Absorption in finitely related $SD(\land)$ algebras has bounded arity

Jakub Bulín

Department of Algebra, Charles University in Prague

Workshop on Algebra and CSPs

Outline

- Introduction
- 2 The result
- Proof

Open problems

Finitely related algebra

All algebras in this talk are finite and idempotent.

Definition

- An algebra **A** is finitely related if $Clo(\mathbf{A}) = Pol(\mathbb{A})$ for some relational structure $\mathbb{A} = (A; R_1, \dots, R_m)$.
- **A** is *n*-ary related if the relations of \mathbb{A} are at most *n*-ary
- 2-ary related = binary related

Absorption

Definition

A subset $B \subseteq A$ is an absorbing subuniverse of an algebra \mathbf{A} if $B \leq \mathbf{A}$ and there exists an idempotent $t \in \operatorname{Clo}(\mathbf{A})$ such that $t(a_1, a_2, \dots, a_k) \in B$ whenever all but one of the a_i 's are in B. In that case we write $B \subseteq \mathbf{A}$ (or $B \subseteq \mathbf{A}$).

Example: An (idempotent) algebra **A** has a near-unanimity term iff $\{a\} \subseteq \mathbf{A}$ for every $a \in A$.

Absorption

Definition

A subset $B \subseteq A$ is an absorbing subuniverse of an algebra \mathbf{A} if $B \leq \mathbf{A}$ and there exists an idempotent $t \in \operatorname{Clo}(\mathbf{A})$ such that $t(a_1, a_2, \dots, a_k) \in B$ whenever all but one of the a_i 's are in B. In that case we write $B \subseteq \mathbf{A}$ (or $B \subseteq \mathbf{A}$).

Example: An (idempotent) algebra **A** has a near-unanimity term iff $\{a\} \subseteq \mathbf{A}$ for every $a \in A$.

Outline

- The result

5 / 14

The result

Theorem (JB'11)

Let **A** be a finite, n-ary related algebra in an $SD(\land)$ variety. If $B \leq \mathbf{A}$, then there exist a $(4^{8^{|A|^n}} + 1)$ -ary term $t \in Clo(\mathbf{A})$ such that $B \stackrel{t}{\leq} \mathbf{A}$.

Our result relies *heavily* on the techniques developed for the proof of the following theorem:

Theorem (Barto'09)

Every finite, finitely related algebra in a CD variety has a near unanimity term operation.

The result

Theorem (JB'11)

Let **A** be a finite, n-ary related algebra in an $SD(\land)$ variety. If $B \subseteq \mathbf{A}$, then there exist a $(4^{8^{|A|}^n} + 1)$ -ary term $t \in Clo(\mathbf{A})$ such that $B \stackrel{t}{\subseteq} \mathbf{A}$.

Our result relies *heavily* on the techniques developed for the proof of the following theorem:

Theorem (Barto'09)

Every finite, finitely related algebra in a CD variety has a near unanimity term operation.

Outline

- Introduction
- 2 The result
- Proof
- Open problems

- A simple trick reduces the problem to binary related algebras: It suffices to prove that for **A** a binary related $SD(\land)$ algebra and $B \unlhd \mathbf{A}$ there exists a $(4^{8^{|A|}} + 1)$ -ary term t such that $B \unlhd \mathbf{A}$.
- We construct an instance of $\mathrm{CSP}(\mathbf{A})$ whose solutions are precisely k-ary terms t such that $B \overset{t}{\leq} \mathbf{A}$.
- If k is "big" $(k > 4^{8^{|A|}})$, the instance is consistent enough to have a solution (Pigeonhole principle + an algebraic lemma).
- We need the Bounded width theorem; hence the assumption that $\bf A$ is $SD(\wedge)$.

- A simple trick reduces the problem to binary related algebras: It suffices to prove that for **A** a binary related $SD(\land)$ algebra and $B \unlhd \mathbf{A}$ there exists a $(4^{8^{|A|}}+1)$ -ary term t such that $B \unlhd \mathbf{A}$.
- We construct an instance of $CSP(\mathbf{A})$ whose solutions are precisely k-ary terms t such that $B \stackrel{t}{\leq} \mathbf{A}$.
- If k is "big" $(k > 4^{8^{|A|}})$, the instance is consistent enough to have a solution (Pigeonhole principle + an algebraic lemma).
- We need the Bounded width theorem; hence the assumption that ${\bf A}$ is ${\rm SD}(\wedge).$

