) }

Open Problems

• What does the rest of
the Boolean weighted
clone lattice look like?

• What happens over
larger domains?

Sets of
weighted

operations

?

Thank you

Tractable cases

Constant

Majority

Affine
Semilattice

Tractable cases

〈Min,Max〉

〈Constant〉

Essentially
Crisp
Languages

〈Mjrty,Mjrty,Mjrty〉

〈Mnrty,Mnrty,Mnrty〉
〈Max,Max〉

〈Mjrty,Mjrty,Mnrty〉

111

001

010

100

yx

MAX-SAT

x ≠ yx ≠ y

(x ∧ y) ∨ (¬ x ∧ ¬ y)(x ∧ y) ∨ (¬ x ∧ ¬ y) ≡

Intractable cases

This constraint is known to be NP-hard

Intractable cases

111 Maximum
111

001

010

100

yx

010

001

111

111

001

010

100

yx

Intractable cases

010

001

Maximum

100 Minimum
+ = 2

+ = 0

This cost function does not have the multimorphism (Min,Max)This cost function has no significant multimorphisms

Any set of Boolean cost functions
which doesn’t have a multimorphism

from the list of 8
can be combined to express

this form of cost function

Intractable cases

111

001

010

100

yx

This cost function has no significant multimorphisms

b

a

a

b

and hence is NP-hardFor some
a < b < ∞

Cohen, Cooper, Jeavons CP’04

Boolean Operations

Relational
Clones

Clones of
Operations

Constant 0

Max

Majority
Min

Minority

Constant 1

PermutationSchaefers 6 maximal
tractable classes

Not-all-equal
satisfiability

Boolean Operations

Post’s

Lattice

Clones of
Operations

Boolean

Relational

Clones

Dichotomy Theorem
for Boolean CSP

Relational
Clones

