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Background



Birth of Complexity Theory

“The progress of 
science is the 
discovery at each 
step of a new order 
which gives unity to 
what had seemed 
unlike” 

Jacob Bronowski
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Generalization



So let’s generalize…

Definition 1a:
• An instance of CSP is defined to be

a first order formula:

R1(s1) ∧ R2(s2) ∧ … ∧ Rm(sm)
where each Ri ∈ L

• The question is whether the formula can be 
satisfied by finding an assignment of values to 
the variables



So let’s generalize…

Definition 1b:

• An instance of CSP is defined to be                    
a pair of similar relational structures:

(V,E1,…,Em) , (D,R1,…,Rm)
where each Ri ∈ L

• The question is whether there exists a 
homomorphism from V to D 



So let’s generalize…
Definition 1c:

• An instance of VCSP is a 3-tuple (V,D,C,Ω), where
– V is a set of variables
– D is a single domain of possible values 
– C is a set of constraints
 is a set of costs 

Each constraint in C is a pair (s,R) where
• s is a list of variables defining the scope
• R is a relation defining the allowed          

combinations of values
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Definition of VCSP

• An instance of VCSP is a 4-tuple (V,D,C,Ω), where
– V is a set of variables
– D is a single domain of possible values 
– C is a set of constraints
– Ω is a set of costs (ordered, can be added)

Each constraint in C is a pair (s,φ) where
• s is a list of variables defining the scope
• φ is a function defining the cost

__associated with each combination of values
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valued Boolean constraints valued
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valued Boolean constraints valued

Ø Very general discrete
optimization problem

Ø NP-hard
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Valued Constraint Languages

For every valued constraint language, L, we have 
a corresponding class of instances, VCSP(L)…

Definition: A valued constraint language is 

a set of functions from Dn to Ω, for some

fixed finite set D and some set of costs Ω.

Where the question is to find an assignment with 

minimal total cost.



Valued Constraint Languages

For every valued constraint language, L, we have 
a corresponding class of instances, VCSP(L)…

Definition: A valued constraint language is 

a set of functions from Dn to ℚ+∪ ∪ ∪ ∪ {∞}{∞}{∞}{∞} for 

some fixed finite set D. 

Where the question is to find an assignment with 

minimal total cost.



General Question

• Having a general formulation for all of 
these problems allows us to ask general

complexity questions:

When is VCSP(L)
tractable?



Reductions



R1

Expressive Power

• If we can combine the relations 
R1,R2,…,Rk to obtain a derived constraint 
relation R0, then we say that R0 can be 
expressed using R1,R2,…,Rk

R0

R2

R3 R4



φ1

Expressive Power

• If we can combine the functions
φ1, φ2,…, φk to obtain a derived cost 
function φ0, then we say that φ0 can be 
expressed using φ1, φ2,…, φk

φ0

φ2

φ3 φ4



Expressive Power 

Definition:

The “expressive power” of a valued
constraint language L, denoted 〈L〉, is 
defined to be the set of relations that can 
be obtained from relations in L using:
– Conjunction
– Existential quantification



Expressive Power 

Definition:

The “expressive power” of a valued
constraint language L, denoted 〈L〉, is 
defined to be the set of functions that can 
be obtained from functions in L using
– Summation
– Minimisation



CSP(L)

R1

CSP(L′)

Expressive Power and Reduction

R2

R3 R4

Theorem: (J. 98) For any constraint languages L, L′, 

if L′ finite, and  L′ ⊆ 〈L〉

then CSP(L′) is polynomial-time reducible to CSP(L)



Expressive Power and Reduction

Theorem: (J. 98) For any constraint languages L, L′, 

if L′ finite, and  L′ ⊆ 〈L〉

then CSP(L′) is polynomial-time reducible to CSP(L)

Theorem: (Cohen, Cooper, J. 06) For any valued constraint 

languages L, L′,     if L′ finite, and L′ ⊆ 〈L〉

then VCSP(L′) is polynomial-time reducible to VCSP(L)



Closure 

Definition:

The “closure” of a valued constraint 
language L, denoted 〈〈L〉〉, is defined to be 
the set of functions that can be obtained 
from functions in L using
– Summation
– Minimisation
– Multiplication by a non-negative rational
– Addition of a constant



Closure and Reduction

Theorem: (Cohen, Cooper, J. 06) For any valued constraint 

languages L, L′,     if L′ finite, and L′ ⊆ 〈〈L〉〉

then VCSP(L′) is polynomial-time reducible to VCSP(L)

Corollary: A valued constraint language L is (locally) 

tractable if and only if 〈〈L〉〉 is tractable; 

similarly, L is NP-hard if and only if 〈〈L〉〉 is NP-hard.



