Conservative Dichotomy Revisited

Andrei A. Bulatov Simon Fraser University

Conservative CSP

Definition 1:

Instance: A triple $(V, \mathcal{L}, \mathcal{C})$, where V is a set of variables, \mathcal{C} is a set of constraints, and \mathcal{L} is a set of lists L_v for each $v \in V$ Question: Is there a solution ϕ such that $\phi(v) \in L_v$ for every $v \in V$

Definition 2:

 $\mathsf{CSP}(\Gamma)$ where Γ contains all the unary relations

Definition 3:

 $CSP(\mathbb{A}) \mbox{ where every operation of } \mathbb{A} \mbox{ is conservative } (f(x_1,\ldots,x_n) \in \{x_1,\ldots,x_n\})$

Old Dichotomy

2003/2011 paper, about 80 pages

What has happened over the last 8 years:

- Generalized Majority-Minority algorithm (Dalmau, 2006)
- Maroti's retraction (Maroti, this morning)
- Absorbing sets (Barto/Kozik, 2010)

Conservative Algebras: Edges

If CSP(A) is poly time, every 2-element subalgebra of A must have one of the Schaefer's operations: semilattice, majority, or affine

semilattice operation majority operation, no semilattice affine operation, no semilattice or majority

Edge Coloured Graphs

Theorem (B. 2003) CSP(A) for a conservative A is poly time iff for any 2-element $B \subseteq A$ there is $f \in Term(A)$, which is affine, majority, or semilattice; otherwise CSP(A) is NP-complete.

Edge Coloured Graphs II

Lemma

There are $f,g,h \in Term(A)$ such that f is semilattice on every semilattice edge, g is majority on every majority edge, and h is affine on every affine edge.

Extra conditions:

- f(x,y) = x on every majority edge
- g(x,y,z) = x on every affine edge
- h(x,y,z) = x on every majority edge

Edge Coloured Graphs III

As semilattice operation induces an order, red edges are directed Will use $\,\cdot\,$ instead of f

Graphs of Relations

Sometimes we use more general graphs: G(A) where A is not conservative, but a subdirect product of conservative algebras.

- G(A) is constructed in the same way, edges are 2-element subalgeras.
- It is not complete, but any subalgebra induces a connected subgraph.
- All results and proofs remain the same with only minor tweaks

AS-Components

Let A be a conservative algebra

- $B \subseteq A$ is called an as-component (affine-semilattice) if it is minimal with respect to the property:
 - there is no affine or semilattice (directed) edge in ${\cal G}({\rm A})$ sticking out of B

The remaining edges are majority

Reductions

We use two types of reductions:

- As-components exclusion
- Maroti's retractions

Linked Relations

Let $R \leq A \times B$.

 λ_A is a congruence on A defined as the transitive closure of the relation {(a,b) | (a,c),(b,c) $\in \mathbb{R}$ for some c}; λ_B is defined on B in the same way

R is linked if λ_A , λ_B are total relations

Binary Rectangularity

Binary Rectangularity Lemma

Let $R \le A \times B$ be linked, and let A', B' be as-components of A and B, respectively, such that $(a,b) \in R$ for some $a \in A'$ and $b \in B'$. Then $A' \times B' \subseteq R$.

The Connectivity Lemma

Connectivity Lemma

Let $R \le A_1 \times ... \times A_n$, and let A'_i be an as-component of A_i , $i \in [n]$, such that $(a_1, ..., a_n)$ for some $a_i \in A'_i$, $i \in [n]$. Then $R' = R \cap (A'_1 \times ... \times A'_n)$ is a subdirect product of the A'_i , and R' is an as-component of R.

Strands

Let $R \le A_1 \times ... \times A_n$ let $A_i \subseteq A_i, A_j \subseteq A_j$ be as-components

Positions i and j are A_i, A_j -related if for any $(a_1, ..., a_k) \in \mathbb{R}$ $a_i \in A_i$ iff $a_j \in A_j$

$$\begin{split} I &\in \{1, \dots, k\} \text{ is a strand} \\ \text{w.r.t. as-components} \\ A_1, \dots, A_k \text{ if any } i, j \in I \text{ are} \\ A_i, A_j \text{-related} \end{split}$$

Rectangularity

Rectangularity Lemma

Let $R \leq A_1 \times ... \times A_n$ and $A_1,...,A_k$ as-components such that $R \cap (A_1 \times ... \times A_k) \neq \emptyset$. Let also $I_1,...,I_k$ be the partition of $\{1,...,n\}$ into strands w.r.t. $A_1,...,A_s$ and $R_i = pr_{I_i}R \cap \prod_{j \in I_i} A_j$. Then $R_1 \times ... \times R_s \subseteq R$.