- A simple trick reduces the problem to binary related algebras: It suffices to prove that for **A** a binary related $SD(\land)$ algebra and $B \unlhd \mathbf{A}$ there exists a $(4^{8^{|A|}}+1)$ -ary term t such that $B \unlhd \mathbf{A}$.
- We construct an instance of $CSP(\mathbf{A})$ whose solutions are precisely k-ary terms t such that $B \stackrel{t}{\leq} \mathbf{A}$.
- If k is "big" ($k > 4^{8^{|A|}}$), the instance is consistent enough to have a solution (Pigeonhole principle + an algebraic lemma).
- We need the Bounded width theorem; hence the assumption that $\bf A$ is $SD(\wedge)$.

- A simple trick reduces the problem to binary related algebras: It suffices to prove that for **A** a binary related $SD(\land)$ algebra and $B \subseteq \mathbf{A}$ there exists a $(4^{8^{|A|}} + 1)$ -ary term t such that $B \stackrel{t}{\triangleleft} \mathbf{A}$.
- \bullet We construct an instance of CSP(A) whose solutions are precisely k-ary terms t such that $B \stackrel{\iota}{\lhd} \mathbf{A}$.
- If k is "big" $(k > 4^{8^{|A|}})$, the instance is consistent enough to have a solution (Pigeonhole principle + an algebraic lemma).
- We need the Bounded width theorem; hence the assumption that A is $SD(\wedge)$.

Let $Clo(\mathbf{A}, k)$ be the following instance of $CSP(\mathbf{A})$:

- variables: $V = A^k$
- constraints: $C = \{((\bar{a}, \bar{a}'), R_{\bar{a}, \bar{a}'}) : \bar{a}, \bar{a}' \in A^k\}$, where

$$R_{\overline{\mathbf{a}},\overline{\mathbf{a}}'} = \{ (f(\overline{\mathbf{a}}), f(\overline{\mathbf{a}}')) : f \in \mathrm{Clo}_k(\mathbf{A}) \}$$

 $Clo(\mathbf{A}, k)$ is (2,3)-consistent and its solutions are precisely the k-ary term operations of \mathbf{A} . (\mathbf{A} is binary related!)

Let $S = \{((\bar{a}), S_{\bar{a}}) : \bar{a} \in A^k\}$, where $S_{\bar{a}} = B$ if \bar{a} has at most one coordinate outside B, $S_{\bar{a}} = A$ else.

We construct the instance $\mathrm{Abs}(\mathbf{A},B,k)$ of $\mathrm{CSP}(\mathbf{A})$ by adding the $S_{\bar{a}}$'s as unary constraints:

- variables: $V = A^k$
- constraints: $C \cup S$

The solutions to $Abs(\mathbf{A}, B, k)$ are precisely k-ary t such that $B \subseteq \mathbf{A}$.

Let $Clo(\mathbf{A}, k)$ be the following instance of $CSP(\mathbf{A})$:

- variables: $V = A^k$
- constraints: $C = \{((\bar{a}, \bar{a}'), R_{\bar{a}, \bar{a}'}) : \bar{a}, \bar{a}' \in A^k\}$, where

$$R_{\overline{\mathbf{a}},\overline{\mathbf{a}}'} = \{ (f(\overline{\mathbf{a}}), f(\overline{\mathbf{a}}')) : f \in \mathrm{Clo}_k(\mathbf{A}) \}$$

 $Clo(\mathbf{A}, k)$ is (2,3)-consistent and its solutions are precisely the k-ary term operations of \mathbf{A} . (\mathbf{A} is binary related!)

Let $S = \{((\bar{a}), S_{\bar{a}}) : \bar{a} \in A^k\}$, where $S_{\bar{a}} = B$ if \bar{a} has at most one coordinate outside B, $S_{\bar{a}} = A$ else.

We construct the instance $\mathrm{Abs}(\mathbf{A},B,k)$ of $\mathrm{CSP}(\mathbf{A})$ by adding the $S_{\bar{a}}$'s as unary constraints:

- variables: $V = A^k$
- constraints: $C \cup S$

The solutions to $Abs(\mathbf{A}, B, k)$ are precisely k-ary t such that $B \stackrel{\tau}{\leq} \mathbf{A}$.

