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Overview

Michael’s talk:
Ramsey theoretic method to study Pol(Γ)
when Γ is the reduct of a finitely bounded homogeneous structure.

This talk:
Continuation: use this method to develop an ‘abstract’ universal-algebraic
approach to the corresponding CSPs

1 (More) Examples of Infinite-Domain CSPs

2 Dichotomy conjecture for reducts of finitely bounded homogeneous
templates

3 Primitive positive interpretations, pseudo-varieties, topological clones,
varieties, abstract clones, Taylor terms, Siggers terms, . . .

4 Plan towards a tractability conjecture
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Reminder: Infinite Domain CSPs

Let Γ be a structure with a finite relational signature τ.
Γ also called the template.

Definition 1 (CSP).

CSP(Γ) is the computational problem to decide whether a given finite
τ-structure homomorphically maps to Γ .

Let C be a class of finite τ-structures. TFAE:

C = CSP(Γ);

C = Forbh(N ) for a class of finite connected τ-structures N ;

C is closed under disjoint unions and inverse homomorphisms;

C = CSP(Γ) for a countably infinite τ-structure Γ .

Fact (B.+Grohe’08): For every problem P there is a Γ such that P and
CSP(Γ) are polynomial-time equivalent.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 3



Reminder: Infinite Domain CSPs

Let Γ be a structure with a finite relational signature τ.
Γ also called the template.

Definition 1 (CSP).

CSP(Γ) is the computational problem to decide whether a given finite
τ-structure homomorphically maps to Γ .

Let C be a class of finite τ-structures. TFAE:

C = CSP(Γ);

C = Forbh(N ) for a class of finite connected τ-structures N ;

C is closed under disjoint unions and inverse homomorphisms;

C = CSP(Γ) for a countably infinite τ-structure Γ .

Fact (B.+Grohe’08): For every problem P there is a Γ such that P and
CSP(Γ) are polynomial-time equivalent.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 3



Reminder: Infinite Domain CSPs

Let Γ be a structure with a finite relational signature τ.
Γ also called the template.

Definition 1 (CSP).

CSP(Γ) is the computational problem to decide whether a given finite
τ-structure homomorphically maps to Γ .

Let C be a class of finite τ-structures. TFAE:

C = CSP(Γ);

C = Forbh(N ) for a class of finite connected τ-structures N ;

C is closed under disjoint unions and inverse homomorphisms;

C = CSP(Γ) for a countably infinite τ-structure Γ .

Fact (B.+Grohe’08): For every problem P there is a Γ such that P and
CSP(Γ) are polynomial-time equivalent.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 3



Reminder: Infinite Domain CSPs

Let Γ be a structure with a finite relational signature τ.
Γ also called the template.

Definition 1 (CSP).

CSP(Γ) is the computational problem to decide whether a given finite
τ-structure homomorphically maps to Γ .

Let C be a class of finite τ-structures. TFAE:

C = CSP(Γ);

C = Forbh(N ) for a class of finite connected τ-structures N ;

C is closed under disjoint unions and inverse homomorphisms;

C = CSP(Γ) for a countably infinite τ-structure Γ .

Fact (B.+Grohe’08): For every problem P there is a Γ such that P and
CSP(Γ) are polynomial-time equivalent.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 3



Reminder: Infinite Domain CSPs

Let Γ be a structure with a finite relational signature τ.
Γ also called the template.

Definition 1 (CSP).

CSP(Γ) is the computational problem to decide whether a given finite
τ-structure homomorphically maps to Γ .

Let C be a class of finite τ-structures. TFAE:

C = CSP(Γ);

C = Forbh(N ) for a class of finite connected τ-structures N ;

C is closed under disjoint unions and inverse homomorphisms;

C = CSP(Γ) for a countably infinite τ-structure Γ .

Fact (B.+Grohe’08): For every problem P there is a Γ such that P and
CSP(Γ) are polynomial-time equivalent.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 3



Reminder: Infinite Domain CSPs

Let Γ be a structure with a finite relational signature τ.
Γ also called the template.

Definition 1 (CSP).

CSP(Γ) is the computational problem to decide whether a given finite
τ-structure homomorphically maps to Γ .

