Robust Approximation of CSPs
 Víctor Dalmau (joint work with A. Krokhin)

Universitat Pompeu Fabra

Definitions

Fix a relational structure $\mathbb{H}=(D ; \Gamma)$ called the template (host structure).
An instance I (over \mathbb{H}) is a set V of variables (nodes) together with a set of constraints.
The value of assignment $s: V \rightarrow D$ is $I_{s}:=$ fraction of constraints satisfied by s

Def: MAX CSP($\mathbb{H})$ is the problem consisting in finding, given an instance I over \mathbb{H}, an assignment s with I_{s} maximal.
Ex. MAX CUT is MAX $\operatorname{CSP}(\{0,1\}, \neq)$

Approximation Algorithms

Let Alg be an algorithm that tries to solve MAX $\operatorname{CSP}(\Gamma)$. How do we measure how good is Alg?

Approximation Algorithms

Let Alg be an algorithm that tries to solve MAX $\operatorname{CSP}(\Gamma)$. How do we measure how good is Alg?

Let $f:[0,1] \rightarrow[0,1]$ be a decreasing function.
Alg is a f-aproximation algorithm if for every instance I

$$
I_{s} \geq f\left(I_{\mathrm{OPT}}\right)
$$

where:

- $s=\operatorname{Alg}(I)$ is the output of Alg on input I
- $I_{\mathrm{OPT}}=\max _{r} I_{r}$

Many approximation results deal with functions of the form

$$
f(x)=K \cdot x, \quad 0 \leq K \leq 1
$$

Program: Identify, for every \mathbb{H}, maximum K s.t. $\operatorname{MAX} \operatorname{CSP}(\mathbb{H})$ has a $(K \cdot x)$-approximation algorithm.

Many approximation results deal with functions of the form

$$
f(x)=K \cdot x, \quad 0 \leq K \leq 1
$$

Program: Identify, for every \mathbb{H}, maximum K s.t. MAX CSP (\mathbb{H}) has a $(K \cdot x)$-approximation algorithm.
(Robust) approximation [Zwick] cares about functions f s. t. $f(x) \rightarrow 1$ as $x \rightarrow 1$.

- Motivation: Want an algorithm that finds a very good solution when 99% of the constraints are satisfiable

Many approximation results deal with functions of the form

$$
f(x)=K \cdot x, \quad 0 \leq K \leq 1
$$

Program: Identify, for every \mathbb{H}, maximum K s.t. MAX $\operatorname{CSP}(\mathbb{H})$ has a $(K \cdot x)$-approximation algorithm.
(Robust) approximation [Zwick] cares about functions f s. t. $f(x) \rightarrow 1$ as $x \rightarrow 1$.

- Motivation: Want an algorithm that finds a very good solution when 99% of the constraints are satisfiable
- Nice feature: (Almost) amenable to algebraic study

Many approximation results deal with functions of the form

$$
f(x)=K \cdot x, \quad 0 \leq K \leq 1
$$

Program: Identify, for every \mathbb{H}, maximum K s.t.
MAX CSP (\mathbb{H}) has a $(K \cdot x)$-approximation algorithm.
(Robust) approximation [Zwick] cares about functions f s. t. $f(x) \rightarrow 1$ as $x \rightarrow 1$.

- Motivation: Want an algorithm that finds a very good solution when 99% of the constraints are satisfiable
- Nice feature: (Almost) amenable to algebraic study

Program: Determine, for each \mathbb{H}, whether $\operatorname{MAX} \operatorname{CSP}(\mathbb{H})$ has
a robust approximation (RA) algorithm, i.e, a
f-approximation algorithm with $f_{x \rightarrow 1} \rightarrow 1$.

Previous Results

$\operatorname{MAX} \operatorname{CSP}(D ; \Gamma)$ has a RA algorithm if Γ consists only of:

- Horn Clauses [Zwick]
- Binary boolean clauses [Zwick]
- Binary bijective relations (aka Unique Games) [Khot]

If $\mathrm{P} \neq \mathrm{NP}$ then $\operatorname{MAX} \operatorname{CSP}\left(\mathbb{Z}_{q} ; 3 \operatorname{LIN}-\operatorname{EQ}(q)\right), q>1$ has not a RA algorithm where 3LIN-EQ (q) contains all linear equations over \mathbb{Z}_{q} with at most 3 variables [Hastad].

Algebraic approach

We use $\mathbb{H}^{\prime} \leq_{\mathrm{RA}} \mathbb{H}$ as a shortand for "If MAX $\operatorname{CSP}(\mathbb{H})$ has a RA algorithm then so has $\operatorname{MAX} \operatorname{CSP}\left(\mathbb{H}^{\prime}\right) "$
Fact: If R is pp-definable without equality from Γ then

$$
(D ; \Gamma \cup\{R\}) \leq_{\mathrm{RA}}(D ; \Gamma)
$$

Algebraic approach

We use $\mathbb{H}^{\prime} \leq_{\mathrm{RA}} \mathbb{H}$ as a shortand for "If MAX $\operatorname{CSP}(\mathbb{H})$ has a RA algorithm then so has $\operatorname{MAX} \operatorname{CSP}\left(\mathbb{H}^{\prime}\right) "$
Fact: If R is pp-definable without equality from Γ then

$$
(D ; \Gamma \cup\{R\}) \leq_{\mathrm{RA}}(D ; \Gamma)
$$

Equality question: $(D ; \Gamma \cup\{=\}) \leq_{\mathrm{RA}}(D ; \Gamma)$?

