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Background



Birth of Complexity Theory

"The progress of
COMPUTERS AND INTRACTABILITY . .
A Ciuioe bo tine Theary ol NP -Dompstenass SC'che lS The
discovery at each
step of a new order
which gives unity to
what had seemed
unlike"

Jacob Bronowski




“Basic” Problems

Colouring

Vertex Cover

3D-Matching

Clique

Hamiltonian Circuit

Partition




Complexity Classification

Partition




A Bigger Picture

Travelling Salesper

x-Clique

Partition




Generalization



So let's generalize...

Definition 1a:
 An instance of CSP is defined to be
a first order formula:

Ri(sy) DRx(So) O... 0RL(Sm)

* The question is whether the formula can be
satisfied by finding an assignment of values to
the variables



So let’s generalize...

Definition 1b:

* An instance of CSP is defined to be
a pair of similar relational structures:

(V,E,,...E ), (D,R;,....R)

pui b

* The question is whether there exists a
homomorphism from V to D



So let's generalize...

Definition 1c:

* An instance of CSP is a 3-tuple (V,D,C ), where
—V is a set of variables
— D is a single domain of possible values
— C is a set of constraints

Each constraint in C is a pair (s,R) where
* s Is a list of variables defining the scope

* R is a relation defining the allowed
combinations of values



Definition of CSP

* An instance of CSP is a 3-tuple (V,D,C ), where
—V is a set of variables
— D is a single domain of possible values
— C is a set of constraints

Each constraint in C is a pair (s,R) where
* s Is a list of variables defining the scope

* R is a relation defining the allowed
combinations of values



Definition of VCSP

* An instance of VCSP is a 4-tuple (V,D,C,Q), where
— V is a set of variables
— D is a single domain of possible values

— C is a set of constraints
— Q is a set of costs (ordered, can be added)

Each constraint in C is a pair (s,®) where
* s IS a list of variables defining the scope

- ¢ Is a function defining the cost
associated with each combination of values
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@Boolean constraints

MAX-SAT
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Very general discrete
optimization problem

NP-hard
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A Bigger Picture

eSF

Hamiltonian Circuit




Valued Constraint Languages

Definition: A valued constraint language is

a set of functions from D" to Q, for some
fixed finite set D and some set of costs Q.

For every valued constraint language, L, we have
a corresponding class of instances, VCSP(L)...

Where the question is to find an assignment with
minimal total cost.



Valued Constraint Languages

Definition: A valued constraint language is

a set of functions from D" to @, u { oo} for
some fixed finite set D.

For every valued constraint language, L, we have
a corresponding class of instances, VCSP(L)...

Where the question is to find an assignment with
minimal total cost.



General Question

» Having a general formulation for all of
these problems allows us to ask general
complexity questions:

When is VCSP(L)
?




Reductions



Expressive Power

» If we can combine the relations
R,,R,,...,R, to obtain a derived constraint
relation R,, then we say that R, can be
expressed using R4,R.,...,R,




Expressive Power

e |f we can combine the functions
@4, @,,..., @, to obtain a derived cost

function @,, then we say that ¢, can be
expressed using @,, @,..., @,




Expressive Power

Definition:
The “expressive power” of a
constraint language L, denoted (L), Is
defined to be the set of relations that can
be obtained from relations in L using:
— Conjunction
— Existential quantification



Expressive Power

Definition:
The “expressive power” of a valued
constraint language L, denoted (L), is
defined to be the set of functions that can
be obtained from functions in L using
— Summation
— Minimisation



Expressive Power and Reduction

Theorem: (.98) For any constraint languages L, L/,
if L'finite, and L' (L)
then CSP(L) is polynomial-time reducible to CSP(L)




Expressive Power and Reduction

Theorem: (.98) For any constraint languages L, L/,
if L'finite, and L' (L)
then CSP(L) is polynomial-time reducible to CSP(L)

Theorem: (Cohen, Cooper, J. 06) FOr any valued constraint
languages L, L, if L'finite, and L' LJ (L)

then VCSP(L') is polynomial-time reducible to VCSP(L)




Closure

Definition:
The “closure” of a valued constraint
language L, denoted ({L)), is defined to be
the set of functions that can be obtained
from functions in L using
— Summation
— Minimisation
— Multiplication by a non-negative rational
— Addition of a constant



Closure and Reduction

Theorem: (Cohen, Cooper, J. 06) FOr any valued constraint
languages L, L', if L'finite, and L" LI ({L))

then VCSP(L') is polynomial-time reducible to VCSP(L)

Corollary: A valued constraint language L is (locally)
tractable if and only if {{L)) is tractable;

similarly, L is NP-hard if and only if ((L)) is NP-hard.




Algebra?



Pol and Inv

® R,
Sets of
relations

Compute the
invariant relations O Pol(L)
of Pol(L)
Inv(Pol(L)) e Compute the
—<|-> [ polymorphisms
| ® of L

® [



Defining Pol
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Generalizing Pol

| Os,t Cost(Max(s,t)) < Cost(s) + Cost(t)
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Generalizing Pol

| Os,t Cost(Min(s,t)) + Cost(Max(s,t)) < Cost(s) + Cost(t)
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Generalizing Pol

| Os,t Cost(Min(s,t)) + Cost(Max(s,t)) < Cost(s) + Cosi(t)

.