Algebra?



Pol and Inv

∅

RD

L

Sets of 
relations
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Compute the 
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of L 

Compute the 
invariant relations

of Pol(L) 

Inv(Pol(L))

=〈L〉
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∀s,t Cost(Max(s,t)) ≤ Cost(s) + Cost(t) 
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Generalizing Pol
∀s,t Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t) 

We say that the cost function has 
the multimorphism 〈Min,Max〉

(any cost function with this 
particular multimorphism 

is called submodular)



Tractable Cases

1) 〈Min,Max〉
2) 〈Max,Max〉
3) 〈Min,Min〉
4) 〈Majority,Majority,Majority〉
5) 〈Minority,Minority,Minority〉
6) 〈Majority,Majority,Minority〉
7) 〈Constant 0〉
8) 〈Constant 1 〉

Note: These are tractable 
cases for all 
finite domains 

If the cost functions all have 
one of these eight 
multimorphisms, then the 
problem is tractable:

(Cohen et al, CP’03)



Boolean Dichotomy Theorem

In all other Boolean cases 
the cost functions have 

no significant common 
multimorphisms and the 
problem is NP-hard.

1) 〈Min,Max〉
2) 〈Max,Max〉
3) 〈Min,Min〉
4) 〈Majority,Majority,Majority〉
5) 〈Minority,Minority,Minority〉
6) 〈Majority,Majority,Minority〉
7) 〈Constant 0〉
8) 〈Constant 1 〉

If the cost functions all have 
one of these eight 
multimorphisms, then the 
problem is tractable:

(Cohen, Cooper, J. CP’04)



Special Cases

1) 〈Min,Max〉
2) 〈Max,Max〉
3) 〈Min,Min〉
4) 〈Majority,Majority,Majority〉
5) 〈Minority,Minority,Minority〉
6) 〈Majority,Majority,Minority〉
7) 〈Constant 0〉
8) 〈Constant 1 〉

If the cost functions all have 
one of these eight 
multimorphisms, then the 
problem is tractable: SAT

Max-SAT

Min-Ones SAT

Max-Ones SAT
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Mul and Imp

∅

ΦD

L

Sets of 
cost

functions

Mul(L)

Compute the 
multimorphisms

of L 

Compute the 
functions improved 

by Mul(L) 

Imp(Mul(L))

?〈〈L〉〉

?



Sets of
collections

of functions

Mul and Imp

∅

ΦD

L

Sets of 
cost

functions

Mul(L)

Imp(Mul(L))

〈〈L〉〉 ?
?



Generalization (again)
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We now have a function that 
weights the operations



Weighted Operations

Maximum

Minimum

Project1-

Project2-

+

+ Maximum+1

Minimum+1

Project2
-1

Project1
-1

Definition: A k-ary weighted operation, ω, is a 
(partial) function from k-ary operations on a set D 
to rational weights, such that:

1. Only projections can 
have negative weights

2. The sum of all the 
weights is 0 



Weighted Polymorphism
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Definition: A k-ary weighted operation, ω, is a 
weighted polymorphism of a cost function φ, 

if, for all x1,x2,…xk, Σfω(f)φ(f(x1,x2,…xk)) ≤ 0



Sets of

weighted
operations

wPol and Imp

∅

ΦD
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Sets of
cost 

functions

wPol(L)

Compute the 
weighted 

polymorphisms

of L 

Compute the 

functions improved 

by wPol(L) 

Imp(wPol(L))

〈〈L〉〉



Sets of

weighted
operations

wPol and Imp

∅

ΦD
Sets of
cost 

functions

wPol(Imp(W))

Compute the 
functions improved 

by W 

Imp(W)

W

Compute the 
weighted 

polymorphisms
of Imp(W) 

?



Clones
Definition: Given a fixed set D, a cloneclone on D is a  
set of operations that contains all projections, and 
is closed under composition.