Rectangularity: to Binary Relations

Let $R \le A_1 \times ... \times A_n$ and $A_1, ..., A_n$ be as-components such that there is $(a_1, ..., a_n) \in R$ with $a_i \in A'_i$ Suppose 1 and n belong to different strands. Then there are $(a,b),(a',b') \in pr_{1,n} R$ with $a,a' \in A'_1$, $b \in A'_n$, $b' \in A_n - A'_n$.

Take
$$(a_1, \dots, a_n), (b_1, \dots, b_n) \in R$$

with $a_1 = a, b_1 = a', a_n = b, b_n = b'$
Let $a_i \in A'_i$ for $i \in [m]$ and
 $a_i \in A_i - A'_i$ otherwise
Consider R as a binary relation on
 $pr_{[m]}R$ and $pr_{\{m+1,\dots,n\}}R$

Rectangularity: Binary Relations

Let $R \le A \times B$, and A',B' as components of A,B such that there are $(a,b),(a',b') \in R$ with $a,a' \in A'$, $b \in B'$, $b' \in B - B'$. We prove that the pairs can be chosen such that $(a',b) \in R$. There is a sequence in R

Since bb' is a majority or semilattice edge, either

$$a'_{b} = a'_{b} \cdot a'_{b'} \in R$$
 or $a'_{b} = h(a, a, a'_{b}) \in R$

Rectangularity: Congruences of AS-Components

Let A' be an as-component of A, and λ a congruence such that $(a,b) \in \lambda$ for some $a \in A'$ and $b \in A - A'$. Then A' is in a λ -block.

If λ is nontrivial on A', choose $c \in A'$ with (a,c) not in λ and such that ca is either semilattice or affine. Since $b \in A - A'$, bc is either semilattice or majority.

Then $(b \cdot c, b) \in \lambda$, so $b \cdot c = b$, and bc is majority.

Then
$$a = g(a, c, c) \in \lambda$$

Rectangularity: Binary Relations II

- Let $R \le A \times B$, and A',B' as-components of A,B such that the coordinate positions of R are not A',B'-related. W.I.o.g. there are $(a,b),(a,b') \in R$ with $a \in A'$, $b \in B'$, $b' \in B - B'$.

- Let λ be the link congruence on B. B' is inside a $\lambda\text{-block}.$

- Therefore if R' denotes the restriction of R on the link congruences blocks containing A' and B', R' is linked.

- By the Binary Rectangularity Lemma $A' \times B' \subseteq R$

AS-Components Exclusion

- 1. find as-components $A_v, v \in V$, such that for any $v, w \in V$ as-components A_v, A_w are consistent
- 2. find the strands
- 3. for each strand W solve the problem restricted to W and $A_w, w \in W$
- if every such problem has a solution, by the Rectangularity Lemma any combination of such solutions gives a solution to the problem
- 5. otherwise remove elements of the failed as-components

Finding Strands and Components

2. To find a strand take a variable v and an as-component A of A_v and find all variables w and as-components B of A_w such that v,w are A,B-related 1.

Chinese Remainder Theorem

Let $R \leq A_1 \times \ldots \times A_n$ and let A'_1, \ldots, A'_n be as-components of A_1, \ldots, A_n such that for any $i, j \in$ $\{1, \ldots, n\}$ there is a tuple $(a_1, \ldots, a_k) \in R$ such that $a_i \in A'_i, a_j \in A'_j$. Then $R \cap (A'_1 \times \ldots \times A'_n)$ is a sudirect product of A'_1, \ldots, A'_n

Maroti's Retractions

- Let \boldsymbol{a} be a class of algebras of similar type closed under taking subalgebras and retracts via idempotent unary polynomials. Let $A \in \boldsymbol{a}$ and f a binary term operation of A such that
- a. f(x,f(x,y)) = f(x,y);
- b. for each $a \in A$ the map $x \mapsto f(x,a)$ is not surjective
- c. the set C of $a \in A$ such that $x \to f(x,a)$ is surjective generates a proper subalgebra of A
- Then CSP(a) is poly time reducible to $CSP(a \{A\})$.

Reductions II

- a. $\mathbf{x} \cdot (\mathbf{x} \cdot \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
- b. If $a \in A$ is such that $x \rightarrow a \cdot x$ is surjective, then $a \cdot x = x$

a does not belong to any as-component, and we can use ascomponents exclusion

Reductions III

c. If $x \to x \cdot a$ is surjective for each a, then $x \cdot a = x$, and A has no semilattice edges.

An operation m(x,y,z) on A is called Generalized Majority Minority if for any $a,b \in A$, either m(x,x,y) = m(x,y,x) = m(y,x,x) = x for $x,y \in \{a,b\}$, or m(x,x,y) = m(y,x,x) = yOperation g(h(x,y,z),y,z) is majority on each majority edge, and is affine on each affine edge

Then there is a ternary GMM operation on A.

Question

Are as-components and minimal absorbing subuniverses the same??