Let $Clo(\mathbf{A}, k)$ be the following instance of $CSP(\mathbf{A})$:

- variables: $V = A^k$
- constraints: $C = \{((\bar{a}, \bar{a}'), R_{\bar{a}, \bar{a}'}) : \bar{a}, \bar{a}' \in A^k\}$, where

$$R_{\bar{\mathbf{a}},\bar{\mathbf{a}}'} = \{(f(\bar{\mathbf{a}}),f(\bar{\mathbf{a}}')): f \in \mathrm{Clo}_k(\mathbf{A})\}$$

 $Clo(\mathbf{A}, k)$ is (2,3)-consistent and its solutions are precisely the k-ary term operations of \mathbf{A} . (\mathbf{A} is binary related!)

Let $S = \{((\bar{a}), S_{\bar{a}}) : \bar{a} \in A^k\}$, where $S_{\bar{a}} = B$ if \bar{a} has at most one coordinate outside B, $S_{\bar{a}} = A$ else.

We construct the instance $\mathrm{Abs}(\mathbf{A},B,k)$ of $\mathrm{CSP}(\mathbf{A})$ by adding the $S_{\bar{a}}$'s as unary constraints:

- variables: $V = A^k$
- constraints: $C \cup S$

The solutions to $Abs(\mathbf{A}, B, k)$ are precisely k-ary t such that $B \subseteq \mathbf{A}$.

Let $Clo(\mathbf{A}, k)$ be the following instance of $CSP(\mathbf{A})$:

- variables: $V = A^k$
- constraints: $C = \{((\bar{a}, \bar{a}'), R_{\bar{a}, \bar{a}'}) : \bar{a}, \bar{a}' \in A^k\}$, where

$$R_{\overline{\mathbf{a}},\overline{\mathbf{a}}'} = \{(f(\overline{\mathbf{a}}), f(\overline{\mathbf{a}}')) : f \in \mathrm{Clo}_k(\mathbf{A})\}$$

 $Clo(\mathbf{A}, k)$ is (2,3)-consistent and its solutions are precisely the k-ary term operations of \mathbf{A} . (\mathbf{A} is binary related!)

Let $S = \{((\bar{a}), S_{\bar{a}}) : \bar{a} \in A^k\}$, where $S_{\bar{a}} = B$ if \bar{a} has at most one coordinate outside B, $S_{\bar{a}} = A$ else.

We construct the instance $\mathrm{Abs}(\mathbf{A},B,k)$ of $\mathrm{CSP}(\mathbf{A})$ by adding the $S_{\bar{a}}$'s as unary constraints:

- variables: $V = A^k$
- constraints: $C \cup S$

The solutions to $Abs(\mathbf{A}, B, k)$ are precisely k-ary t such that $B \triangleleft \mathbf{A}$.

Let $Clo(\mathbf{A}, k)$ be the following instance of $CSP(\mathbf{A})$:

- variables: $V = A^k$
- constraints: $C = \{((\bar{a}, \bar{a}'), R_{\bar{a}, \bar{a}'}) : \bar{a}, \bar{a}' \in A^k\}$, where

$$R_{\bar{\mathbf{a}},\bar{\mathbf{a}}'} = \{(f(\bar{\mathbf{a}}),f(\bar{\mathbf{a}}')): f \in \mathrm{Clo}_k(\mathbf{A})\}$$

 $Clo(\mathbf{A}, k)$ is (2,3)-consistent and its solutions are precisely the k-ary term operations of \mathbf{A} . (\mathbf{A} is binary related!)

Let $S = \{((\bar{a}), S_{\bar{a}}) : \bar{a} \in A^k\}$, where $S_{\bar{a}} = B$ if \bar{a} has at most one coordinate outside B, $S_{\bar{a}} = A$ else.

We construct the instance $\mathrm{Abs}(\mathbf{A},B,k)$ of $\mathrm{CSP}(\mathbf{A})$ by adding the $S_{\bar{a}}$'s as unary constraints:

- variables: $V = A^k$
- constraints: $C \cup S$

The solutions to $Abs(\mathbf{A}, B, k)$ are precisely k-ary t such that $B \triangleleft \mathbf{A}$.