We say that the cost function has
the (Min,Max)
_J

(any cost function with this
particular multimorphism
Is called submodular)
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Tractable Cases

If the cost functions all have
one of these eight
multimorphisms, then the
problem is tractable:

(Min,Max) A
(Max,Max)

(Min,Min)
(Majority,Majority,Majorityy ~ » Note: These are tractable
(Minority,Minority,Minority) cases for all
(Majority,Majority,Minority) finite domains
{(Constant 0)

(Constant 1) )

N —

N’ e’ e N N N N N

o NO O &~ W

(Cohen et al, CP'03)



Boolean Dichotomy Theorem

If the cost functions all have
one of these eight
multimorphisms, then the
problem is tractable:

(Min,Max)

(Max,Max)

(Min,Min)
(Majority,Majority,Majority)
(Minority,Minority,Minority)
(Majority,Majority,Minority)
{(Constant 0)

(Constant 1)

S BY S D=




] .
COMPLEXITY
CLASSIFICATIONS
OF BOOLEAN CONSTRAINT
SATISFACTION PROBLEMS
\. 3
i

If the cost functions all have
one of these eight
multimorphisms, then the

problem is tractable:

(Min,Max)
(Max,Max)
(Min,Min)
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Pol and Inv

® Rp
Sets of
relations

Compute the
invariant relations O Pol(L)
of Pol(L)
Inv(Pol(L)) e Compute the
<|-> [ polymorphisms
| ® of L



Mul and Imp

by

Sets of
cost
functions

o Mul(L)

Compute the
multimorphisms
of L



Mul and Imp

by

Sets of Sets of
cost collections
functions of functions
O Mul(L)



Generalization (again)



Generalizing Mul

| Os,t Cost(Min(s,t)) + Cost(Max(s,t)) < Cost(s) + Cost(t)
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Generalizing Mul

1

0

1




Generalizing Mul

We now have a function that
weights the operations
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+1
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Weighted Operations

Definition: A k-ary , W, Is a
(partial) function from k-ary operations on a set D
to rational weights, such that:

1. Only projections can -1 [Project,
have negative weights 1 [Project,

2. The sum of all the +1 ] Minimum
weights is 0 1 [ Maximum




Weighted Polymorphism

Definition: A k-ary weighted operation, v, is a
weighted polymorphism of a cost function @,

if, for all X;,Xs,...X,, &

P (X1, X5, .- X))
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wPol and Imp
®, Sets of

Sets of weighted
cost operations
functions Compute the
functions improved
by WPO'(L) O WPO'(L)

Compute the
weighted
polymorphisms

of L



wPol and Imp

q)[) Sets of
Sets of Compute the weighted
cost welghteq operations
functions polymorphisms

of Imp(W)

© wPol(Imp(W))

?

oW

Compute the
functions improved
by W



Clones

Definition: Given a fixed set D, a onDis a
set of operations that contains all projections, and
IS closed under composition.



Weighted Clones

Definition: Given a fixed clone €, a
on € is a set of weighted operations that contains
all weighted operations w: € — {0}, and is closed

under:
1. Addition: +

2. Scaling: C (cO@,)
3. Translation: w[g,...0]

where w[gr....gd) = 2 w(f)
{f1f=11g,...0d]}



wPol and Imp

®p Sets of
weighted
operations

Sets of
cost
functions

© wPol(Imp(W))

= wClone(W)
oW



Minimal Weighted Clones

Definition: A weighted
clone is crisp if every
weighted operation in it
has range {0}

Definition: A non-crisp

weighted clone is minimal

If every non-zero weighted f
operation it contains is a

generator



Minimal Weighted Clones

Theorem: (Rosenberg)

Every minimal clone is generated by:

1. A unary retraction or cyclic permutation; or
A binary idemopotent operation; or

A ternary minority operation; or

A ternary majority operation; or

o~ D

A semiprojection.




Minimal Weighted Clones

Theorem: (Creed & Zivny, CP’11)

Every minimal weighted clone
IS generated by a
weighted operation where
the operations with
positive weight are:

Unary; or

Binary idempotent; or

Ternary sharp; or f
Semiprojections of arity > 3.

>~ W h =



Minimal Weighted Clones

Theorem: (Creed & Zivny, CP’11)
There are precisely 9 Boolean

© XN O~ WD~

minimal weighted clones,
generated by:

{(-1,e ) (1,Consty) }
1,Consty) }

'1 ,93),

7



Minimal Weighted Clones

Theorem: (Creed & Zivny, CP’11)
There are precisely 9 Boolean

minimal weighted clones,

generated by:

© XN O~ WD~

{(-1,e,), (1,Consty) }

, (3, Mnrty) }

e;), (3, Mjrty) }
1 I\/I|n) (1,Max) }

-1 92) (-1,€53),
(1 Mnrty),(2,Mjrty) }

¥/



Open Problems

« What does the rest of
the Boolean weighted
clone lattice look like?

I)

I
« What happens over
larger domains? %O\i ?ffi/



Thank you



Tractable cases




Tractable cases

(Min,Max)



Intractable cases

MAX-SAT

This constraint is known to be NP-hard
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Intractable cases

This cost function has NO significant multimorphisms

XY o] 1]0]

w7 )
1

0|1 /

1[0

11

Minimum
-

11 Maximum




Intractable cases

This cost function has NO significant multimorphisms

Xy

00 Any set of Boolean cost functions
0|1 which doesn’t have a multimorphism
10

11

from the list of 8
can be combined to express
this form of cost function

o SElE and hence is NP-hara

a<b<x

Cohen, Cooper, Jeavons CP’04




Boolean Operations

Relational 8003:80: (1)
Clones onstan
N Max
Min

Majority

Schae Permutation

tractab



Boolean Operations

Relational
Clones

Dichotomy Theorem
for Boolean CSP