Algebraic approach

We use $\mathbb{H}^{\prime} \leq_{\mathrm{RA}} \mathbb{H}$ as a shortand for "If MAX $\operatorname{CSP}(\mathbb{H})$ has a RA algorithm then so has $\operatorname{MAX} \operatorname{CSP}\left(\mathbb{H}^{\prime}\right) "$
Fact: If R is pp-definable without equality from Γ then

$$
(D ; \Gamma \cup\{R\}) \leq_{\mathrm{RA}}(D ; \Gamma)
$$

Equality question: $(D ; \Gamma \cup\{=\}) \leq_{\mathrm{RA}}(D ; \Gamma)$?
It follows that for every boolean $\mathbb{H}, \operatorname{MAX} \operatorname{CSP}(\mathbb{H})$ has a RA algorithm if and only if \mathbb{H} has bounded width.

Algebraic approach

We use $\mathbb{H}^{\prime} \leq_{\mathrm{RA}} \mathbb{H}$ as a shortand for "If MAX $\operatorname{CSP}(\mathbb{H})$ has a RA algorithm then so has $\operatorname{MAX} \operatorname{CSP}\left(\mathbb{H}^{\prime}\right) "$
Fact: If R is pp-definable without equality from Γ then

$$
(D ; \Gamma \cup\{R\}) \leq_{\mathrm{RA}}(D ; \Gamma)
$$

Equality question: $(D ; \Gamma \cup\{=\}) \leq_{\mathrm{RA}}(D ; \Gamma)$?
It follows that for every boolean $\mathbb{H}, \operatorname{MAX} \operatorname{CSP}(\mathbb{H})$ has a RA algorithm if and only if \mathbb{H} has bounded width.

Conjecture: [Guruswami and Zhou]
For every \mathbb{H}, $\operatorname{MAX} \operatorname{CSP}(\mathbb{H})$ has a RA algorithm if and only if \mathbb{H} has bounded width.

Algebraic approach (cont'd)

If one is ready to assume that the equality question has a positive answer then one can parallel the algebraic reductions for the decision problem.

Algebraic approach (cont'd)

If one is ready to assume that the equality question has a positive answer then one can parallel the algebraic reductions for the decision problem.

Fact: If \mathbb{H}^{\prime} is compatible with some member of $\operatorname{HSP}(\operatorname{PolAlg}(\mathbb{H}))$) then $\mathbb{H}^{\prime} \leq_{\mathrm{RA}} \mathbb{H}$

Algebraic approach (cont'd)

If one is ready to assume that the equality question has a positive answer then one can parallel the algebraic reductions for the decision problem.

But if not
Fact: If \mathbb{H}^{\prime} is equality-free and compatible with some member of $\operatorname{HSX}(\operatorname{PolAlg}(\mathbb{H})))$ then $\mathbb{H}^{\prime} \leq_{\mathrm{RA}} \mathbb{H}$
\mathbb{H}^{\prime} is equality-free if every binary projection of a relation in it contains a pair $\left(a, a^{\prime}\right)$ with $a \neq a^{\prime}$

Algebraic approach (cont'd)

If one is ready to assume that the equality question has a positive answer then one can parallel the algebraic reductions for the decision problem.

But if not
Fact: If \mathbb{H}^{\prime} is equality-free and compatible with some member of $\operatorname{HSX}(\operatorname{PolAlg}(\mathbb{H})))$ then $\mathbb{H}^{\prime} \leq_{\mathrm{RA}} \mathbb{H}$
\mathbb{H}^{\prime} is equality-free if every binary projection of a relation in it contains a pair $\left(a, a^{\prime}\right)$ with $a \neq a^{\prime}$

Fact: For every $\mathbb{H}, \operatorname{MAX} \operatorname{CSP}(\mathbb{H}) \equiv_{\mathrm{RA}} \operatorname{MAX} \operatorname{CSP}\left(\operatorname{core}(\mathbb{H})^{c}\right)$

$$
(D, \Gamma)^{c}:=\left(D, \Gamma \cup\left\{C_{d} \mid d \in D\right\}\right), C_{d}=\{d\}
$$

Th: [Larose \& Zadori, Valeriote]
If \mathbf{A} is an finite idempotent algebra that admits only a finite number of WNUs then for some $q>1,\left(\mathbb{Z}_{q} ; 3 \operatorname{LIN}-E Q(q)\right)$ is compatible with some member of $\operatorname{HS}(\mathbf{A})$

Th: [Larose \& Zadori, Valeriote]
If \mathbf{A} is an finite idempotent algebra that admits only a finite number of WNUs then for some $q>1,\left(\mathbb{Z}_{q} ; 3 \operatorname{LIN}-E Q(q)\right)$ is compatible with some member of $\operatorname{HS}(\mathbf{A})$

It follows:
If \mathbb{H} does not have bounded width then MAX CSP($\mathbb{H})$ does not have an RA algorithm.

