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Definitions

Fix a relational structure H = (D; Γ) called the template
(host structure).

An instance I (over H) is a set V of variables (nodes)
together with a set of constraints.

The value of assignment s : V → D is
Is := fraction of constraints satisfied by s

Def: MAX CSP(H) is the problem consisting in finding, given
an instance I over H, an assignment s with Is maximal.

Ex. MAX CUT is MAX CSP({0, 1}, 6=)
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Approximation Algorithms

Let Alg be an algorithm that tries to solve MAX CSP(Γ).

How do we measure how good is Alg?
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Approximation Algorithms

Let Alg be an algorithm that tries to solve MAX CSP(Γ).

How do we measure how good is Alg?

Let f : [0, 1] → [0, 1] be a decreasing function.

Alg is a f -aproximation algorithm if for every instance I

Is ≥ f(IOPT)

where:

s = Alg(I) is the output of Alg on input I

IOPT = maxr Ir
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Many approximation results deal with functions of the form
f(x) = K · x, 0 ≤ K ≤ 1

Program: Identify, for every H, maximum K s.t.
MAX CSP(H) has a (K · x)-approximation algorithm.
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Many approximation results deal with functions of the form
f(x) = K · x, 0 ≤ K ≤ 1

Program: Identify, for every H, maximum K s.t.
MAX CSP(H) has a (K · x)-approximation algorithm.

(Robust) approximation [Zwick] cares about functions f s. t.
f(x) → 1 as x → 1.

Motivation: Want an algorithm that finds a very good
solution when 99% of the constraints are satisfiable
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Many approximation results deal with functions of the form
f(x) = K · x, 0 ≤ K ≤ 1

Program: Identify, for every H, maximum K s.t.
MAX CSP(H) has a (K · x)-approximation algorithm.

(Robust) approximation [Zwick] cares about functions f s. t.
f(x) → 1 as x → 1.

Motivation: Want an algorithm that finds a very good
solution when 99% of the constraints are satisfiable

Nice feature: (Almost) amenable to algebraic study

Program: Determine, for each H, whether MAX CSP(H) has
a robust approximation (RA) algorithm, i.e, a
f -approximation algorithm with fx→1 → 1.
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Previous Results

MAX CSP(D; Γ) has a RA algorithm if Γ consists only of:

Horn Clauses [Zwick]

Binary boolean clauses [Zwick]

Binary bijective relations (aka Unique Games) [Khot]

If P6= NP then MAX CSP(Zq; 3LIN-EQ(q)), q > 1 has not a
RA algorithm where 3LIN-EQ(q) contains all linear
equations over Zq with at most 3 variables [Hastad].
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Algebraic approach

We use H
′ ≤RA H as a shortand for

"If MAX CSP(H) has a RA algorithm then so has
MAX CSP(H′)"

Fact: If R is pp-definable without equality from Γ then
(D; Γ ∪ {R}) ≤RA (D; Γ)
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Algebraic approach

We use H
′ ≤RA H as a shortand for

"If MAX CSP(H) has a RA algorithm then so has
MAX CSP(H′)"

Fact: If R is pp-definable without equality from Γ then
(D; Γ ∪ {R}) ≤RA (D; Γ)

Equality question: (D; Γ ∪ {=}) ≤RA (D; Γ)?

It follows that for every boolean H, MAX CSP(H) has a RA
algorithm if and only if H has bounded width.
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Algebraic approach

We use H
′ ≤RA H as a shortand for

"If MAX CSP(H) has a RA algorithm then so has
MAX CSP(H′)"

Fact: If R is pp-definable without equality from Γ then
(D; Γ ∪ {R}) ≤RA (D; Γ)

Equality question: (D; Γ ∪ {=}) ≤RA (D; Γ)?

It follows that for every boolean H, MAX CSP(H) has a RA
algorithm if and only if H has bounded width.

Conjecture: [Guruswami and Zhou]
For every H, MAX CSP(H) has a RA algorithm if and only if
H has bounded width.
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Algebraic approach (cont’d)

If one is ready to assume that the equality question has a
positive answer then one can parallel the algebraic
reductions for the decision problem.
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Algebraic approach (cont’d)

If one is ready to assume that the equality question has a
positive answer then one can parallel the algebraic
reductions for the decision problem.

Fact: If H
′ is compatible with some member of

HSP(PolAlg(H))) then H
′ ≤RA H
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Algebraic approach (cont’d)

If one is ready to assume that the equality question has a
positive answer then one can parallel the algebraic
reductions for the decision problem.

