Conservative Dichotomy Revisited

Andrei A. Bulatov
Simon Fraser University

Conservative CSP

Definition 1:

Instance: A triple ($\mathrm{V}, \mathcal{L}, \mathcal{C}$), where V is a set of variables, \boldsymbol{e} is a set of constraints, and \mathcal{L} is a set of lists L_{v} for each $v \in V$
Question: Is there a solution φ such that $\varphi(v) \in L_{v}$ for every $v \in V$

Definition 2:

$\operatorname{CSP}(\Gamma)$ where Γ contains all the unary relations

Definition 3:

$\operatorname{CSP}(\mathrm{A})$ where every operation of A is conservative $\left(f\left(x_{1}, \ldots, x_{n}\right) \in\left\{x_{1}, \ldots, x_{n}\right\}\right)$

Old Dichotomy

2003/2011 paper, about 80 pages
What has happened over the last 8 years:

- Generalized Majority-Minority algorithm (Dalmau, 2006)
- Maroti's retraction (Maroti, this morning)
- Absorbing sets (Barto/Kozik, 2010)

Conservative Algebras: Edges

If $\operatorname{CSP}(\mathrm{A})$ is poly time, every 2-element subalgebra of A must have one of the Schaefer's operations: semilattice, majority, or affine

- semilattice operation
\qquad majority operation, no semilattice
affine operation, no semilattice or majority

Edge Coloured Graphs

G(A):

Theorem (B. 2003)
$\operatorname{CSP}(\mathrm{A})$ for a conservative A is poly time iff for any 2-element $B \subseteq A$ there is $f \in \operatorname{Term}(A)$, which is affine, majority, or semilattice; otherwise CSP(A) is NP-complete.

Edge Coloured Graphs II

Lemma

There are $f, g, h \in \operatorname{Term}(A)$ such that f is semilattice on every semilattice edge, g is majority on every majority edge, and h is affine on every affine edge.

Extra conditions:

- $f(x, y)=x$ on every majority edge
- $g(x, y, z)=x$ on every affine edge
- $h(x, y, z)=x$ on every majority edge

Edge Coloured Graphs III

G(A):

As semilattice operation induces an order, red edges are directed Will use . instead of f

Graphs of Relations

Sometimes we use more general graphs: $G(A)$ where A is not conservative, but a subdirect product of conservative algebras.

- $G(A)$ is constructed in the same way, edges are 2-element subalgeras.
- It is not complete, but any subalgebra induces a connected subgraph.
- All results and proofs remain the same with only minor tweaks

AS-Components

Let A be a conservative algebra
$\mathrm{B} \subseteq \mathrm{A}$ is called an as-component (affine-semilattice) if it is minimal with respect to the property:
there is no affine or semilattice (directed) edge in $G(A)$ sticking out of B

The remaining edges are majority

Reductions

We use two types of reductions:

- As-components exclusion
- Maroti's retractions

Linked Relations

Let $R \leq A \times B$.
λ_{A} is a congruence on A defined as the transitive closure of the relation $\{(a, b) \mid(a, c),(b, c) \in R$ for some $c\} ;$
λ_{B} is defined on B in the same way

R is linked if $\lambda_{\mathrm{A}}, \lambda_{\mathrm{B}}$ are total relations

Binary Rectangularity

Binary Rectangularity Lemma

Let $R \leq A \times B$ be linked, and let A^{\prime}, B^{\prime} be as-components of A and B, respectively, such that $(a, b) \in R$ for some $a \in A^{\prime}$ and $b \in B^{\prime}$. Then $A^{\prime} \times B^{\prime} \subseteq R$.

The Connectivity Lemma

Connectivity Lemma

Let $R \leq A_{1} \times \ldots \times A_{n}$, and let A_{i}^{\prime} be an as-component of A_{i}, $i \in[n]$, such that $\left(a_{1}, \ldots, a_{n}\right)$ for some $a_{i} \in A_{i}^{\prime}, \quad i \in[n]$. Then $R^{\prime}=R \cap\left(A_{1}^{\prime} \times \ldots \times A_{n}^{\prime}\right)$ is a subdirect product of the A_{i}^{\prime}, and R^{\prime} is an as-component of R.

