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Finitely related algebra

All algebras in this talk are finite and idempotent.

Definition
@ An algebra A is finitely related if Clo(A) = Pol(A) for some relational
structure A = (A; R1, ..., Rm).
@ A is n-ary related if the relations of A are at most n-ary

@ 2-ary related = binary related
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Absorption

Definition

A subset B C A is an absorbing subuniverse of an algebra A if B < A and
there exists an idempotent t € Clo(A) such that t(a1,a2,...,ax) € B
whenever all but one of the a;'s are in B. In that case we write B <A (or

t
B<A).
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Absorption

Definition

A subset B C A is an absorbing subuniverse of an algebra A if B < A and
there exists an idempotent t € Clo(A) such that t(a1,a2,...,ax) € B
whenever all but one of the a;'s are in B. In that case we write B <A (or

t
B<A).

Example: An (idempotent) algebra A has a near-unanimity term iff
{a} < A for every a € A.
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The result

Theorem (JB'11)

Let A be a finite, n-ary related algebra in an SD(N\) variety. If B <A, then
n t

there exist a (48|A| + 1)-ary term t € Clo(A) such that B < A.
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The result

Theorem (JB'11)

Let A be a finite, n-ary related algebra in an SD(A) variety. If B <A, then
n t

there exist a (48|A| + 1)-ary term t € Clo(A) such that B < A.

Our result relies *heavily* on the techniques developed for the proof of
the following theorem:

Theorem (Barto'09)

Every finite, finitely related algebra in a CD variety has a near unanimity
term operation.
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Strategy of the proof

@ A simple trick reduces the problem to binary related algebras: It
suffices to prove that for A a binary related SD(A) algebra and B <A

t
there exists a (48‘A‘ + 1)-ary term t such that B < A.
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suffices to prove that for A a binary related SD(A) algebra and B <A

t
there exists a (48‘A‘ + 1)-ary term t such that B < A.
@ We construct an instance of CSP(A) whose solutions are precisely
t
k-ary terms t such that B < A.

o If kis "big" (k > 48‘A|), the instance is consistent enough to have a
solution (Pigeonhole principle 4+ an algebraic lemma).
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Strategy of the proof

@ A simple trick reduces the problem to binary related algebras: It
suffices to prove that for A a binary related SD(A) algebra and B <A

t
there exists a (48‘A‘ + 1)-ary term t such that B < A.
@ We construct an instance of CSP(A) whose solutions are precisely
t
k-ary terms t such that B < A.

o If kis "big" (k > 48‘A|), the instance is consistent enough to have a
solution (Pigeonhole principle 4+ an algebraic lemma).

@ We need the Bounded width theorem; hence the assumption that A is
SD(A).
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Encoding absorption as a CSP

Let Clo(A, k) be the following instance of CSP(A):
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Encoding absorption as a CSP

Let Clo(A, k) be the following instance of CSP(A):
o variables: V = Ak
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Encoding absorption as a CSP

Let Clo(A, k) be the following instance of CSP(A):
o variables: V = Ak

o constraints: C = {((3,3), Rs%) : 3,3 € Ak}, where

Rsz = {(f(3),f(3")) : f € Clox(A)}
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Encoding absorption as a CSP

Let Clo(A, k) be the following instance of CSP(A):
o variables: V = Ak

o constraints: C = {((3,3), Rs%) : 3,3 € Ak}, where
Rsz = {(f(3),f(3")) : f € Clox(A)}

Clo(A, k) is (2,3)-consistent and its solutions are precisely the k-ary term
operations of A. (A is binary related!)
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Encoding absorption as a CSP

Let Clo(A, k) be the following instance of CSP(A):
o variables: V = Ak

o constraints: C = {((3,3), Rs%) : 3,3 € Ak}, where
Rsz = {(f(3),f(3")) : f € Clox(A)}

Clo(A, k) is (2,3)-consistent and its solutions are precisely the k-ary term
operations of A. (A is binary related!)

Let S = {((3),S5) : 3 € Ak}, where S; = B if 3 has at most one
coordinate outside B, S; = A else.
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Encoding absorption as a CSP

Let Clo(A, k) be the following instance of CSP(A):
o variables: V = Ak
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Rsz = {(f(3),f(3")) : f € Clox(A)}
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operations of A. (A is binary related!)

Let S = {((3),S5) : 3 € Ak}, where S; = B if 3 has at most one
coordinate outside B, S; = A else.

We construct the instance Abs(A, B, k) of CSP(A) by adding the S3's as
unary constraints:
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Encoding absorption as a CSP
Let Clo(A, k) be the following instance of CSP(A):

@ variables: V = Ak

o constraints: C = {((3,3), Rs%) : 3,3 € Ak}, where
Rsz = {(f(3),f(3")) : f € Clox(A)}

Clo(A, k) is (2,3)-consistent and its solutions are precisely the k-ary term
operations of A. (A is binary related!)

Let S = {((3),S5) : 3 € Ak}, where S; = B if 3 has at most one
coordinate outside B, S; = A else.

We construct the instance Abs(A, B, k) of CSP(A) by adding the S3's as
unary constraints:

@ variables: V = Ak

@ constraints: CUS
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Encoding absorption as a CSP

Let Clo(A, k) be the following instance of CSP(A):
o variables: V = Ak

o constraints: C = {((3,3), Rs%) : 3,3 € Ak}, where
Rsz = {(f(3),f(3")) : f € Clox(A)}

Clo(A, k) is (2,3)-consistent and its solutions are precisely the k-ary term
operations of A. (A is binary related!)