Let C be a class of finite τ-structures. TFAE:

C = CSP(Γ);

C = Forbh(N ) for a class of finite connected τ-structures N ;

C is closed under disjoint unions and inverse homomorphisms;

C = CSP(Γ) for a countably infinite τ-structure Γ .

Fact (B.+Grohe’08): For every problem P there is a Γ such that P and
CSP(Γ) are polynomial-time equivalent.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 3



Homogeneous Structures

A structure is called homogeneous if isomorphisms between
finite substructures can be extended to automorphisms.
Age(Γ): set of all finite τ-structures that embed into Γ .

Michael’s talk: Homogeneous structures occur in nature (amalgamation)

Definition
A relational structure ∆ is finitely bounded if there exists a finite set of finite
structures N such that Age(∆) = Forbind(N ).

Γ is reduct of a structure ∆ if it is first-order definable ∆ (on the same domain).

Facts:

Reducts Γ of homogeneous structures with finite signature are
ω-categorical, that is, the first-order theory of Γ has exactly one
countable model up to isomorphism.

For reducts Γ of finitely bounded structures, CSP(Γ) is in NP.
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Dichotomy Conjecture

CSPs for reducts of finitely bounded homogeneous structures include all finite
domain CSPs:

For every finite structure Γ there is a reduct ∆ of a finitely bounded
homogeneous structure such that CSP(Γ) = CSP(∆).

Conjecture 1.

If the tractability conjecture is true for finite templates,
then it is also true for reducts of finitely bounded homogeneous structures.
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Set Constraints

Variables x , y ,u, v , . . . denote sets.
Constraints of the form

(A) x ∩ y = ∅ (x and y are disjoint),

(B) x 6= y (x and y are distinct),

(C) y ⊆ x (y is contained in x)

x y

u v

x ∩ y = ∅

u ≠ v

u ⊆ x v ⊆ y

v ⊆ x

u ⊆ y

Can be solved in polynomial time (Jonsson and Drakengren’98)

Easy: can be formulated with a homogeneous template

Still tractable when we additionally allow constraints of the form
x ∩ y ⊆ z?
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Phylogenetic Trees

Pigeons Humans Cranberry

x

y

Assumptions: species-tree is rooted, binary

Notation: yca(a,b) is youngest common ancestor of a and b

Notation: write ab|c if yca(a,b) is below yca(b, c)

Example: pigeons humans | cranberries
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Rooted Triple Consistency

Dutch German | French,
German French | Turkish,
Turkish Korean | French

Dutch KoreanGerman French Turkish

Dutch KoreanGerman French Turkish

Problem from Phylogenetic Reconstruction (Computational Biology)

Can be formulated as the CSP of the ‘universal homogeneous C-relation’
(Adeleke, Neumann, Macpherson, . . . )

Can be solved in polynomial time (Aho et al’81)

Cannot be solved by Datalog (B.+Mueller’09)
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ω-categoricity

Let Γ be a structure with domain D, and let Aut(Γ) be its automorphism group.

The orbit of a (t1, . . . , tk ) ∈ Dk is the set
{
(a(t1), . . . ,a(tk )) | a ∈ Aut(Γ)

}
.

Theorem 1 (Engeler,Ryll-Nardzewski,Svenonius).

For countable Γ , tfae:

Γ is ω-categorical.

Aut(Γ) is oligomorphic, i.e., there are finitely many orbits of k -tuples in
Aut(Γ), for each k .

A relation R is first-order definable in Γ if and only if it is preserved by all
automorphisms in Aut(Γ).

All reducts of (V ;E) have less than 3(
n
2) many orbits of n-tuples, and hence

are ω-categorical.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 9



ω-categoricity

Let Γ be a structure with domain D, and let Aut(Γ) be its automorphism group.

The orbit of a (t1, . . . , tk ) ∈ Dk is the set
{
(a(t1), . . . ,a(tk )) | a ∈ Aut(Γ)

}
.

Theorem 1 (Engeler,Ryll-Nardzewski,Svenonius).

For countable Γ , tfae:

Γ is ω-categorical.

Aut(Γ) is oligomorphic, i.e., there are finitely many orbits of k -tuples in
Aut(Γ), for each k .

A relation R is first-order definable in Γ if and only if it is preserved by all
automorphisms in Aut(Γ).