Weighted Clones
Definition: Given a fixed clone C, a weighted clone

on C is a set of weighted operations that contains 
all weighted operations ω: C→ {0}, and is closed 
under:

1. Addition:       ω1 + ω2

2. Scaling:        cω (c ∈ ℚ+)

3. Translation:  ω[g1,…gk]

where ω[g1,…gk](f)    =        Σ ω(f )

{ f  | f = f  [g1,…gk] }



Sets of

weighted
operations

wPol and Imp

∅

ΦD
Sets of
cost 

functions

wPol(Imp(W))

Imp(W)

W

= wClone(W)



Minimal Weighted Clones
Sets of

weighted
operations

Definition: A non-crisp 
weighted clone is minimal

if every non-zero weighted 
operation it contains is a 
generator

Definition: A weighted 
clone is crisp if every  
weighted operation in it 
has range {0}



Minimal Weighted Clones

Theorem: (Rosenberg)

Every minimal clone is generated by:

1. A unary retraction or cyclic permutation; or

2. A binary idemopotent operation; or

3. A ternary minority operation; or

4. A ternary majority operation; or

5. A semiprojection.



Minimal Weighted Clones
Sets of

weighted
operations

Theorem: (Creed & Živný, CP’11)

Every minimal weighted clone 
is generated by a 
weighted operation where 
the operations with 
positive weight are:

1. Unary; or

2. Binary idempotent; or

3. Ternary sharp; or

4. Semiprojections of arity > 3.



Minimal Weighted Clones
Sets of

weighted
operations

Theorem: (Creed & Živný, CP’11)

There are precisely 9 Boolean

minimal weighted clones, 
generated by:

1. { (-1,e1), (1,Const0) }
2. { (-1,e1), (1,Const1) }
3. { (-1,e1), (1,1-x) }
4. { (-1,e1), (-1,e2), (2, Min) }
5. { (-1,e1), (-1,e2), (2, Max) }
6. { (-1,e1), (-1,e2), (-1,e3), (3, Mnrty) }
7. { (-1,e1), (-1,e2), (-1,e3), (3, Mjrty) }
8. { (-1,e1), (-1,e2), (1, Min), (1,Max) }
9. { (-1,e1), (-1,e2), (-1,e3),                                              

(1, Mnrty),(2,Mjrty) }



Minimal Weighted Clones
Sets of

weighted
operations

Theorem: (Creed & Živný, CP’11)

There are precisely 9 Boolean

minimal weighted clones, 
generated by:
1. { (-1,e1), (1,Const0) }
2. { (-1,e1), (1,Const1) }
3. { (-1,e1), (1,1-x) }
4. { (-1,e1), (-1,e2), (2, Min) }
5. { (-1,e1), (-1,e2), (2, Max) }
6. { (-1,e1), (-1,e2), (-1,e3), (3, Mnrty) }
7. { (-1,e1), (-1,e2), (-1,e3), (3, Mjrty) }
8. { (-1,e1), (-1,e2), (1, Min), (1,Max) }
9. { (-1,e1), (-1,e2), (-1,e3),                                              

(1, Mnrty),(2,Mjrty) }



Open Problems

• What does the rest of 
the Boolean weighted 
clone lattice look like?

• What happens over 
larger domains?

Sets of
weighted

operations

?



Thank you



Tractable cases
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Tractable cases

〈Min,Max〉

〈Constant〉

Essentially 
Crisp 
Languages

〈Mjrty,Mjrty,Mjrty〉

〈Mnrty,Mnrty,Mnrty〉
〈Max,Max〉

〈Mjrty,Mjrty,Mnrty〉
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(x ∧ y) ∨ (¬ x ∧ ¬ y)(x ∧ y) ∨ (¬ x ∧ ¬ y) ≡

Intractable cases

This constraint is known to be NP-hard
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Intractable cases

010

001

Maximum

100 Minimum
+        = 2

+        = 0

This cost function does not have the multimorphism (Min,Max)This cost function has no significant multimorphisms



Any set of Boolean cost functions
which doesn’t have a multimorphism 

from the list of 8
can be combined to express 

this form of cost function

Intractable cases

111

001

010

100

yx

This cost function has no significant multimorphisms

b

a

a

b

and hence is NP-hardFor some 
a < b < ∞

Cohen, Cooper, Jeavons CP’04



Boolean Operations

Relational
Clones

Clones of 
Operations

Constant 0

Max

Majority
Min

Minority

Constant 1

PermutationSchaefers 6 maximal
tractable classes

Not-all-equal
satisfiability



Boolean Operations

Post’s

Lattice

Clones of 
Operations

Boolean

Relational

Clones

Dichotomy Theorem
for Boolean CSP

Relational
Clones