Width 1

Th: [O'Donnell, Kun, Zhou][Yoshida, Tamaki][D, Krokhin] If \mathbb{H} has width 1 then MAX $\operatorname{CSP}(\mathbb{H})$ has RA algorithm

Width 1

Th: [O'Donnell, Kun, Zhou][Yoshida, Tamaki][D, Krokhin] If \mathbb{H} has width 1 then $\operatorname{MAX} \operatorname{CSP}(\mathbb{H})$ has RA algorithm

Proof:
Th: [Feder, Vardi]
$\mathbb{H}=(D, \Gamma)$ is width 1 iff $\mathbb{H} \leftrightarrow \mathcal{P}(\mathbb{H})$ where $\mathcal{P}(\mathbb{H})$

- has universe $2^{D} / \emptyset$
- contains, for every $R \in \Gamma$, the relation R^{\prime} (of the same arity than R) defined as:

$$
R^{\prime}=\left\{\left(\operatorname{pr}_{1} S, \ldots, \operatorname{pr}_{\operatorname{arity}(R)} S\right) \mid \emptyset \neq S \subseteq R\right\}
$$

Width 1 (cont’d)

Let $\mathcal{P}^{b}(\mathbb{H})$: be the boolean structure obtained by replacing every element in every tuple of every relation of $\mathcal{P}(\mathbb{H})$, by its indicator boolean tuple.

Width 1 (cont’d)

Let $\mathcal{P}^{b}(\mathbb{H})$: be the boolean structure obtained by replacing every element in every tuple of every relation of $\mathcal{P}(\mathbb{H})$, by its indicator boolean tuple.

- $\mathcal{P}(\mathbb{H}) \leq_{R A} \mathcal{P}^{b}(\mathbb{H})$.

Proof: Transform instance I of $\operatorname{MAX} \operatorname{CSP}(\mathcal{P}(\mathbb{H}))$ into an instance I^{b} of $\operatorname{MAX} \operatorname{CSP}\left(\mathcal{P}^{b}(\mathbb{H})\right)$ by replacing every variable v in I by boolean variables $v^{d}, d \in D$.
There is a one-to-one correspondence between assignments of I and assignments of I^{b} which preserves the \# of satisfied constraints.

Width 1 (cont'd)

Let $\mathcal{P}^{b}(\mathbb{H})$: be the boolean structure obtained by replacing every element in every tuple of every relation of $\mathcal{P}(\mathbb{H})$, by its indicator boolean tuple.

- $\mathcal{P}(\mathbb{H}) \leq_{R A} \mathcal{P}^{b}(\mathbb{H})$.

Proof: Transform instance I of $\operatorname{MAX} \operatorname{CSP}(\mathcal{P}(\mathbb{H}))$ into an instance I^{b} of $\operatorname{MAX} \operatorname{CSP}\left(\mathcal{P}^{b}(\mathbb{H})\right)$ by replacing every variable v in I by boolean variables $v^{d}, d \in D$.
There is a one-to-one correspondence between assignments of I and assignments of I^{b} which preserves the \# of satisfied constraints.

- $\mathcal{P}^{b}(\mathbb{H})$ is invariant under disjunction. Hence, all its relations can be pp-defined using (dual) horn clauses.

Beyond width 1

Consider MAX CUT=MAX CSP $(\{0,1\}, \neq)$
Remarks:

- Allow randomized approximation algorithms. Now, the value I_{s} where s is the output of the algorithm is a random variable. Require that the expected fraction, $\operatorname{Exp}\left[I_{s}\right]$, of satisfied clauses is $\geq f\left(I_{\mathrm{OPT}}\right)$
- Accuracy issues

Beyond width 1

Consider MAX CUT=MAX $\operatorname{CSP}(\{0,1\}, \neq)$
Remarks:

- Allow randomized approximation algorithms. Now, the value I_{s} where s is the output of the algorithm is a random variable. Require that the expected fraction, $\operatorname{Exp}\left[I_{s}\right]$, of satisfied clauses is $\geq f\left(I_{\mathrm{OPT}}\right)$
- Accuracy issues

Trivial random algorithm: set every variable according to the flip of a $1 / 2$-coin.
Fact: Trivial random algorithm $\frac{1}{2}$-approximates MAX CUT.

Semidefinite Programming

[Goemans \& Williamson]
Better approximation algorithm for MAX CUT
Instance $I=(V, E)$ of MAX CUT with m edges

Semidefinite Programming

[Goemans \& Williamson]
Better approximation algorithm for MAX CUT
Instance $I=(V, E)$ of MAX CUT with m edges
Define a quadratic program Q :
The variables of Q are $X_{u}, u \in V$ and take values in \mathbb{R}

$$
\begin{array}{rll}
\hline Q: & \text { maximize } & \frac{1}{m} \sum_{(u, v) \in E} \frac{1-X_{u} \cdot X_{v}}{2} \\
& \text { subject to } & X_{u}^{2}=1, u \in V \\
\hline
\end{array}
$$

Values $\{-1,+1\}$ correspond to the sides of the partition

Semidefinite Programming

[Goemans \& Williamson]
Better approximation algorithm for MAX CUT
Instance $I=(V, E)$ of MAX CUT with m edges
Define a quadratic program Q :
The variables of Q are $X_{u}, u \in V$ and take values in \mathbb{R}

$$
\begin{array}{rll}
\hline Q: & \text { maximize } & \frac{1}{m} \sum_{(u, v) \in E} \frac{1-X_{u} \cdot X_{v}}{2} \\
& \text { subject to } & X_{u}^{2}=1, u \in V \\
\hline
\end{array}
$$

Values $\{-1,+1\}$ correspond to the sides of the partition It is NP-hard to solve.