But if not

Fact: If H
′ is equality-free and compatible with some

member of HS��SSP(PolAlg(H))) then H
′ ≤RA H

H
′ is equality-free if every binary projection of a relation in it

contains a pair (a, a′) with a 6= a′
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Algebraic approach (cont’d)

If one is ready to assume that the equality question has a
positive answer then one can parallel the algebraic
reductions for the decision problem.

But if not

Fact: If H
′ is equality-free and compatible with some

member of HS��SSP(PolAlg(H))) then H
′ ≤RA H

H
′ is equality-free if every binary projection of a relation in it

contains a pair (a, a′) with a 6= a′

Fact: For every H, MAX CSP(H) ≡RA MAX CSP(core(H)c)

(D,Γ)c := (D,Γ ∪ {Cd | d ∈ D}), Cd = {d}
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Th: [Larose & Zadori, Valeriote]
If A is an finite idempotent algebra that admits only a finite
number of WNUs then for some q > 1, (Zq; 3LIN-EQ(q)) is
compatible with some member of HS(A)
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Th: [Larose & Zadori, Valeriote]
If A is an finite idempotent algebra that admits only a finite
number of WNUs then for some q > 1, (Zq; 3LIN-EQ(q)) is
compatible with some member of HS(A)

It follows:

If H does not have bounded width then MAX CSP(H) does
not have an RA algorithm.
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Width 1

Th: [O’Donnell, Kun, Zhou][Yoshida, Tamaki][D, Krokhin]
If H has width 1 then MAX CSP(H) has RA algorithm
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Width 1

Th: [O’Donnell, Kun, Zhou][Yoshida, Tamaki][D, Krokhin]
If H has width 1 then MAX CSP(H) has RA algorithm

Proof:

Th: [Feder, Vardi]
H = (D,Γ) is width 1 iff H ↔ P(H) where P(H)

has universe 2D/∅

contains, for every R ∈ Γ, the relation R′ (of the same
arity than R) defined as:

R′ = {(pr1 S, . . . , prarity(R) S) | ∅ 6= S ⊆ R}
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Width 1 (cont’d)

Let Pb(H) : be the boolean structure obtained by replacing
every element in every tuple of every relation of P(H), by its
indicator boolean tuple.
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Width 1 (cont’d)

Let Pb(H) : be the boolean structure obtained by replacing
every element in every tuple of every relation of P(H), by its
indicator boolean tuple.

P(H) ≤RA Pb(H).
Proof: Transform instance I of MAX CSP(P(H)) into an
instance Ib of MAX CSP(Pb(H)) by replacing every
variable v in I by boolean variables vd, d ∈ D.

There is a one-to-one correspondence between
assignments of I and assignments of Ib which
preserves the # of satisfied constraints.
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Width 1 (cont’d)

Let Pb(H) : be the boolean structure obtained by replacing
every element in every tuple of every relation of P(H), by its
indicator boolean tuple.

P(H) ≤RA Pb(H).
Proof: Transform instance I of MAX CSP(P(H)) into an
instance Ib of MAX CSP(Pb(H)) by replacing every
variable v in I by boolean variables vd, d ∈ D.

There is a one-to-one correspondence between
assignments of I and assignments of Ib which
preserves the # of satisfied constraints.

Pb(H) is invariant under disjunction. Hence, all its
relations can be pp-defined using (dual) horn clauses.
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Beyond width 1

Consider MAX CUT=MAX CSP({0, 1}, 6=)

Remarks:

Allow randomized approximation algorithms. Now, the
value Is where s is the output of the algorithm is a
random variable. Require that the expected fraction,
Exp[Is], of satisfied clauses is ≥ f(IOPT)

Accuracy issues
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Beyond width 1

Consider MAX CUT=MAX CSP({0, 1}, 6=)

Remarks:

Allow randomized approximation algorithms. Now, the
value Is where s is the output of the algorithm is a
random variable. Require that the expected fraction,
Exp[Is], of satisfied clauses is ≥ f(IOPT)

Accuracy issues

Trivial random algorithm: set every variable according to the
flip of a 1/2-coin.