Let $Clo(\mathbf{A}, k)$ be the following instance of $CSP(\mathbf{A})$:

- variables: $V = A^k$
- constraints: $C = \{((\bar{a}, \bar{a}'), R_{\bar{a}, \bar{a}'}) : \bar{a}, \bar{a}' \in A^k\}$, where

$$R_{\bar{\mathbf{a}},\bar{\mathbf{a}}'} = \{(f(\bar{\mathbf{a}}),f(\bar{\mathbf{a}}')): f \in \mathrm{Clo}_k(\mathbf{A})\}$$

 $Clo(\mathbf{A}, k)$ is (2,3)-consistent and its solutions are precisely the k-ary term operations of \mathbf{A} . (\mathbf{A} is binary related!)

Let $S = \{((\bar{a}), S_{\bar{a}}) : \bar{a} \in A^k\}$, where $S_{\bar{a}} = B$ if \bar{a} has at most one coordinate outside B, $S_{\bar{a}} = A$ else.

We construct the instance $Abs(\mathbf{A}, B, k)$ of $CSP(\mathbf{A})$ by adding the $S_{\bar{a}}$'s as unary constraints:

- variables: $V = A^k$
- constraints: $C \cup S$

The solutions to $Abs(\mathbf{A}, B, k)$ are precisely k-ary t such that $B \leq \mathbf{A}$.

Let $Clo(\mathbf{A}, k)$ be the following instance of $CSP(\mathbf{A})$:

- variables: $V = A^k$
- constraints: $C = \{((\bar{a}, \bar{a}'), R_{\bar{a}, \bar{a}'}) : \bar{a}, \bar{a}' \in A^k\}$, where

$$R_{\bar{\mathbf{a}},\bar{\mathbf{a}}'} = \{(f(\bar{\mathbf{a}}),f(\bar{\mathbf{a}}')): f \in \mathrm{Clo}_k(\mathbf{A})\}$$

 $Clo(\mathbf{A}, k)$ is (2,3)-consistent and its solutions are precisely the k-ary term operations of \mathbf{A} . (\mathbf{A} is binary related!)

Let $S = \{((\bar{a}), S_{\bar{a}}) : \bar{a} \in A^k\}$, where $S_{\bar{a}} = B$ if \bar{a} has at most one coordinate outside B, $S_{\bar{a}} = A$ else.

We construct the instance $\mathrm{Abs}(\mathbf{A},B,k)$ of $\mathrm{CSP}(\mathbf{A})$ by adding the $S_{\bar{a}}$'s as unary constraints:

- variables: $V = A^k$
- constraints: $C \cup S$

The solutions to $Abs(\mathbf{A}, B, k)$ are precisely k-ary t such that $B \overset{\triangleleft}{\searrow} \mathbf{A}$.

Let $Clo(\mathbf{A}, k)$ be the following instance of $CSP(\mathbf{A})$:

- variables: $V = A^k$
- constraints: $C = \{((\bar{a}, \bar{a}'), R_{\bar{a}, \bar{a}'}) : \bar{a}, \bar{a}' \in A^k\}$, where

$$R_{\bar{\mathbf{a}},\bar{\mathbf{a}}'} = \{(f(\bar{\mathbf{a}}),f(\bar{\mathbf{a}}')): f \in \mathrm{Clo}_k(\mathbf{A})\}$$

 $Clo(\mathbf{A}, k)$ is (2,3)-consistent and its solutions are precisely the k-ary term operations of \mathbf{A} . (\mathbf{A} is binary related!)

Let $S = \{((\bar{a}), S_{\bar{a}}) : \bar{a} \in A^k\}$, where $S_{\bar{a}} = B$ if \bar{a} has at most one coordinate outside B, $S_{\bar{a}} = A$ else.

We construct the instance $\mathrm{Abs}(\mathbf{A},B,k)$ of $\mathrm{CSP}(\mathbf{A})$ by adding the $S_{\bar{a}}$'s as unary constraints:

- variables: $V = A^k$
- ullet constraints: $\mathcal{C} \cup \mathcal{S}$

The solutions to $Abs(\mathbf{A}, B, k)$ are precisely k-ary t such that $B \leq \mathbf{A}$.

Let $Clo(\mathbf{A}, k)$ be the following instance of $CSP(\mathbf{A})$:

- variables: $V = A^k$
- constraints: $C = \{((\bar{a}, \bar{a}'), R_{\bar{a}, \bar{a}'}) : \bar{a}, \bar{a}' \in A^k\}$, where

$$R_{\bar{\mathbf{a}},\bar{\mathbf{a}}'} = \{(f(\bar{\mathbf{a}}),f(\bar{\mathbf{a}}')): f \in \mathrm{Clo}_k(\mathbf{A})\}$$

 $Clo(\mathbf{A}, k)$ is (2,3)-consistent and its solutions are precisely the k-ary term operations of \mathbf{A} . (\mathbf{A} is binary related!)