Semidefinite Programming

[Goemans \& Williamson]
Better approximation algorithm for MAX CUT
Instance $I=(V, E)$ of MAX CUT with m edges
Define a SDP relaxation Q :
The variables of Q are $X_{u}, u \in V$ and take values in \mathbb{R}^{n}

$$
\begin{array}{|lll}
\hline Q: & \text { maximize } & \frac{1}{m} \sum_{(u, v) \in E} \frac{1-X_{u} \cdot X_{v}}{2} \\
& \text { subject to } & \left\|X_{u}\right\|^{2}=1, u \in V \\
\hline
\end{array}
$$

(.) denotes the inner product

Semidefinite Programming

[Goemans \& Williamson]
Better approximation algorithm for MAX CUT
Instance $I=(V, E)$ of MAX CUT with m edges
Define a SDP relaxation Q :
The variables of Q are $X_{u}, u \in V$ and take values in \mathbb{R}^{n}

$$
\begin{array}{rll}
\hline Q: & \text { maximize } & \frac{1}{m} \sum_{(u, v) \in E} \frac{1-X_{u} \cdot X_{v}}{2} \\
& \text { subject to } & \left\|X_{u}\right\|^{2}=1, u \in V \\
\hline
\end{array}
$$

(.) denotes the inner product

Intuitively, $\frac{1-X_{v} \cdot X_{v}}{2}$ favours X_{u} and X_{v} to be opposed

Let $X_{u}, u \in V$ be an optimal solution of Q and let Q_{OPT} the value of the goal function achieved by it.

Let $X_{u}, u \in V$ be an optimal solution of Q and let Q_{OPT} the value of the goal function achieved by it.

Rounding: Pick a random vector t and set a node u to

$$
\begin{cases}+1 & \text { if } t \cdot X_{u}>0 \\ -1 & \text { if } t \cdot X_{u}<0\end{cases}
$$

[PICTURE]

Let $X_{u}, u \in V$ be an optimal solution of Q and let Q_{OPT} the value of the goal function achieved by it.

Rounding: Pick a random vector t and set a node u to

$$
\begin{cases}+1 & \text { if } t \cdot X_{u}>0 \\ -1 & \text { if } t \cdot X_{u}<0\end{cases}
$$

[PICTURE]

Let s be the assignement produced by the rounding.

How much is lost when rounding?

For every edge $(u, v) \in E$:

- $z_{(u, v)}:=\frac{1-X_{u} \cdot X_{v}}{2}$
- $p_{(u, v)}:=$ prob. that s cuts (u, v)

$$
\operatorname{Exp}\left[I_{s}\right]=\frac{1}{m} \sum_{(u, v) \in E} p_{(u, v)} \quad Q_{\mathrm{OPT}}=\frac{1}{m} \sum_{(u, v) \in E} z_{(u, v)}
$$

By rotational symmetry of random vector $t, p_{(u, v)}=\Theta_{u, v} / \pi$, where $\Theta_{u, v}$ is angle formed by X_{u} and $X_{v}\left(=\arccos \left(X_{u} \cdot X_{v}\right)\right)$

Analiticaly, one shows

$$
\frac{\arccos x}{\pi} \geq 0.878 \cdot \frac{1-x}{2}, \quad-1 \leq x \leq 1
$$

It follows

$$
\operatorname{Exp}\left[I_{S}\right] \geq 0.878 \cdot Q_{\mathrm{OPT}} \geq 0.878 \cdot I_{\mathrm{OPT}}
$$

Th: [Goemans,Williamson] MAX CUT has a 0.878 -approximation algorithm

It follows

$$
\operatorname{Exp}\left[I_{S}\right] \geq 0.878 \cdot Q_{\mathrm{OPT}} \geq 0.878 \cdot I_{\mathrm{OPT}}
$$

Th: [Goemans,Williamson]
MAX CUT has a 0.878 -approximation algorithm
(and also a RA algorithm because $\frac{\arccos x}{\pi} \rightarrow 1$ whenever $\frac{1-x}{2} \rightarrow 1$)

2SAT

[Goemans \& Williamson]
Let I be a 2SAT instance, namely a conjunction of m 2-clauses.
Define SDP relaxation Q for I. The variables of Q are $X_{v}, v \in V$ and a (reference) variable X_{1}.

$$
\begin{array}{|lll}
\hline Q: & \text { maximize } & \frac{1}{m} \sum_{C \in I} z_{C} \\
& \text { subject to } & \left\|X_{u}\right\|^{2}=1, u \in V \\
\hline
\end{array}
$$

where $z_{\bar{u} \vee \bar{v}}=\frac{3-X_{u} \cdot X_{1}-X_{v} \cdot X_{1}-X_{u} \cdot X_{v}}{4}$

$$
z_{u \vee \bar{v}}=\frac{3+X_{u} \cdot X_{1}-X_{v} \cdot X_{1}+X_{u} \cdot X_{v}}{4}
$$

$$
\vdots
$$

Intuitively, u is close to true if X_{u} is close to X_{1} and is close to false if X_{u} is close to $-X_{1}$.