Strands

Let $R \leq A_{1} \times \ldots \times A_{n}$ let $A_{i} \subseteq A_{i}, A_{j} \subseteq A_{j}$ be as-components

Positions i and j are A_{i}, A_{j}-related if for any $\left(a_{1}, \ldots, a_{k}\right) \in R$

$$
a_{i} \in A_{i} \text { iff } a_{j} \in A_{j}
$$

$I \in\{1, \ldots, k\}$ is a strand
w.r.t. as-components
A_{1}, \ldots, A_{k} if any $i, j \in I$ are
A_{i}, A_{j}-related

Rectangularity

Rectangularity Lemma

Let $R \leq A_{1} \times \ldots \times A_{n}$ and A_{1}, \ldots, A_{k} as-components such that
$R \cap\left(A_{1} \times \cdots \times A_{k}\right) \neq \varnothing$. Let also
$1_{1}, \ldots, l_{k}$ be the partition of $\{1, \ldots, n\}$ into strands w.r.t.

$$
A_{1}, \ldots, A_{s} \text { and } \quad R_{i}=p r_{i} R \cap \prod_{i \in 1} A_{j} .
$$

Then $R_{1} \times \cdots \times R_{s} \subseteq R$.

Rectangularity: to Binary Relations

Let $R \leq A_{1} \times \ldots \times A_{n}$ and A_{1}, \ldots, A_{n} be as-components such that there is $\left(a_{1}, \ldots, a_{n}\right) \in R$ with $a_{i} \in A_{i}^{\prime}$
Suppose 1 and n belong to different strands. Then there are $(a, b),\left(a^{\prime}, b^{\prime}\right) \in p r_{1, n} R$ with $a, a^{\prime} \in A_{1}^{\prime}, b \in A_{n}^{\prime}, b^{\prime} \in A_{n}-A_{n}^{\prime}$.

Take $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in R$ with $a_{1}=a, b_{1}=a^{\prime}, a_{n}=b, b_{n}=b^{\prime}$ Let $a_{i} \in A_{i}^{\prime}$ for $i \in[m]$ and $a_{i} \in A_{i}-A_{i}^{\prime}$ otherwise
Consider R as a binary relation on $p r_{[m]} R$ and $p_{\{m+1, \ldots, n\}}^{R}$

Rectangularity: Binary Relations

Let $R \leq A \times B$, and A^{\prime}, B^{\prime} as components of A, B such that there are $(a, b),\left(a^{\prime}, b^{\prime}\right) \in R$ with $a, a^{\prime} \in A^{\prime}, b \in B^{\prime}, b^{\prime} \in B-B^{\prime}$.
We prove that the pairs can be chosen such that $\left(a^{\prime}, b\right) \in R$.
There is a sequence in R

Since bb^{\prime} is a majority or semilattice edge, either

$$
\begin{array}{ll}
a^{\prime}= & \begin{array}{l}
a \\
b
\end{array} a^{\prime} \in R \text { or } \\
b^{\prime} & a^{\prime} \\
b
\end{array}=h\left(\begin{array}{lll}
a & a & a^{\prime} \\
b^{\prime} & b^{\prime} & b^{\prime}
\end{array}\right) \in R
$$

Rectangularity: Congruences of AS-Components

Let A^{\prime} be an as-component of A, and λ a congruence such that $(a, b) \in \lambda$ for some $a \in A^{\prime}$ and $b \in A-A^{\prime}$. Then A^{\prime} is in a λ block.
If λ is nontrivial on A^{\prime}, choose $c \in A^{\prime}$ with (a, c) not in λ and such that $c a$ is either semilattice or affine. Since $b \in A-A^{\prime}, b c$ is either semilattice or majority.
Then $(b \cdot c, b) \in \lambda$, so $b \cdot c=b$, and $b c$ is majority.
Then $\begin{aligned} & a \\ & c\end{aligned}=g\left(\begin{array}{ll}a & c \\ b & c \\ b & c\end{array}\right) \in \lambda$