Fact: Trivial random algorithm 1
2-approximates MAX CUT.
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Semidefinite Programming

[Goemans & Williamson]
Better approximation algorithm for MAX CUT

Instance I = (V,E) of MAX CUT with m edges
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Semidefinite Programming

[Goemans & Williamson]
Better approximation algorithm for MAX CUT

Instance I = (V,E) of MAX CUT with m edges

Define a quadratic program Q:

The variables of Q are Xu, u ∈ V and take values in R

Q : maximize 1
m

∑

(u,v)∈E
1−Xu·Xv

2

subject to X2
u = 1, u ∈ V

Values {−1,+1} correspond to the sides of the partition
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Semidefinite Programming

[Goemans & Williamson]
Better approximation algorithm for MAX CUT

Instance I = (V,E) of MAX CUT with m edges

Define a quadratic program Q:

The variables of Q are Xu, u ∈ V and take values in R

Q : maximize 1
m

∑

(u,v)∈E
1−Xu·Xv

2

subject to X2
u = 1, u ∈ V

Values {−1,+1} correspond to the sides of the partition

It is NP-hard to solve.
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Semidefinite Programming

[Goemans & Williamson]
Better approximation algorithm for MAX CUT

Instance I = (V,E) of MAX CUT with m edges

Define a SDP relaxation Q:

The variables of Q are Xu, u ∈ V and take values in R
n

Q : maximize 1
m

∑

(u,v)∈E
1−Xu·Xv

2

subject to ‖Xu‖
2 = 1, u ∈ V

(·) denotes the inner product
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Semidefinite Programming

[Goemans & Williamson]
Better approximation algorithm for MAX CUT

Instance I = (V,E) of MAX CUT with m edges

Define a SDP relaxation Q:

The variables of Q are Xu, u ∈ V and take values in R
n

Q : maximize 1
m

∑

(u,v)∈E
1−Xu·Xv

2

subject to ‖Xu‖
2 = 1, u ∈ V

(·) denotes the inner product

Intuitively, 1−Xu·Xv

2 favours Xu and Xv to be opposed
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Let Xu, u ∈ V be an optimal solution of Q and let QOPT the
value of the goal function achieved by it.
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Let Xu, u ∈ V be an optimal solution of Q and let QOPT the
value of the goal function achieved by it.

Rounding: Pick a random vector t and set a node u to
{

+1 if t · Xu > 0

−1 if t · Xu < 0

[PICTURE]
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Let Xu, u ∈ V be an optimal solution of Q and let QOPT the
value of the goal function achieved by it.

Rounding: Pick a random vector t and set a node u to
{

+1 if t · Xu > 0

−1 if t · Xu < 0

[PICTURE]

Let s be the assignement produced by the rounding.
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How much is lost when rounding?

For every edge (u, v) ∈ E:

z(u,v) := 1−Xu·Xv

2

p(u,v) := prob. that s cuts (u, v)

Exp[Is] = 1
m

∑

(u,v)∈E p(u,v) QOPT = 1
m

∑

(u,v)∈E z(u,v)

By rotational symmetry of random vector t, p(u,v) = Θu,v/π,
where Θu,v is angle formed by Xu and Xv(= arccos(Xu ·Xv))

Analiticaly, one shows
arccosx

π ≥ 0.878 · 1−x
2 , −1 ≤ x ≤ 1
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It follows
Exp[IS ] ≥ 0.878 · QOPT ≥ 0.878 · IOPT

Th: [Goemans,Williamson]
MAX CUT has a 0.878-approximation algorithm
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It follows
Exp[IS ] ≥ 0.878 · QOPT ≥ 0.878 · IOPT

Th: [Goemans,Williamson]
MAX CUT has a 0.878-approximation algorithm

(and also a RA algorithm because arccosx
π → 1 whenever

1−x
2 → 1)
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2SAT

[Goemans & Williamson]
Let I be a 2SAT instance, namely a conjunction of m
2-clauses.

Define SDP relaxation Q for I. The variables of Q are
Xv, v ∈ V and a (reference) variable X1.

Q : maximize 1
m

∑

C∈I zC

subject to ‖Xu‖
2 = 1, u ∈ V

where zu∨v = 3−Xu·X1−Xv·X1−Xu·Xv

4

zu∨v = 3+Xu·X1−Xv·X1+Xu·Xv

4
...

Intuitively, u is close to true if Xu is close to X1 and is close
to false if Xu is close to −X1.
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Let Xu, u ∈ V ∪ {1} be an optimal solution of Q

GW Rounding for 2SAT:
Pick random vector t. Replace t by −t if X1 · t < 0. Set a
node u to

{

1 if t · Xu > 0

0 if t · Xu < 0

The GW rounding gives a 0.878-approximation algorithm for
2SAT but not a RA algorithm.
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Analysis

Let s be the assignment produced by the GW rounding.