All reducts of (V ;E) have less than 3(
n
2) many orbits of n-tuples, and hence

are ω-categorical.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 9



ω-categoricity

Let Γ be a structure with domain D, and let Aut(Γ) be its automorphism group.

The orbit of a (t1, . . . , tk ) ∈ Dk is the set
{
(a(t1), . . . ,a(tk )) | a ∈ Aut(Γ)

}
.

Theorem 1 (Engeler,Ryll-Nardzewski,Svenonius).

For countable Γ , tfae:

Γ is ω-categorical.

Aut(Γ) is oligomorphic, i.e., there are finitely many orbits of k -tuples in
Aut(Γ), for each k .

A relation R is first-order definable in Γ if and only if it is preserved by all
automorphisms in Aut(Γ).

All reducts of (V ;E) have less than 3(
n
2) many orbits of n-tuples, and hence

are ω-categorical.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 9



ω-categoricity

Let Γ be a structure with domain D, and let Aut(Γ) be its automorphism group.

The orbit of a (t1, . . . , tk ) ∈ Dk is the set
{
(a(t1), . . . ,a(tk )) | a ∈ Aut(Γ)

}
.

Theorem 1 (Engeler,Ryll-Nardzewski,Svenonius).

For countable Γ , tfae:

Γ is ω-categorical.

Aut(Γ) is oligomorphic, i.e., there are finitely many orbits of k -tuples in
Aut(Γ), for each k .

A relation R is first-order definable in Γ if and only if it is preserved by all
automorphisms in Aut(Γ).

All reducts of (V ;E) have less than 3(
n
2) many orbits of n-tuples, and hence

are ω-categorical.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 9



ω-categoricity

Let Γ be a structure with domain D, and let Aut(Γ) be its automorphism group.

The orbit of a (t1, . . . , tk ) ∈ Dk is the set
{
(a(t1), . . . ,a(tk )) | a ∈ Aut(Γ)

}
.

Theorem 1 (Engeler,Ryll-Nardzewski,Svenonius).

For countable Γ , tfae:

Γ is ω-categorical.

Aut(Γ) is oligomorphic, i.e., there are finitely many orbits of k -tuples in
Aut(Γ), for each k .

A relation R is first-order definable in Γ if and only if it is preserved by all
automorphisms in Aut(Γ).

All reducts of (V ;E) have less than 3(
n
2) many orbits of n-tuples, and hence

are ω-categorical.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 9



ω-categoricity

Let Γ be a structure with domain D, and let Aut(Γ) be its automorphism group.

The orbit of a (t1, . . . , tk ) ∈ Dk is the set
{
(a(t1), . . . ,a(tk )) | a ∈ Aut(Γ)

}
.

Theorem 1 (Engeler,Ryll-Nardzewski,Svenonius).

For countable Γ , tfae:

Γ is ω-categorical.

Aut(Γ) is oligomorphic, i.e., there are finitely many orbits of k -tuples in
Aut(Γ), for each k .

A relation R is first-order definable in Γ if and only if it is preserved by all
automorphisms in Aut(Γ).

All reducts of (V ;E) have less than 3(
n
2) many orbits of n-tuples, and hence

are ω-categorical.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 9



ω-categoricity

Let Γ be a structure with domain D, and let Aut(Γ) be its automorphism group.

The orbit of a (t1, . . . , tk ) ∈ Dk is the set
{
(a(t1), . . . ,a(tk )) | a ∈ Aut(Γ)

}
.

Theorem 1 (Engeler,Ryll-Nardzewski,Svenonius).

For countable Γ , tfae:

Γ is ω-categorical.

Aut(Γ) is oligomorphic, i.e., there are finitely many orbits of k -tuples in
Aut(Γ), for each k .

A relation R is first-order definable in Γ if and only if it is preserved by all
automorphisms in Aut(Γ).

All reducts of (V ;E) have less than 3(
n
2) many orbits of n-tuples, and hence

are ω-categorical.

Homogeneous Structures and Siggers Terms Manuel Bodirsky 9



The Universal-Algebraic Approach

Michael’s Talk:

Expansions by primitive positive definitions preserve complexity

Polymorphisms characterize primitive positive definability in
ω-categorical structures

What about existence of cores?
What IS a core?

Definition
An infinite structure is a core if all its endomorphisms are embeddings.