Let $X_{u}, u \in V \cup\{1\}$ be an optimal solution of Q
GW Rounding for 2SAT:
Pick random vector t. Replace t by $-t$ if $X_{1} \cdot t<0$. Set a node u to

$$
\begin{cases}1 & \text { if } t \cdot X_{u}>0 \\ 0 & \text { if } t \cdot X_{u}<0\end{cases}
$$

The GW rounding gives a 0.878 -approximation algorithm for 2SAT but not a RA algorithm.

Analysis

Let s be the assignment produced by the GW rounding.

$$
\operatorname{Exp}\left[I_{s}\right]=\frac{1}{m} \sum_{C \in I} p_{C} \quad Q_{\mathrm{OPT}}=\frac{1}{m} \sum_{C \in I} z_{C}
$$

where p_{C} and z_{C} are (say, for clause $C=\bar{u} \vee \bar{v}$):

$$
\begin{aligned}
z_{C} & =\frac{3-X_{u} \cdot X_{1}-X_{v} \cdot X_{1}-X_{u} \cdot X_{u}}{4} \\
& =\frac{1}{2}\left(\frac{1-X_{u} \cdot X_{1}}{2}+\frac{1-X_{v} \cdot X_{1}}{2}+\frac{1-X_{u} \cdot X_{v}}{2}\right)
\end{aligned}
$$

$p_{C}=$ probability that C is satisfied by s

$$
=\frac{1}{2}\left(\frac{\Theta_{u, 1}}{\pi}+\frac{\Theta_{v, 1}}{\pi}+\frac{\Theta_{u, v}}{\pi}\right)
$$

Analysis

Let s be the assignment produced by the GW rounding.

$$
\operatorname{Exp}\left[I_{s}\right]=\frac{1}{m} \sum_{C \in I} p_{C} \quad Q_{\mathrm{OPT}}=\frac{1}{m} \sum_{C \in I} z_{C}
$$

where p_{C} and z_{C} are (say, for clause $C=\bar{u} \vee \bar{v}$):

$$
\begin{aligned}
z_{C} & =\frac{3-X_{u} \cdot X_{1}-X_{v} \cdot X_{1}-X_{u} \cdot X_{u}}{4} \\
& =\frac{1}{2}\left(\frac{1-X_{v} \cdot X_{1}}{2}+\frac{1-X_{v} \cdot X_{1}}{2}+\frac{1-X_{v} \cdot X_{v}}{2}\right)
\end{aligned}
$$

$p_{C}=$ probability that C is satisfied by s

$$
=\frac{1}{2}\left(\frac{\Theta_{u, 1}}{\pi}+\frac{\Theta_{v, 1}}{\pi}+\frac{\Theta_{u, v}}{\pi}\right)
$$

We have $p_{C} \geq 0.878 \cdot Z_{C}$ but $z_{C} \rightarrow 1 \nRightarrow p_{C} \rightarrow 1$ (for example if $\left.\Theta_{u, 1}=\Theta_{v, 1}=\Theta_{u, v}=\arccos (-1 / 3)\right)$

Zwick's RA algorithm for 2SAT

- Add to $\operatorname{SDP} Q$ the restrictions

$$
X_{u} \cdot X_{1}+X_{v} \cdot X_{1}+X_{u} \cdot X_{v} \geq-1, u, v \in V
$$

This family of restrictions force that $Z_{C} \leq 1$ for every clause C.

Zwick's RA algorithm for 2SAT

- Add to $\operatorname{SDP} Q$ the restrictions

$$
X_{u} \cdot X_{1}+X_{v} \cdot X_{1}+X_{u} \cdot X_{v} \geq-1, u, v \in V
$$

This family of restrictions force that $Z_{C} \leq 1$ for every clause C.

- Change rounding. Two steps:

1. "Rotate" each vector X_{u} obtaining a new vector X_{u}^{\prime}
2. Apply GW rounding to X_{u}^{\prime}

Rotation

Simple rotation: works if $Q_{\mathrm{OPT}}=1$ (decision problem)

$$
\forall u \in V \cup\{1\}, X_{u}^{\prime}:= \begin{cases}X_{1} & \text { if } X_{u} \cdot X_{1}>0 \\ X_{u} & \text { if } X_{u} \cdot X_{1}=0 \\ -X_{1} & \text { if } X_{u} \cdot X_{1}<0\end{cases}
$$

Apply GW rounding to $X_{u}^{\prime}, u \in V$.

Rotation

Simple rotation: works if $Q_{\mathrm{OPT}}=1$ (decision problem)

$$
\forall u \in V \cup\{1\}, X_{u}^{\prime}:= \begin{cases}X_{1} & \text { if } X_{u} \cdot X_{1}>0 \\ X_{u} & \text { if } X_{u} \cdot X_{1}=0 \\ -X_{1} & \text { if } X_{u} \cdot X_{1}<0\end{cases}
$$

Apply GW rounding to $X_{u}^{\prime}, u \in V$.
Assume $Q_{\mathrm{OPT}}=1$. Then $Z_{C} \leq 1, C \in I \Rightarrow Z_{C}=1, C \in I$.

