A welcome conservative talk

Libor Barto
McMaster University and
Charles University

Algebra \& CSP workshop, Toronto, August 2011

CSP over algebra

A ... fixed finite idempotent algebra

Definition (CSP(A) - Constraint Satisfaction Problem over A)

INSTANCE:
V ... set of variables
\mathcal{C}... set of constraints
constraint . . pair (\mathbf{x}, R), where

$$
\begin{array}{ll}
\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right) \in V^{k} & \text { (scope) assume } x_{1}, \ldots, x_{k} \text { distinct } \\
R \leq \mathbf{A}^{k} & \text { (constraint relation) }
\end{array}
$$

QUESTION: Does there exist a solution?
solution ... mapping $f: V \rightarrow A$ such that $f(\mathbf{x}) \in R$ for each $(\mathbf{x}, R) \in \mathcal{C}$

Conservative CSPs

\mathbf{A} is conservative, if $B \leq \mathbf{A}$ for every $B \subseteq A$

Theorem (Bulatov)

Let \mathbf{A} be conservative. If \mathbf{A} is Taylor, then $\operatorname{CSP}(\mathbf{A})$ is tractable. (And otherwise $\operatorname{CSP}(\mathbf{A})$ is NP-complete.)

Proof is long, complicated case analysis
2 new proofs
(a) using absorption, Prague strategies and one new algebraic result about conservative algebras B (today)
(b) using Bulatov's colors and Maróti's retraction trick Bulatov (tommorow)

Outline

Algorithm (simplified):

- Make the instance (2,3)-minimal (old stuff)
- Find (using walking) a 1-minimal subinstance going through minimal absorbing subuniverses (old stuff)
- Use "Rectangularity theorem" (the only new stuff) to either find a solution, or shrink the instance
Outline:
- Consistency notions (($k, /$)-minimality)
- Walking and Prague strategies
- Absorption, finding nice MASes
- Rectangularity theorem - baby case
- Algorithm for binary constraints, simplified
- Algorithm for binary constraints, real
- Rectangularity theorem

Consistency notions

Definition (1-minimality)

An instance of $\operatorname{CSP}(\mathbf{A})$ is 1-minimal, if

- for every $x \in V$ there is a unique constraint with scope (x)
$\ldots\left((x), S_{x}\right)$
- for every $\left(\left(x_{1}, \ldots, x_{k}\right), R\right) \in \mathcal{C}$ and every i, the projection of R to the i-th coordinate is equal to $S_{x_{i}}$
i.e. R is subdirect in $S_{x_{1}} \times \cdots \times S_{x_{k}}$

Consistency notions

Definition (1-minimality)

An instance of $\operatorname{CSP}(\mathbf{A})$ is 1-minimal, if

- $\forall x \in V$ unique $\left((x), S_{x}\right) \in \mathcal{C}$
- $\forall\left(\left(x_{1}, \ldots, x_{k}\right), R\right) \in \mathcal{C} \Rightarrow R \leq_{s} S_{x_{1}} \times \cdots \times S_{x_{k}}$

Definition ((2,3)-minimality, standard definition)

A 1-minimal instance of $\operatorname{CSP}(\mathbf{A})$ is (2,3)-minimal, if

- for every $x_{1} \neq x_{2} \in V$ there is a unique constraint with scope $\left(x_{1}, x_{2}\right) \ldots\left(\left(x_{1}, x_{2}\right), S_{x_{1}, x_{2}}\right) \quad\left(\right.$ let $\left.S_{x, x}=\left\{(a, a): a \in S_{x}\right\}\right)$
- for every $(\mathbf{x}, R) \in \mathcal{C}$ whose scope contains x_{1}, x_{2}, the projection of R to the corresponding coordinates is equal to $S_{x_{1}, x_{2}}$
- every triple of variables is within a scope of some constraint

Consistency notions

Definition (1-minimality)