Exp[Is] = 1
m

∑

C∈I pC QOPT = 1
m

∑

C∈I zC

where pC and zC are (say, for clause C = u ∨ v):

zC = 3−Xu·X1−Xv·X1−Xu·Xu

4

= 1
2(1−Xu·X1

2 + 1−Xv·X1

2 + 1−Xu·Xv

2 )

pC = probability that C is satisfied by s

= 1
2

(

Θu,1

π + Θv,1

π + Θu,v

π

)
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Analysis

Let s be the assignment produced by the GW rounding.

Exp[Is] = 1
m

∑

C∈I pC QOPT = 1
m

∑

C∈I zC

where pC and zC are (say, for clause C = u ∨ v):

zC = 3−Xu·X1−Xv·X1−Xu·Xu

4

= 1
2(1−Xu·X1

2 + 1−Xv·X1

2 + 1−Xu·Xv

2 )

pC = probability that C is satisfied by s

= 1
2

(

Θu,1

π + Θv,1

π + Θu,v

π

)

We have pC ≥ 0.878 · ZC but zC → 1 6⇒ pC → 1 (for example
if Θu,1 = Θv,1 = Θu,v = arccos(−1/3))
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Zwick’s RA algorithm for 2SAT

Add to SDP Q the restrictions

Xu · X1 + Xv · X1 + Xu · Xv ≥ −1, u, v ∈ V

This family of restrictions force that ZC ≤ 1 for every
clause C.
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Zwick’s RA algorithm for 2SAT

Add to SDP Q the restrictions

Xu · X1 + Xv · X1 + Xu · Xv ≥ −1, u, v ∈ V

This family of restrictions force that ZC ≤ 1 for every
clause C.

Change rounding. Two steps:

1. "Rotate" each vector Xu obtaining a new vector X ′
u

2. Apply GW rounding to X ′
u
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Rotation

Simple rotation: works if QOPT = 1 (decision problem)

∀u ∈ V ∪ {1}, X ′
u :=











X1 if Xu · X1 > 0

Xu if Xu · X1 = 0

−X1 if Xu · X1 < 0

Apply GW rounding to X ′
u, u ∈ V .
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Rotation

Simple rotation: works if QOPT = 1 (decision problem)

∀u ∈ V ∪ {1}, X ′
u :=











X1 if Xu · X1 > 0

Xu if Xu · X1 = 0

−X1 if Xu · X1 < 0

Apply GW rounding to X ′
u, u ∈ V .

Assume QOPT = 1. Then ZC ≤ 1, C ∈ I ⇒ ZC = 1, C ∈ I.
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Rotation

Simple rotation: works if QOPT = 1 (decision problem)

∀u ∈ V ∪ {1}, X ′
u :=











X1 if Xu · X1 > 0

Xu if Xu · X1 = 0

−X1 if Xu · X1 < 0

Apply GW rounding to X ′
u, u ∈ V .

Assume QOPT = 1. Then ZC ≤ 1, C ∈ I ⇒ ZC = 1, C ∈ I.

Fix C = u ∨ v. ZC = 1 implies
Xu · X1 + Xv · X1 + Xu · Xv = −1
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Rotation

Simple rotation: works if QOPT = 1 (decision problem)

∀u ∈ V ∪ {1}, X ′
u :=











X1 if Xu · X1 > 0

Xu if Xu · X1 = 0

−X1 if Xu · X1 < 0

Apply GW rounding to X ′
u, u ∈ V .

Assume QOPT = 1. Then ZC ≤ 1, C ∈ I ⇒ ZC = 1, C ∈ I.

Fix C = u ∨ v. ZC = 1 implies
Xu · X1 + Xv · X1 + Xu · Xv = −1

Then pC =
Θ′

u,1+Θ′

v,1+Θ′

u,v

2π = 1, Θ′
i,j := arccos(X ′

i, X
′
j)
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Rotation

Simple rotation: works if QOPT = 1 (decision problem)

∀u ∈ V ∪ {1}, X ′
u :=











X1 if Xu · X1 > 0

Xu if Xu · X1 = 0

−X1 if Xu · X1 < 0

Apply GW rounding to X ′
u, u ∈ V .

Assume QOPT = 1. Then ZC ≤ 1, C ∈ I ⇒ ZC = 1, C ∈ I.