Rotation

Simple rotation: works if $Q_{\mathrm{OPT}}=1$ (decision problem)

$$
\forall u \in V \cup\{1\}, X_{u}^{\prime}:= \begin{cases}X_{1} & \text { if } X_{u} \cdot X_{1}>0 \\ X_{u} & \text { if } X_{u} \cdot X_{1}=0 \\ -X_{1} & \text { if } X_{u} \cdot X_{1}<0\end{cases}
$$

Apply GW rounding to $X_{u}^{\prime}, u \in V$.
Assume $Q_{\mathrm{OPT}}=1$. Then $Z_{C} \leq 1, C \in I \Rightarrow Z_{C}=1, C \in I$.
Fix $C=\bar{u} \vee \bar{v} . Z_{C}=1$ implies

$$
X_{u} \cdot X_{1}+X_{v} \cdot X_{1}+X_{u} \cdot X_{v}=-1
$$

Rotation

Simple rotation: works if $Q_{\mathrm{OPT}}=1$ (decision problem)

$$
\forall u \in V \cup\{1\}, X_{u}^{\prime}:= \begin{cases}X_{1} & \text { if } X_{u} \cdot X_{1}>0 \\ X_{u} & \text { if } X_{u} \cdot X_{1}=0 \\ -X_{1} & \text { if } X_{u} \cdot X_{1}<0\end{cases}
$$

Apply GW rounding to $X_{u}^{\prime}, u \in V$.
Assume $Q_{\mathrm{OPT}}=1$. Then $Z_{C} \leq 1, C \in I \Rightarrow Z_{C}=1, C \in I$.
Fix $C=\bar{u} \vee \bar{v} . Z_{C}=1$ implies

$$
X_{u} \cdot X_{1}+X_{v} \cdot X_{1}+X_{u} \cdot X_{v}=-1
$$

Then $p_{C}=\frac{\Theta_{u, 1}^{\prime}+\Theta_{v, 1}^{\prime}+\Theta_{u, v}^{\prime}}{2 \pi}=1, \Theta_{i, j}^{\prime}:=\arccos \left(X_{i}^{\prime}, X_{j}^{\prime}\right)$

Rotation

Simple rotation: works if $Q_{\mathrm{OPT}}=1$ (decision problem)

$$
\forall u \in V \cup\{1\}, X_{u}^{\prime}:= \begin{cases}X_{1} & \text { if } X_{u} \cdot X_{1}>0 \\ X_{u} & \text { if } X_{u} \cdot X_{1}=0 \\ -X_{1} & \text { if } X_{u} \cdot X_{1}<0\end{cases}
$$

Apply GW rounding to $X_{u}^{\prime}, u \in V$.
Assume $Q_{\mathrm{OPT}}=1$. Then $Z_{C} \leq 1, C \in I \Rightarrow Z_{C}=1, C \in I$.
Fix $C=\bar{u} \vee \bar{v} . Z_{C}=1$ implies

$$
X_{u} \cdot X_{1}+X_{v} \cdot X_{1}+X_{u} \cdot X_{v}=-1
$$

Then $p_{C}=\frac{\Theta_{u, 1}^{\prime}+\Theta_{v, 1}^{\prime}+\Theta_{u, v}^{\prime}}{2 \pi}=1, \Theta_{i, j}^{\prime}:=\arccos \left(X_{i}^{\prime}, X_{j}^{\prime}\right)$
However, the rounding is too insensitive if $Q_{\mathrm{OPT}}<1$

General rotation. Let $r:[0, \pi] \rightarrow[0, \pi]$. The rotation of X_{u} (wrt. r), X_{u}^{\prime}, is obtained as follows:

If Θ is the angle formed by X_{u} and X_{1}, then rotate X_{u} (in the plane spawned by X_{u} and X_{1}) until forms an angle of $r(\Theta)$ with X_{1}

General rotation. Let $r:[0, \pi] \rightarrow[0, \pi]$. The rotation of X_{u} (wrt. r), X_{u}^{\prime}, is obtained as follows:

If Θ is the angle formed by X_{u} and X_{1}, then rotate X_{u} (in the plane spawned by X_{u} and X_{1}) until forms an angle of $r(\Theta)$ with X_{1}

The simple rotation is when r is r_{0} where:

$$
r_{0}= \begin{cases}0 & \text { if } \Theta<\pi / 2 \\ \pi / 2 & \text { if } \Theta=\pi / 2 \\ \pi & \text { if } \Theta>\pi / 2\end{cases}
$$

General rotation. Let $r:[0, \pi] \rightarrow[0, \pi]$. The rotation of X_{u} (wrt. r), X_{u}^{\prime}, is obtained as follows:

If Θ is the angle formed by X_{u} and X_{1}, then rotate X_{u} (in the plane spawned by X_{u} and X_{1}) until forms an angle of $r(\Theta)$ with X_{1}

The simple rotation is when r is r_{0} where:

$$
r_{\epsilon}= \begin{cases}0 & \text { if } \Theta<\pi / 2-\epsilon \\ \pi / 2+(\pi / 2 \epsilon)(\Theta-\pi / 2) & \text { if } \pi / 2-\epsilon \leq \Theta \leq \pi / 2+\epsilon \\ \pi & \text { if } \Theta>\pi / 2+\epsilon\end{cases}
$$