An instance of $\operatorname{CSP}(\mathbf{A})$ is 1-minimal, if

- $\forall x \in V$ unique $\left((x), S_{x}\right) \in \mathcal{C}$
- $\forall\left(\left(x_{1}, \ldots, x_{k}\right), R\right) \in \mathcal{C} \Rightarrow R \leq_{s} S_{x_{1}} \times \cdots \times S_{x_{k}}$

Definition ((2,3)-minimality, essentially the same)

A 1-minimal instance of $\operatorname{CSP}(\mathbf{A})$ is (2,3)-minimal, if

- for every $x_{1} \neq x_{2} \in V$ there is a unique constraint with scope $\left(x_{1}, x_{2}\right) \ldots\left(\left(x_{1}, x_{2}\right), S_{x_{1}, x_{2}}\right) \quad\left(\right.$ let $\left.S_{x, x}=\left\{(a, a): a \in S_{x}\right\}\right)$
- for every $(\mathbf{x}, R) \in \mathcal{C}$ whose scope contains x_{1}, x_{2}, the projection of R to the corresponding coordinates is equal to $S_{x_{1}, x_{2}}$
- for every $x_{1}, x_{2}, x_{3} \in V$ and every $(a, b) \in S_{x_{1}, x_{2}}$ there exists c such that $(a, c) \in S_{x_{1}, x_{3}}$ and $(b, c) \in S_{x_{2}, x_{3}}$

Walking in 2-minimal instances

If $R \subseteq A^{2}$ and $B \subseteq A$, let $R^{+}[B]=\{c \in A: \exists b \in B(b, c) \in R\}$
Let $x, y \in V$ and $\emptyset \neq B \leq \mathbf{S}_{x}, \emptyset \neq C \leq \mathbf{S}_{y}$. We write

$$
(x, B) \leq_{1}(y, C) \quad \text { iff } \quad S_{x, y}^{+}[B]=C
$$

$\leq \ldots$ the transitive closure of $\leq_{1} \quad \Rightarrow$ qoset QOSET
Write $(x, B) \sim(y, C)$, if $(x, B) \leq(y, C) \leq(x, B)$

Definition (Prague strategy, for 2-minimal instances)

A 2-minimal instance is a Prague strategy, if $(x, B) \sim(y, C)$ implies $(x, B) \leq_{1}(y, C)$

In general, Prague strategy $=1$-minimal instance $+\ldots$
Our definition suffices for instances with at most binary constraints

Fact

Every $(2,3)$-minimal instance is a Prague strategy.

Absorption

Definition

B is an absorbing subuniverse of \mathbf{T}, if \mathbf{T} has a term t such that for every coordinate i

$$
t(B, B, \ldots, B, T, B, B, \ldots, B) \subseteq B \quad(T \text { is at the } i \text {-th coordinate })
$$

Notation: $B \triangleleft \mathbf{T}$.

Definition

B is a minimal absorbing subuniverse of \mathbf{T} if $B \triangleleft \mathbf{T}$ and \mathbf{B} has no proper absorbing subuniverses. Notation: $B \triangleleft \mathbf{T}$.

Fact

If P is a Prague strategy, $B_{x} \triangleleft \mathbf{S}_{x}$ and the restriction of P to B 's is 1-minimal, then this restriction is a Prague strategy.

Subalgorithm

Fact

Let P be a Prague strategy over A. There exist $E_{x} \triangleleft \mathbf{S}_{x}, x \in V$ such that the restriction of P to E 's is a Prague strategy. Moreover, there is a P-time algorithm for finding such E 's.

Proof.

- Consider subqoset AbsQoset of QOSET formed by all pairs (x, B) such that B is a proper absorbing subuniverse of \mathbf{S}_{x} (fact: it is an upset)
- Find a maximal component $\left\{\left(x, R_{x}\right): x \in W\right\}$ of AbsQoset (where $W \subseteq V$). Define $R_{x}=S_{x}$ for $x \in V-W$
- The restriction of P to R 's is 1-minimal (because P is a Prague strategy)
- This restriction is a Prague strategy (from the previous fact)
- Restrict and repeat

Subalgorithm

Fact

Let P be a Prague strategy over A. There exist $E_{x} \varangle \mathbf{S}_{x}, x \in V$ such that the restriction of P to E 's is a Prague strategy.
(We will only need that the restriction is 1-minimal.)
Moreover, there is a P-time algorithm for finding such E's.