Fix C = u ∨ v. ZC = 1 implies
Xu · X1 + Xv · X1 + Xu · Xv = −1

Then pC =
Θ′

u,1+Θ′

v,1+Θ′

u,v

2π = 1, Θ′
i,j := arccos(X ′

i, X
′
j)

However, the rounding is too insensitive if QOPT < 1
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General rotation. Let r : [0, π] → [0, π]. The rotation of Xu

(wrt. r), X ′
u, is obtained as follows:

If Θ is the angle formed by Xu and X1, then rotate Xu (in
the plane spawned by Xu and X1) until forms an angle of
r(Θ) with X1
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General rotation. Let r : [0, π] → [0, π]. The rotation of Xu

(wrt. r), X ′
u, is obtained as follows:

If Θ is the angle formed by Xu and X1, then rotate Xu (in
the plane spawned by Xu and X1) until forms an angle of
r(Θ) with X1

The simple rotation is when r is r0 where:

r0 =











0 if Θ < π/2

π/2 if Θ = π/2

π if Θ > π/2
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General rotation. Let r : [0, π] → [0, π]. The rotation of Xu

(wrt. r), X ′
u, is obtained as follows:

If Θ is the angle formed by Xu and X1, then rotate Xu (in
the plane spawned by Xu and X1) until forms an angle of
r(Θ) with X1

The simple rotation is when r is r0 where:

rǫ =











0 if Θ < π/2 − ǫ

π/2 + (π/2ǫ)(Θ − π/2) if π/2 − ǫ ≤ Θ ≤ π/2 + ǫ

π if Θ > π/2 + ǫ
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General rotation. Let r : [0, π] → [0, π]. The rotation of Xu

(wrt. r), X ′
u, is obtained as follows:

If Θ is the angle formed by Xu and X1, then rotate Xu (in
the plane spawned by Xu and X1) until forms an angle of
r(Θ) with X1

The simple rotation is when r is r0 where:

rǫ =











0 if Θ < π/2 − ǫ

π/2 + (π/2ǫ)(Θ − π/2) if π/2 − ǫ ≤ Θ ≤ π/2 + ǫ

π if Θ > π/2 + ǫ

Zwick proves that by using rǫ with ǫ = (1 − QOPT)1/3 one
obtains Exp[IS ] ≥ 1 − 5ǫ.
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Th: [D., Krokhin] If H is invariant under the dual
discriminator then MAX CSP(H) has a RA algorithm.

Dual discriminator is the ternary operation

m(x, y, z) =

{

x if x = y

z otherwise

Common generalization of 2SAT and Unique games.
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Th: [D., Krokhin] If H is invariant under the dual
discriminator then MAX CSP(H) has a RA algorithm.

Dual discriminator is the ternary operation

m(x, y, z) =

{

x if x = y

z otherwise

Common generalization of 2SAT and Unique games.

Proof: Assume D = {1, . . . , k}. Every relation inv. under m
can be pp-defined using relations of the following types:

{(i, π(i)) | i ∈ D}, where π : D → D is a bijection

D/{i}, i ∈ D

(i × D) ∪ (D × j), i, j ∈ D
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We use mainly Khot’s SDP relaxation for unique games

Let I be an instance of MAX CSP(H) with nodes V

Variables Xi
u, u ∈ V , i ∈ D.

(Intuitively, ‖Xi
u‖ = 1 means that u is set to i)

Restrictions

‖X1
u‖

2 + · · · + ‖Xk
u‖

2 = 1, u ∈ V

Xi
u · Xj

u = 0, u ∈ V, 1 ≤ i 6= j ≤ k

Xi
u · Xj

v ≥ 0, u, v ∈ V, 1 ≤ i, j ≤ k
∑

1≤i,j≤k Xi
u · Xj

v = 1, u, v ∈ V
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Goal function
∑

C∈I zC where zC is































∑

1≤i≤k Xi
u · X

π(i)
v if C = ((u, v), π)

1 − ‖Xi
u‖

2 if C = (u,D \ {i})

1 − Xi
u · Xj

v if C = ((u, v), (i × D) ∪ (D × j))

where Xi
u is a shortand for

∑

1≤j 6=i≤k Xj
u
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Rounding

Step 1: Set Y1 :=
∑

1≤i≤k Xi
u for some u ∈ V (invariant of

the choice of u)

Apply Zwick’s rounding with appropiate ǫ to Y i
u = 2Xi

u − Y1,
u ∈ V, i ∈ D (follows from the restrictions that ‖Y i

u‖ = 1)
obtaining ui ∈ {0, 1}, u ∈ V, i ∈ D.