Example 1: (Q;<) is a core.
Example 2: The random graph is not a core.
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Model-complete Cores

Definition
A structure Γ is called model-complete if embeddings between models of the
first-order theory of Γ preserve all first-order formulas.

Observation: an ω-categorical structure Γ is model-complete if and only if
the automorphisms are dense in the self-embeddings of Γ .

Theorem 2 (B’05,B.+Hils+Martin’11).

Every ω-categorical structure is homomorphically equivalent to a
model-complete core ∆.

The structure ∆ is again ω-categorical, and unique up to isomorphism.

In ∆, every orbit is primitive positive definable.

Corollary: Expansions of model-complete cores by FINITELY many
constants have the same CSP complexity
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The Universal-Algebraic Approach

Structures Polymorphism 
Clones

Varieties  
(Abstract Clones) Taylor Terms

WNUs

Siggers Terms

Cyclic Terms
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Primitive Positive Interpretations

A σ-structure Γ has an interpretation in a τ-structure ∆ if there is a d ≥ 1, and

a τ-formula δI(x1, . . . , xd ),

for each atomic σ-formula φ(y1, . . . , yk ) a τ-formula φI(x1, . . . , xk ),

a surjective map h : δI(∆
d )→ Γ ,

such that for all atomic σ-formulas φ and all ai ∈ δI(∆
d )

Γ |= φ(h(a1), . . . ,h(ak )) ⇔ ∆ |= φI(a1, . . . ,ak ) .

Definition.
An interpretation is primitive positive (pp) if all the involved formulas are
primitive positive.

Fact: When there is a primitive positive interpretation of Γ in ∆, then there is
a polynomial-time reduction from CSP(Γ) to CSP(∆).
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PP Interpretations: Example

Consider the structure (N;E6) where

E6 := {(x1, x2, y1, y2, z1, z2) ∈ B6 | (x1 = x2 ∧ y1 6= y2 ∧ z1 6= z2)

∨ (x1 6= x2 ∧ y1 = y2 ∧ z1 6= z2)

∨ (x1 6= x2 ∧ y1 6= y2 ∧ z1 = z2)} .

The structure
(
{0,1}; {(0,0,1), (0,1,0), (1,0,0)}

)
has a 2-dimensional

primitive positive interpretation in (N;E6)

One dimension does not suffice

This is unlike the situation for finite structures with idempotent
polymorphism clone!
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PP Interpretations and Pseudo-Varieties

Empirical: All hardness proofs for reducts Γ of finitely bounded
homogenous templates are via pp interpretations of(

{0,1}; {(0,0,1), (0,1,0), (1,0,0)}
)

(in expansions of the model-complete core of Γ by finitely many constants)

Pseudo-variety generated by B: HSPfin(B)

Theorem 3 (B.’07).

A structure Γ has a primitive positive interpretation in an ω-categorical
structure ∆ if and only if HSPfin(Pol(∆)) contains an algebra all of whose
operations preserve Γ .

Consequence: Complexity of CSP(Γ) only depends on the pseudo-variety
generated by Pol(Γ).
Question: Does the complexity of CSP(Γ) only depend on the variety
generated by Pol(Γ)?

Homogeneous Structures and Siggers Terms Manuel Bodirsky 15



PP Interpretations and Pseudo-Varieties

Empirical: All hardness proofs for reducts Γ of finitely bounded
homogenous templates are via pp interpretations of(

{0,1}; {(0,0,1), (0,1,0), (1,0,0)}
)

(in expansions of the model-complete core of Γ by finitely many constants)

Pseudo-variety generated by B: HSPfin(B)

Theorem 3 (B.’07).

A structure Γ has a primitive positive interpretation in an ω-categorical
structure ∆ if and only if HSPfin(Pol(∆)) contains an algebra all of whose
operations preserve Γ .

Consequence: Complexity of CSP(Γ) only depends on the pseudo-variety
generated by Pol(Γ).
Question: Does the complexity of CSP(Γ) only depend on the variety
generated by Pol(Γ)?

Homogeneous Structures and Siggers Terms Manuel Bodirsky 15



PP Interpretations and Pseudo-Varieties

Empirical: All hardness proofs for reducts Γ of finitely bounded
homogenous templates are via pp interpretations of(

{0,1}; {(0,0,1), (0,1,0), (1,0,0)}
)

(in expansions of the model-complete core of Γ by finitely many constants)

Pseudo-variety generated by B: HSPfin(B)

Theorem 3 (B.’07).