Let $S = \{((\bar{a}), S_{\bar{a}}) : \bar{a} \in A^k\}$, where $S_{\bar{a}} = B$ if \bar{a} has at most one coordinate outside B, $S_{\bar{a}} = A$ else.

We construct the instance $\mathrm{Abs}(\mathbf{A},B,k)$ of $\mathrm{CSP}(\mathbf{A})$ by adding the $S_{\bar{a}}$'s as unary constraints:

- variables: $V = A^k$
- constraints: $\mathcal{C} \cup \mathcal{S}$

The solutions to $Abs(\mathbf{A}, B, k)$ are precisely k-ary t such that $B \subseteq \mathbf{A}$.

As $B \subseteq A$, the instance Abs(A, B, k) is a restriction of Clo(A, k) to absorbing subpotatoes. We like that! The following is a standard absorption technique (see the proof of BW theorem):

Lemma

Let \mathcal{P} be a (2,3)-consistent instance of CSP of an $SD(\land)$ algebra and $\mathcal{S} = \{S_x : x \in V\}$ a family of absorbing subuniverses. If every tree is realizable inside the sets S_x , then $\mathcal{P} \upharpoonright_{\mathcal{S}}$ has a solution.

As $B \subseteq A$, the instance Abs(A, B, k) is a restriction of Clo(A, k) to absorbing subpotatoes. We like that! The following is a standard absorption technique (see the proof of BW theorem):

Lemma

Let \mathcal{P} be a (2,3)-consistent instance of CSP of an $SD(\land)$ algebra and $\mathcal{S} = \{S_x : x \in V\}$ a family of absorbing subuniverses. If every tree is realizable inside the sets S_x , then $\mathcal{P} \upharpoonright_{\mathcal{S}}$ has a solution.

As $B \subseteq A$, the instance Abs(A, B, k) is a restriction of Clo(A, k) to absorbing subpotatoes. We like that! The following is a standard absorption technique (see the proof of BW theorem):

Lemma

Let \mathcal{P} be a (2,3)-consistent instance of CSP of an $SD(\land)$ algebra and $\mathcal{S} = \{S_x : x \in V\}$ a family of absorbing subuniverses. If every tree is realizable inside the sets S_x , then $\mathcal{P} \upharpoonright_{\mathcal{S}}$ has a solution.

As $B \subseteq A$, the instance Abs(A, B, k) is a restriction of Clo(A, k) to absorbing subpotatoes. We like that! The following is a standard absorption technique (see the proof of BW theorem):

Lemma

Let \mathcal{P} be a (2,3)-consistent instance of CSP of an $SD(\land)$ algebra and $\mathcal{S} = \{S_x : x \in V\}$ a family of absorbing subuniverses. If every tree is realizable inside the sets S_x , then $\mathcal{P} \upharpoonright_{\mathcal{S}}$ has a solution.

The crucial step of the proof is to prove that realizing trees with $4^{8^{|A|}}$ vertices is enough:

Lemma

Let $\mathcal P$ be (2,3)-consistent and $\mathcal S=\{S_x:x\in V\}$ a family of absorbing subuniverses. If all trees with at most $4^{8^{|A|}}$ vertices are realizable in $\mathcal P\upharpoonright_{\mathcal S}$, then all trees are realizable in $\mathcal P\upharpoonright_{\mathcal S}$. (Here the algebra can be arbitrary.)

- Suppose for contradiction that there is a big tree which does not have a realization. This tree has a long path.
- Use the Pigeonhole principle to find a certain configuration.
- Prove that this configuration contradicts the fact that S_x 's are absorbing subuniverses.

The crucial step of the proof is to prove that realizing trees with $4^{8^{|A|}}$ vertices is enough:

Lemma

Let $\mathcal P$ be (2,3)-consistent and $\mathcal S=\{S_x:x\in V\}$ a family of absorbing subuniverses. If all trees with at most $4^{8^{|A|}}$ vertices are realizable in $\mathcal P\upharpoonright_{\mathcal S}$, then all trees are realizable in $\mathcal P\upharpoonright_{\mathcal S}$. (Here the algebra can be arbitrary.)

- Suppose for contradiction that there is a big tree which does not have a realization. This tree has a long path.
- Use the Pigeonhole principle to find a certain configuration.
- Prove that this configuration contradicts the fact that S_x 's are absorbing subuniverses.