General rotation. Let $r:[0, \pi] \rightarrow[0, \pi]$. The rotation of X_{u} (wrt. r), X_{u}^{\prime}, is obtained as follows:
If Θ is the angle formed by X_{u} and X_{1}, then rotate X_{u} (in the plane spawned by X_{u} and X_{1}) until forms an angle of $r(\Theta)$ with X_{1}

The simple rotation is when r is r_{0} where:

$$
r_{\epsilon}= \begin{cases}0 & \text { if } \Theta<\pi / 2-\epsilon \\ \pi / 2+(\pi / 2 \epsilon)(\Theta-\pi / 2) & \text { if } \pi / 2-\epsilon \leq \Theta \leq \pi / 2+\epsilon \\ \pi & \text { if } \Theta>\pi / 2+\epsilon\end{cases}
$$

Zwick proves that by using r_{ϵ} with $\epsilon=\left(1-Q_{\mathrm{OPT}}\right)^{1 / 3}$ one obtains $\operatorname{Exp}\left[I_{S}\right] \geq 1-5 \epsilon$.

Th: [D., Krokhin] If \mathbb{H} is invariant under the dual discriminator then MAX $\operatorname{CSP}(\mathbb{H})$ has a RA algorithm.

Dual discriminator is the ternary operation
$m(x, y, z)= \begin{cases}x & \text { if } x=y \\ z & \text { otherwise }\end{cases}$
Common generalization of 2SAT and Unique games.

Th: [D., Krokhin] If \mathbb{H} is invariant under the dual discriminator then $\operatorname{MAX} \operatorname{CSP}(\mathbb{H})$ has a RA algorithm.

Dual discriminator is the ternary operation
$m(x, y, z)= \begin{cases}x & \text { if } x=y \\ z & \text { otherwise }\end{cases}$
Common generalization of 2SAT and Unique games.
Proof: Assume $D=\{1, \ldots, k\}$. Every relation inv. under m can be pp-defined using relations of the following types:

- $\{(i, \pi(i)) \mid i \in D\}$, where $\pi: D \rightarrow D$ is a bijection
- $D /\{i\}, i \in D$
- $(i \times D) \cup(D \times j), i, j \in D$

We use mainly Khot's SDP relaxation for unique games
Let I be an instance of $\operatorname{MAX} \operatorname{CSP}(\mathbb{H})$ with nodes V

- Variables $X_{u}^{i}, u \in V, i \in D$. (Intuitively, $\left\|X_{u}^{i}\right\|=1$ means that u is set to i)
- Restrictions

$$
\begin{array}{ll}
\left\|X_{u}^{1}\right\|^{2}+\cdots+\left\|X_{u}^{k}\right\|^{2}=1, & u \in V \\
X_{u}^{i} \cdot X_{u}^{j}=0, & u \in V, 1 \leq i \neq j \leq k \\
X_{u}^{i} \cdot X_{v}^{j} \geq 0, & u, v \in V, 1 \leq i, j \leq k \\
\sum_{1 \leq i, j \leq k} X_{u}^{i} \cdot X_{v}^{j}=1, & u, v \in V
\end{array}
$$

- Goal function $\sum_{C \in I} z_{C}$ where z_{C} is

$$
\begin{cases}\sum_{1 \leq i \leq k} X_{u}^{i} \cdot X_{v}^{\pi(i)} & \text { if } C=((u, v), \pi) \\ 1-\left\|\overline{X_{u}^{i}}\right\|^{2} & \text { if } C=(u, D \backslash\{i\}) \\ 1-\overline{X_{u}^{i}} \cdot \overline{X_{v}^{j}} & \text { if } C=((u, v),(i \times D) \cup(D \times j))\end{cases}
$$

where $\overline{X_{u}^{i}}$ is a shortand for $\sum_{1 \leq j \neq i \leq k} X_{u}^{j}$

Rounding

Step 1: Set $Y_{1}:=\sum_{1 \leq i \leq k} X_{u}^{i}$ for some $u \in V$ (invariant of the choice of u)

Apply Zwick's rounding with appropiate ϵ to $Y_{u}^{i}=2 X_{u}^{i}-Y_{1}$, $u \in V, i \in D$ (follows from the restrictions that $\left\|Y_{u}^{i}\right\|=1$) obtaining $u^{i} \in\{0,1\}, u \in V, i \in D$.

For every u, if there exists exactly one i with $u^{i}=1$ then set u to i otherwise leave u undefined.

Rounding

Step 1: Set $Y_{1}:=\sum_{1 \leq i \leq k} X_{u}^{i}$ for some $u \in V$ (invariant of the choice of u)

Apply Zwick's rounding with appropiate ϵ to $Y_{u}^{i}=2 X_{u}^{i}-Y_{1}$, $u \in V, i \in D$ (follows from the restrictions that $\left\|Y_{u}^{i}\right\|=1$) obtaining $u^{i} \in\{0,1\}, u \in V, i \in D$.

For every u, if there exists exactly one i with $u^{i}=1$ then set u to i otherwise leave u undefined.

Step 2: Apply Khot's rounding to all undefined variables

Rounding

Step 1: Set $Y_{1}:=\sum_{1 \leq i \leq k} X_{u}^{i}$ for some $u \in V$ (invariant of the choice of u)

Apply Zwick's rounding with appropiate ϵ to $Y_{u}^{i}=2 X_{u}^{i}-Y_{1}$, $u \in V, i \in D$ (follows from the restrictions that $\left\|Y_{u}^{i}\right\|=1$) obtaining $u^{i} \in\{0,1\}, u \in V, i \in D$.