Rectangularity: Binary Relations II

- Let $R \leq A \times B$, and A^{\prime}, B^{\prime} as-components of A, B such that the coordinate positions of R are not A^{\prime}, B^{\prime}-related. W.I.o.g. there are $(a, b),\left(a, b^{\prime}\right) \in R$ with $a \in A^{\prime}, b \in B^{\prime}, b^{\prime} \in B-B^{\prime}$.
- Let λ be the link congruence on B. B^{\prime} is inside a λ-block.
- Therefore if R^{\prime} denotes the restriction of R on the link congruences blocks containing A^{\prime} and B^{\prime}, R^{\prime} is linked.
- By the Binary Rectangularity Lemma $A^{\prime} \times B^{\prime} \subseteq R$

AS-Components Exclusion

1. find as-components $A_{V}, v \in V$, such that for any $\mathrm{v}, \mathrm{w} \in \mathrm{V}$ as-components A_{V}, A_{w} are consistent
2. find the strands
3. for each strand W solve the problem restricted to W and $A_{w}, w \in W$
4. if every such problem has a solution, by the Rectangularity Lemma any combination of such solutions gives a solution to the problem
5. otherwise remove elements of the failed as-components

Finding Strands and Components

2. To find a strand take a variable v and an as-component A of A_{v} and find all variables w and as-components B of A_{w} such that v, w are A, B-related 1.

Chinese Remainder Theorem
Let $R \leq A_{1} \times \ldots \times A_{n}$ and let $\mathrm{A}_{1}^{\prime}, \ldots, \mathrm{A}_{\mathrm{n}}^{\prime}$ be as-components of A_{1}, \ldots, A_{n} such that for any $i, j \in$ $\{1, \ldots, n\}$ there is a tuple $\left(a_{1}, \ldots, a_{k}\right) \in R$ such that $a_{i} \in A_{i}^{\prime}, a_{j} \in A_{j}^{\prime}$. Then $R \cap\left(A_{1}^{\prime} \times \ldots \times A_{n}^{\prime}\right)$ is a sudirect product of $A_{1}^{\prime}, \ldots, A_{n}^{\prime}$

Maroti's Retractions

Let \boldsymbol{a} be a class of algebras of similar type closed under taking subalgebras and retracts via idempotent unary polynomials.
Let $A \in \boldsymbol{a}$ and f a binary term operation of A such that
a. $f(x, f(x, y))=f(x, y)$;
b. for each $a \in A$ the map $x \mapsto f(x, a)$ is not surjective
c. the set C of $a \in A$ such that $x \rightarrow f(x, a)$ is surjective generates a proper subalgebra of A
Then $\operatorname{CSP}(\boldsymbol{a})$ is poly time reducible to $\operatorname{CSP}(\boldsymbol{a}-\{\mathrm{A}\})$.

Reductions II

a. $x \cdot(x \cdot y)=x \cdot y$
b. If $a \in A$ is such that $x \rightarrow a \cdot x$ is surjective, then $a \cdot x=x$

a does not belong to any as-component, and we can use ascomponents exclusion

Reductions III

c. If $x \rightarrow x \cdot a$ is surjective for each a, then $x \cdot a=x$, and A has no semilattice edges.

An operation $m(x, y, z)$ on A is called Generalized Majority Minority if for any $a, b \in A$, either $m(x, x, y)=m(x, y, x)=m(y, x, x)=x$ for $x, y \in\{a, b\}$, or $m(x, x, y)=m(y, x, x)=y$
Operation $g(h(x, y, z), y, z)$ is majority on each majority edge, and is affine on each affine edge

Then there is a ternary GMM operation on A .

Question

Are as-components and minimal absorbing subuniverses the same??