The crucial step of the proof is to prove that realizing trees with $4^{8^{|A|}}$ vertices is enough:

Lemma

Let $\mathcal P$ be (2,3)-consistent and $\mathcal S=\{S_x:x\in V\}$ a family of absorbing subuniverses. If all trees with at most $4^{8^{|A|}}$ vertices are realizable in $\mathcal P\upharpoonright_{\mathcal S}$, then all trees are realizable in $\mathcal P\upharpoonright_{\mathcal S}$. (Here the algebra can be arbitrary.)

- Suppose for contradiction that there is a big tree which does not have a realization. This tree has a long path.
- Use the Pigeonhole principle to find a certain configuration.
- Prove that this configuration contradicts the fact that S_x 's are absorbing subuniverses.

The crucial step of the proof is to prove that realizing trees with $4^{8^{|A|}}$ vertices is enough:

Lemma

Let $\mathcal P$ be (2,3)-consistent and $\mathcal S=\{S_x:x\in V\}$ a family of absorbing subuniverses. If all trees with at most $4^{8^{|A|}}$ vertices are realizable in $\mathcal P\upharpoonright_{\mathcal S}$, then all trees are realizable in $\mathcal P\upharpoonright_{\mathcal S}$. (Here the algebra can be arbitrary.)

- Suppose for contradiction that there is a big tree which does not have a realization. This tree has a long path.
- Use the Pigeonhole principle to find a certain configuration.
- Prove that this configuration contradicts the fact that S_x 's are absorbing subuniverses.

The crucial step of the proof is to prove that realizing trees with $4^{8^{|A|}}$ vertices is enough:

Lemma

Let $\mathcal P$ be (2,3)-consistent and $\mathcal S=\{S_x:x\in V\}$ a family of absorbing subuniverses. If all trees with at most $4^{8^{|A|}}$ vertices are realizable in $\mathcal P\upharpoonright_{\mathcal S}$, then all trees are realizable in $\mathcal P\upharpoonright_{\mathcal S}$. (Here the algebra can be arbitrary.)

- Suppose for contradiction that there is a big tree which does not have a realization. This tree has a long path.
- Use the Pigeonhole principle to find a certain configuration.
- Prove that this configuration contradicts the fact that S_x 's are absorbing subuniverses.

Outline

Introduction

2 The result

- 3 Proof
- Open problems

Given a finite (finitely presented) algebra **A** and $B \subseteq A$, is it decidable if

size of A. Is there a better bound?

Problem

Given a finite relational structure \mathbb{A} and a subset $B \subseteq A$, is it decidable if B is an absorbing subuniverse?

YES, if the algebra of polymorphisms of \mathbb{A} is $SD(\wedge)$ (for example, if \mathbb{A} is a core and has bounded width).

Problem

Given a finite (finitely presented) algebra **A** and $B \subseteq A$, is it decidable if $B \unlhd \mathbf{A}$?

Problem (This is my problem.)

Problem

Given a finite relational structure \mathbb{A} and a subset $B \subseteq A$, is it decidable if B is an absorbing subuniverse?

YES, if the algebra of polymorphisms of \mathbb{A} is SD(\wedge) (for example, if \mathbb{A} is a core and has bounded width).

Problem

Given a finite (finitely presented) algebra **A** and $B \subseteq A$, is it decidable if $B \unlhd \mathbf{A}$?

Problem (This is my problem.)

Problem

Given a finite relational structure \mathbb{A} and a subset $B \subseteq A$, is it decidable if B is an absorbing subuniverse?

YES, if the algebra of polymorphisms of \mathbb{A} is SD(\wedge) (for example, if \mathbb{A} is a core and has bounded width).

Problem

Given a finite (finitely presented) algebra **A** and $B \subseteq A$, is it decidable if $B \subseteq A$?

Problem (This is my problem.)

Problem

Given a finite relational structure \mathbb{A} and a subset $B \subseteq A$, is it decidable if B is an absorbing subuniverse?

YES, if the algebra of polymorphisms of \mathbb{A} is SD(\wedge) (for example, if \mathbb{A} is a core and has bounded width).

Problem

Given a finite (finitely presented) algebra **A** and $B \subseteq A$, is it decidable if $B \triangleleft A$?

Problem (This is my problem.)

Thanks

Thank you for your attention!