For every u, if there exists exactly one i with $u^{i}=1$ then set u to i otherwise leave u undefined.

Step 2: Apply Khot's rounding to all undefined variables
One shows that step one satisfyies most constraints of type 2 or 3 and falsifies or partially assigns only a small fraction of constraints of type 1.

Mixed Constraints

In a mixed intance I constraints are divided in two sets:

- Hard constraints that must be satisfied
- Soft constraints that can be falsified.

Def: MIXED $\operatorname{CSP}(\mathbb{H})$ is the problem consisting in finding, given a mixed instance I over \mathbb{H}, an assignment s with I_{s} maximal where
$I_{s}=\left\{\begin{array}{l}0 \text { if } s \text { falsifies some hard constraint } \\ \text { fraction of soft constraints satisfied by } s \text { otherwise }\end{array}\right.$

Observation: If \mathbb{H} has bounded width then

$$
\operatorname{MAX~} \operatorname{CSP}(\mathbb{H}) \leq_{\mathrm{RA}} \operatorname{MIXED} \operatorname{CSP}\left(\mathrm{HORN}^{r}\right)
$$

for some $r>0$, where where HORN^{r} is the boolean structure containing of all horn clauses of arity up to r.

Proof: Let $l=3\left\lceil\frac{\operatorname{arity}(\mathbb{H})}{2}\right\rceil$ and let I be an instance MAX CSP($\mathbb{H})$ with variable set V.

A partial assignment is any mapping $p: U \rightarrow D$ with $U \subseteq V$.
If p, q are partial assignments, $p \subseteq q$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$ and p and q coincide over $\operatorname{dom}(p)$.

A $(l-1, l)$-strategy \mathcal{K} for I is a nonempty collection of partial assignments of domain size at most l satisfying:

1. If $q \in \mathcal{K}$ and $p \subseteq q$ then $p \in \mathcal{K}$.
2. If $p \in S$ and $|\operatorname{dom}(p)|<l$ then for every $u \in V$ there exists some $q \in \mathcal{K}$ with $p \subseteq q$ and $u \in \operatorname{dom}(q)$.
3. If $p \in \mathcal{K}$ and C is a constraint in I whose scope is entirely contained in $\operatorname{dom}(p)$ then p satisfies C
If \mathbb{H} has bounded width and I has a $(l-1, l)$-strategy then I has a solution.

The existence of a $(l-1, l)$-strategy can be formulated as a horn formula, I^{\prime}, by introducing one boolean variable X_{p} for every p with $|\operatorname{dom}(p)| \leq l$ stating " p is not in the strategy".

Mark every clause in I^{\prime} arising from conditions (1) or (2) as hard and every clause arising from condition (3) as soft.

Observe that the number of soft constraints of I^{\prime} is in [$\left.m, m \cdot|D|^{l}\right]$ where m is the number of constraints of I.

For every assignment s^{\prime} of I^{\prime} let $\mathcal{K}_{s^{\prime}}$ be the set containing precisely all those p such that X_{p} is false.

Algorithm for MAX CSP(ㅍH):
Let s^{\prime} be the assignment returned with input I^{\prime} by the hypothetical RA algorithm (say, with function f) for MIXED CSP(HORN).
$\mathcal{K}_{s^{\prime}}$ is an strategy for the subinstance $J \subseteq I$ obtained by removing all constraints associated to clauses violated by s^{\prime}.

Output a solution s of J (obtained by applying iteratively the consistency algorithm)

Algorithm for MAX CSP(ㅍH):
Let s^{\prime} be the assignment returned with input I^{\prime} by the hypothetical RA algorithm (say, with function f) for MIXED CSP(HORN).
$\mathcal{K}_{s^{\prime}}$ is an strategy for the subinstance $J \subseteq I$ obtained by removing all constraints associated to clauses violated by s^{\prime}.

Output a solution s of J (obtained by applying iteratively the consistency algorithm)

We have

$$
1-I_{s} \leq|D|^{k}\left(1-I_{s^{\prime}}^{\prime}\right) \leq|D|^{k}\left(1-f\left(I_{\mathrm{OPT}}^{\prime}\right)\right) \leq|D|^{k}\left(1-f\left(I_{\mathrm{OPT}}\right)\right)
$$

Open Problems

- Does MIXED CSP(HORN) have a RA algorithm? Does it have a K-approximation algorithm for some $0<K$? More generally, determine, for every \mathbb{H}, whether there is a RA algorithm for MIXED CSP(H).
- Consider more general polymorphisms. For example, does $\operatorname{MAX} \operatorname{CSP}(\mathbb{H})$ have a RA algorithm if \mathbb{H} admits a majority (near-unanimity) polymorphism?
- Consider consistency algorithms more powerful than 1-minimality but still less powerfull than 3-minimality. For example, is it true that if $\operatorname{CSP}(\mathbb{H})$ solvable by peek-arc-consistency (or singleton arc-consistency) then MAX $\operatorname{CSP}(\mathbb{H})$ has a RA algorithm?

THANKS FOR YOUR ATTENTION!!!!