A structure Γ has a primitive positive interpretation in an ω-categorical
structure ∆ if and only if HSPfin(Pol(∆)) contains an algebra all of whose
operations preserve Γ .

Consequence: Complexity of CSP(Γ) only depends on the pseudo-variety
generated by Pol(Γ).
Question: Does the complexity of CSP(Γ) only depend on the variety
generated by Pol(Γ)?

Homogeneous Structures and Siggers Terms Manuel Bodirsky 15



PP Interpretations and Pseudo-Varieties

Empirical: All hardness proofs for reducts Γ of finitely bounded
homogenous templates are via pp interpretations of(

{0,1}; {(0,0,1), (0,1,0), (1,0,0)}
)

(in expansions of the model-complete core of Γ by finitely many constants)

Pseudo-variety generated by B: HSPfin(B)

Theorem 3 (B.’07).

A structure Γ has a primitive positive interpretation in an ω-categorical
structure ∆ if and only if HSPfin(Pol(∆)) contains an algebra all of whose
operations preserve Γ .

Consequence: Complexity of CSP(Γ) only depends on the pseudo-variety
generated by Pol(Γ).
Question: Does the complexity of CSP(Γ) only depend on the variety
generated by Pol(Γ)?

Homogeneous Structures and Siggers Terms Manuel Bodirsky 15



PP Interpretations and Pseudo-Varieties

Empirical: All hardness proofs for reducts Γ of finitely bounded
homogenous templates are via pp interpretations of(

{0,1}; {(0,0,1), (0,1,0), (1,0,0)}
)

(in expansions of the model-complete core of Γ by finitely many constants)

Pseudo-variety generated by B: HSPfin(B)

Theorem 3 (B.’07).

A structure Γ has a primitive positive interpretation in an ω-categorical
structure ∆ if and only if HSPfin(Pol(∆)) contains an algebra all of whose
operations preserve Γ .

Consequence: Complexity of CSP(Γ) only depends on the pseudo-variety
generated by Pol(Γ).

Question: Does the complexity of CSP(Γ) only depend on the variety
generated by Pol(Γ)?

Homogeneous Structures and Siggers Terms Manuel Bodirsky 15



PP Interpretations and Pseudo-Varieties

Empirical: All hardness proofs for reducts Γ of finitely bounded
homogenous templates are via pp interpretations of(

{0,1}; {(0,0,1), (0,1,0), (1,0,0)}
)

(in expansions of the model-complete core of Γ by finitely many constants)

Pseudo-variety generated by B: HSPfin(B)

Theorem 3 (B.’07).

A structure Γ has a primitive positive interpretation in an ω-categorical
structure ∆ if and only if HSPfin(Pol(∆)) contains an algebra all of whose
operations preserve Γ .

Consequence: Complexity of CSP(Γ) only depends on the pseudo-variety
generated by Pol(Γ).
Question: Does the complexity of CSP(Γ) only depend on the variety
generated by Pol(Γ)?

Homogeneous Structures and Siggers Terms Manuel Bodirsky 15



Topology

Let ∆ be ω-categorical.

Equip G := Aut(∆) with the topology of pointwise convergence
(G is closed subgroup of S∞, and in particular Polish).

Theorem 4 (Ahlbrandt-Ziegler’86).

A structure Γ has a first-order interpretation in ∆ if and only if there is a
continuous group homomorphism f from Aut(∆) to Aut(Γ) such that the image
of f has finitely many orbits in its action on Γ .

Two ω-categorical structures have isomorphic topological automorphism
groups if and only if they are first-order bi-interpretable.
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Automatic Continuity

In which situations does the abstract automorphism group of Γ determine the
topological automorphism group of Γ?

Reconstruction in model theory (Rubin, Macpherson, Barbina, . . . ).

Definition
Γ has the small index property
if every subgroup of Aut(Γ) of index less than 2ℵ0 is open.