Let S = {((3),S5) : 3 € Ak}, where S; = B if 3 has at most one
coordinate outside B, S; = A else.

We construct the instance Abs(A, B, k) of CSP(A) by adding the S3's as
unary constraints:

@ variables: V = Ak

@ constraints: CUS
t
The solutions to Abs(A, B, k) are precisely k-ary t such that B < A.
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A useful fact about absorption

As B <A, the instance Abs(A, B, k) is a restriction of Clo(A, k) to
absorbing subpotatoes.
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A useful fact about absorption

As B <A, the instance Abs(A, B, k) is a restriction of Clo(A, k) to
absorbing subpotatoes. We like that!
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A useful fact about absorption

As B <A, the instance Abs(A, B, k) is a restriction of Clo(A, k) to
absorbing subpotatoes. We like that! The following is a standard
absorption technique (see the proof of BW theorem):

Lemma

Let P be a (2,3)-consistent instance of CSP of an SD(A) algebra and
S = {5« : x € V} a family of absorbing subuniverses. If every tree is
realizable inside the sets Sy, then P |s has a solution.
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A useful fact about absorption

As B <A, the instance Abs(A, B, k) is a restriction of Clo(A, k) to
absorbing subpotatoes. We like that! The following is a standard
absorption technique (see the proof of BW theorem):

Lemma

Let P be a (2,3)-consistent instance of CSP of an SD(A) algebra and
S = {5« : x € V} a family of absorbing subuniverses. If every tree is
realizable inside the sets Sy, then P |s has a solution.

Thus it is enough to prove that every tree is realizable inside the S3's.
Note that every tree with at most k — 1 vertices is realizable (by some
projection operation).
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The key step

The crucial step of the proof is to prove that realizing trees with 48"
vertices is enough:
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The key step

The crucial step of the proof is to prove that realizing trees with 48"
vertices is enough:

Lemma

Let P be (2,3)-consistent and S = {Sx : x € V'} a family of absorbing
subuniverses. If all trees with at most 48" vertices are realizable in P Is,
then all trees are realizable in P |s. (Here the algebra can be arbitrary.)
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The key step

The crucial step of the proof is to prove that realizing trees with 48"
vertices is enough:

Lemma

Let P be (2,3)-consistent and S = {Sx : x € V'} a family of absorbing
subuniverses. If all trees with at most 48" vertices are realizable in P Is,
then all trees are realizable in P |s. (Here the algebra can be arbitrary.)

Idea of proof:

@ Suppose for contradiction that there is a big tree which does not have
a realization. This tree has a long path.
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The key step

The crucial step of the proof is to prove that realizing trees with 48"
vertices is enough:

Lemma

Let P be (2,3)-consistent and S = {Sx : x € V'} a family of absorbing
subuniverses. If all trees with at most 48" vertices are realizable in P Is,
then all trees are realizable in P |s. (Here the algebra can be arbitrary.)

Idea of proof:

@ Suppose for contradiction that there is a big tree which does not have
a realization. This tree has a long path.

@ Use the Pigeonhole principle to find a certain configuration.
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The key step

The crucial step of the proof is to prove that realizing trees with 48"
vertices is enough:

Lemma

Let P be (2,3)-consistent and S = {Sx : x € V'} a family of absorbing
subuniverses. If all trees with at most 48" vertices are realizable in P Is,
then all trees are realizable in P |s. (Here the algebra can be arbitrary.)

Idea of proof:

@ Suppose for contradiction that there is a big tree which does not have
a realization. This tree has a long path.

@ Use the Pigeonhole principle to find a certain configuration.

@ Prove that this configuration contradicts the fact that Si's are
absorbing subuniverses.

Jakub Bulin (Charles Univ., Prague)  Absorption in finitely related SD(A) algebras Fields Institute 11 /14



Outline

@ Open problems

Jakub Bulin (Charles Univ., Prague)

Absorption in finitely related SD(A) algebras

[m]

=



Libor has some problems...

Jakub Bulin (Charles Univ., Prague)

Absorption in finitely related SD(A) algebras

[m]

=



Libor has some problems...

Problem

Given a finite relational structure A and a subset B C A, is it decidable if
B is an absorbing subuniverse?
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Libor has some problems...

Problem
Given a finite relational structure A and a subset B C A, is it decidable if
B is an absorbing subuniverse?

YES, if the algebra of polymorphisms of A is SD(A) (for example, if A is a
core and has bounded width).
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YES, if the algebra of polymorphisms of A is SD(A) (for example, if A is a
core and has bounded width).

Problem

Given a finite (finitely presented) algebra A and B C A, is it decidable if
B<A?
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Libor has some problems...

Problem
Given a finite relational structure A and a subset B C A, is it decidable if
B is an absorbing subuniverse?

YES, if the algebra of polymorphisms of A is SD(A) (for example, if A is a
core and has bounded width).

Problem

Given a finite (finitely presented) algebra A and B C A, is it decidable if
B<A?

Problem (This is my problem.)

Our proof provides an absorbing term of arity double exponential in the
size of A. Is there a better bound?
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