For every u, if there exists exactly one i with ui = 1 then set
u to i otherwise leave u undefined.
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Rounding

Step 1: Set Y1 :=
∑

1≤i≤k Xi
u for some u ∈ V (invariant of

the choice of u)

Apply Zwick’s rounding with appropiate ǫ to Y i
u = 2Xi

u − Y1,
u ∈ V, i ∈ D (follows from the restrictions that ‖Y i

u‖ = 1)
obtaining ui ∈ {0, 1}, u ∈ V, i ∈ D.

For every u, if there exists exactly one i with ui = 1 then set
u to i otherwise leave u undefined.

Step 2: Apply Khot’s rounding to all undefined variables

One shows that step one satisfyies most constraints of type
2 or 3 and falsifies or partially assigns only a small fraction
of constraints of type 1.
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Mixed Constraints

In a mixed intance I constraints are divided in two sets:

Hard constraints that must be satisfied

Soft constraints that can be falsified.

Def: MIXED CSP(H) is the problem consisting in finding,
given a mixed instance I over H, an assignment s with Is

maximal where

Is =

{

0 if s falsifies some hard constraint
fraction of soft constraints satisfied by s otherwise
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Observation: If H has bounded width then
MAX CSP(H) ≤RA MIXED CSP(HORNr)

for some r > 0, where where HORNr is the boolean
structure containing of all horn clauses of arity up to r.

Proof: Let l = 3⌈arity(H)
2 ⌉ and let I be an instance

MAX CSP(H) with variable set V .

A partial assignment is any mapping p : U → D with U ⊆ V .

If p, q are partial assignments, p ⊆ q if dom(p) ⊆ dom(q) and
p and q coincide over dom(p).
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A (l− 1, l)-strategy K for I is a nonempty collection of partial
assignments of domain size at most l satisfying:

1. If q ∈ K and p ⊆ q then p ∈ K.

2. If p ∈ S and |dom(p)| < l then for every u ∈ V there
exists some q ∈ K with p ⊆ q and u ∈ dom(q).

3. If p ∈ K and C is a constraint in I whose scope is
entirely contained in dom(p) then p satisfies C

If H has bounded width and I has a (l − 1, l)-strategy then I
has a solution.
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The existence of a (l − 1, l)-strategy can be formulated as a
horn formula, I ′, by introducing one boolean variable Xp for
every p with |dom(p)| ≤ l stating "p is not in the strategy".

Mark every clause in I ′ arising from conditions (1) or (2) as
hard and every clause arising from condition (3) as soft.

Observe that the number of soft constraints of I ′ is in
[m,m · |D|l] where m is the number of constraints of I.

For every assignment s′ of I ′ let Ks′ be the set containing
precisely all those p such that Xp is false.

Robust Approximation of CSPs – p. 29/32



Algorithm for MAX CSP(H):

Let s′ be the assignment returned with input I ′ by the
hypothetical RA algorithm (say, with function f ) for
MIXED CSP(HORN).

Ks′ is an strategy for the subinstance J ⊆ I obtained by
removing all constraints associated to clauses violated by
s′.

Output a solution s of J (obtained by applying iteratively the
consistency algorithm)
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Algorithm for MAX CSP(H):

Let s′ be the assignment returned with input I ′ by the
hypothetical RA algorithm (say, with function f ) for
MIXED CSP(HORN).

Ks′ is an strategy for the subinstance J ⊆ I obtained by
removing all constraints associated to clauses violated by
s′.

Output a solution s of J (obtained by applying iteratively the
consistency algorithm)

We have

1− Is ≤ |D|k(1− I ′s′) ≤ |D|k(1− f(I ′OPT)) ≤ |D|k(1− f(IOPT))
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Open Problems

Does MIXED CSP(HORN) have a RA algorithm? Does
it have a K-approximation algorithm for some 0 < K?
More generally, determine, for every H, whether there is
a RA algorithm for MIXED CSP(H).

Consider more general polymorphisms. For example,
does MAX CSP(H) have a RA algorithm if H admits a
majority (near-unanimity) polymorphism?

Consider consistency algorithms more powerful than
1-minimality but still less powerfull than 3-minimality. For
example, is it true that if CSP(H) solvable by
peek-arc-consistency (or singleton arc-consistency)
then MAX CSP(H) has a RA algorithm?
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THANKS FOR YOUR ATTENTION!!!!
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