Small index property implies reconstruction (see Hodges’ textbook)
Small index property has been verified for

(N; =) (Dixon+Neumann+Thomas’86)
(Q;<) and the atomless Boolean algebra (Truss’89)
the Random graph and the Henson graphs (Herwig’98)

Every Baire measurable homomorphism between Polish groups is
continuous. And there exists a model of ZF+DC where every set is Baire
measurable (Shelah’84).
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Topological Clones

A topological clone is an abstract clone with a topology on the elements so
that composition is continuos.

For polymorphism clones: use the topology of pointwise convergence.
So for Pol(Γ), a basis is given by the set of all sets of the form

{f ∈ Pol(Γ) | f (a1, . . . ,ak ) = a0} .

for a0,a1, . . . ,ak ∈ Γm.

Let Γ be a any structure.

The topological clone of Γ determines the finitely related members of the
pseudo-variety generated by the polymorphism algebra of Γ
(for related results for endomorphism monoids, see (B.+Junker’10))

When can we reconstruct the topological polymorphism clone of Γ from
its abstract clone?
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The Finite Dimension Property

Definition (FDP)

An ω-categorical structure ∆ has the FDP if there are c,d ∈ N
such that for every model-complete core of a reduct Γ of ∆ the following are
equivalent:

({0,1}; {(0,0,1), (0,1,0), (1,0,0)}) has an d-dimensional primitive positive
interpretation in an expansion of the model-complete core of Γ by c
constants.

the variety generated by Pol(Γ) contains a 2-element algebra all of whose
operations are projections

Do all finitely bounded homogeneous structures have the FDP?
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From Abstract Clones to Taylor terms

Assume that Γ is finite, and that Pol(Γ) is idempotent.

Theorem (Taylor’77,Hobby+McKenzie’88,McKenzie+Maroti’08,Siggers’10).

The following are equivalent.

1 Γ does not pp-interpret
(
{0,1}; {(0,0,1), (0,1,0), (1,0,0)}

)
2 Γ is preserved by a Taylor operation, i.e., an n-ary f s.t. for every

1 ≤ i ≤ n there are x1, . . . , xn, y1, . . . , yn ∈ {x , y } satisfying

∀x , y . f (x1, . . . , xi−1, x , xi+1, . . . , xn) = f (y1, . . . , yi−1, y , yi+1, . . . , yn) .

3 Γ is preserved by a near-unanimity operation, i.e., an f satisfying

∀x , y . f (x , . . . , x , y) = f (x , . . . , y , x) = · · · = f (y , x , . . . , x) .

4 Γ is preserved by a Siggers operation, i.e., an f satisfying

∀x , y . f (y , y , x , x) = f (x , x , x , y) = f (y , x , y , x) .

(One) problem in the ω-categorical: cannot assume idempotency.
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Reducts of the Random Graph

Let Γ be a reduct of the random graph G.

Recall from Michael’s talk:
CSP(Γ) is tractable iff Γ is preserved by one out of 17 operations: (long list)
Cleaning up:

Theorem 5 (B.+Pinsker’11).

Either

there is a primitive positive interpretation of(
{0,1}; {(0,0,1), (0,1,0), (1,0,0)}

)
in Γ , and CSP(Γ) is NP-hard, or

Γ has a 4-ary (canonical) polymorphism f and α1, α2 ∈ Aut(G) such that
for all x , y ∈ V

f (y , y , x , x) = α1f (x , x , x , y) = α2f (y , x , y , x) ,

and CSP(Γ) is in P.
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An Ideal World: Canonical Operations

Definition (Canonical Operations)

Let Γ be ω-categorical with domain D. An operation f : Dk → D is canonical if
for all m ≥ 1 and all t1, . . . , tk ∈ Dm, the m-type of f (t1, . . . , tk ) only depends on
the m-types of the tuples t1, . . . , tk .

Suppose that
Γ is the reduct of a homogeneous structure ∆ with maximal arity m, and
that all polymorphisms of Γ are canonical.

Theorem 6 (B.+Pinsker’11).

Let A be the polymorphism algebra of Γ . Either

the variety generated by the polymorphism algebra A of Γ contains a
2-element algebra all of whose operations are projections, or

There are a 4-ary f ∈ Pol(Γ) and α1, α2 ∈ Aut(∆) such that
A |= ∀x , y . f (y , y , x , x) = α1f (x , x , x , y) = α2f (y , x , y , x) .

Proof. Let p be the number of m-types in ∆. Am is homomorphic to an
(idempotent) algebra T (A) (the type algebra) with p elements, and there is an
f such that

T (A) |= f (x1, . . . , xn) = f (xi1 , . . . , xin)

if and only if there exists an α ∈ Aut(Γ) and a g ∈ Aut(Γ) such that

A |= g(x1, . . . , xn) = α g(xi1 , . . . , xin) .
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Example

Let G = (V ;E) be the random graph.

By universality, there is an embedding e of G2 into G.

Then e is a canonical binary polymorphism of G.

(V ; f ) is homomorphic to
(
{E ,N,=}; f

)
where f is a semi-lattice operation.

E =

N

Careful: there might be no α ∈ Aut(G) such that f (x , y) = αf (y , x).

But by compactness, Aut(G) ∪ {f } generates g, α such that g(x , y) = αg(y , x).
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Clones with non-canonical operations

Let Γ be a reduct of (Q;<).
B.+Kara’08: CSP(Γ) is either in P or NP-complete.
There are 9 tractable classes.

Theorem (B.+Kara’08,B.+Pinsker’11).

Either

there is a primitive positive interpretation of(
{0,1}; {(0,0,1), (0,1,0), (1,0,0)}

)
in an expansion of Γ by finitely many

constants (and CSP(Γ) is NP-hard), or

Γ has a binary polymorphism f and automorphisms α,β such that for all
x , y ∈ Q

f (x , y) = αf (βy , βx)

(and CSP(Γ) is in P).
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Example
And/Or Precedence Constraints:

Input: A finite set of triples of variables (x , y , z)
Question: Is there a weak linear order on the variables such that for each

triple x is strictly larger than the minimum of y and z?

Is a CSP: template is
(
Q; {(x , y , z) | (x > y)∨ (x > z)}

)
Complexity: Is in P (Möhring,Skutella,Stork’04)

Polymorphism: x 7→ min(x , y)
is not canonical!

Consider now(
Q; 6=, {(x , y , z) | (x > y)∨ (x > z)}

)
Polymorphisms?

A polymorphism satisfying
f (x , y) = αf (βy , βx)
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Canonizing

Theorem 7.
Let ∆ be a finitely bounded ordered Ramsey structure that satisfies the FDP,
and let Γ be a model-complete core reduct of ∆.

Then either

Γ interprets ({0,1}; {(0,0,1), (0,1,0), (1,0,0)}) and CSP(Γ) is NP-hard, or

Γ has a polymorphism that satisfies the Siggers term identities modulo
automorphisms.

Proof uses the fact that products and open subgroups of extremely amenable
groups are extremely amenable (B.,Pinsker,Tsankov’11)

Siggers terms imply tractability for reducts of
(N; =): (B.+Kara’06).
The Random Graph: (B.+Pinsker’11).
(Q;<): (B.+Kara’07).
The homogeneous C-relation (B.+van Pham’11).
The equivalence relation with infinitely many infinite classes (Wrona’11).
Finite ∆: OPEN
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Four Steps Towards Dichotomy

Let Γ be a reduct of finitely bounded homogeneous structure ∆.

1 Prove the Finite Dimension Property for ∆.

2 Prove that every finitely bounded homogeneous structure can be
expanded to a finitely bounded homogeneous Ramsey structure.

3 Solve the dichotomy conjecture for finite domains

4 Reduce CSP(Γ) to the CSP for the (finite) type algebra T (Pol(Γ ′))

for an expansion Γ ′ of Γ by finitely many constants.
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Sub-steps for Step 4

Let Γ be the reduct of a finitely bounded homogeneous structure. Then
CSP(Γ) is in P when one of the following holds.

for all n there is a canonical f ∈ Pol(Γ) such that for all π ∈ Sn there is
α ∈ Aut(Γ) satisfying

f (x1, . . . , xn) = αf (xπ(1), . . . , xπ(n))

a ternary canonical f ∈ Pol(Γ) and α1, α2, α3 ∈ Aut(Γ) such that

f (x , x , y) = α1f (x , y , x) = α2f (y , x , x) = α3x

a ternary canonical f ∈ Pol(Γ) and α1, α2, α3 ∈ Aut(Γ) such that

f (x , x , y) = α1f (x , y , x) = α2f (y , x , x) = α3y
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