- Works for Prague strategies over arbitrary idempotent algebra (not necessarily conservative, not necessarily Taylor)
- Proves that NU implies width $(2,3)$

Rectangularity theorem - baby case

Fact (Inspiration: Bulatov's original proof)
Let

- $\mathbf{T}_{1}, \mathbf{T}_{2}$ be conservative Taylor algebras
- $R \leq{ }_{s} \mathbf{T}_{1} \times \mathbf{T}_{2}$,
- $B_{1} \triangleleft \mathbf{T}_{1}, B_{2} \triangleleft \mathbf{T}_{2}$
- $R \cap\left(B_{1} \times B_{2}\right) \neq \emptyset$
- $\exists a_{1} \in T_{1}-B_{1} \exists b_{2} \in B_{2} \quad\left(a_{1}, b_{2}\right) \in R$

Then $B_{1} \times B_{2} \subseteq R$.

Proof of the baby case

Proof.

- Draw a potato picture. "linked" below means connected on the picture.
- Let $S=R \cap\left(B_{1} \times B_{2}\right)$
- $S \leq_{s} B_{1} \times B_{2}$ (as the projection of S to the first coordinate absorbs B_{1})
- Let $C=$ all elements not R-linked to a_{1}
- If $C=\emptyset$, then
- S is linked (use the fact that connectivity is absorbed)
- $S=B_{1} \times B_{2}$ (using Absorption Theorem)
- If $C \neq \emptyset$, then $C \triangleleft B_{1}$ (using conservativity)

Algorithm for binary constraints, simplified

Assume that

- We can solve instances over smaller domains in P-time
- All constraints are at most binary

The algorithm:

1. Find an equivalent $(2,3)$-minimal instance P
2. Assume that every \mathbf{S}_{x} has a proper absorbing subuniverse
3. Find $\left\{E_{x}: x \in V\right\}$ such that $E_{x} \triangleleft \mathbf{S}_{x}$ and the restriction of P to E 's is 1-minimal (use the subalgorithm)
4. Find a partition $V=V_{1} \cup \ldots V_{l}$ such that $\left(x, E_{x}\right) \sim\left(y, E_{y}\right)$ whenever x, y are in the same V_{i} (strands)
5. Using inductive assumption, find partial solutions $f_{i}: V_{i} \rightarrow A$.

- If some f_{i} does not exist, then we can delete E_{x} from S_{x}, $x \in V_{i}$ and start again
- If all f_{i} exist, then $\cup f_{i}$ is a solution by Rectangularity theorem, baby case

Algorithm for binary constraints

1. Find an equivalent $(2,3)$-minimal instance P
2. Consider the subqoset NafaQoset of QOSET formed by (x, B) such that \mathbf{B} has a proper absorbing subuniverse
3. If NafaQoset is nonempty

- Find a maximal component $\left\{\left(x, D_{x}\right): x \in W\right\}$ of NafaQoset
- Let Q be the restriction of P to D 's
- Find E 's for the instance Q as before
- Solve in strands as before, if impossible, delete E_{x} and go to 1 .
- Delete $D_{x}-E_{x}, x \in W$ and go to 1 .

4. If NafaQoset is empty, then we are Mal'tsev (use WNU)

For general constraints:

- The algorithm is the same
- The proof of correctness requires Rectangularity Theorem in full generality:

Rectangularity theorem

Theorem

Let

- $\mathbf{T}_{1}, \mathbf{T}_{2}, \ldots, \mathbf{T}_{n}$ be conservative Taylor algebras
- $R \leq_{s} \mathbf{T}_{1} \times \mathbf{T}_{2} \times \cdots \times \mathbf{T}_{n}$,
- $B_{1} \triangleleft \mathbf{T}_{1}, B_{2} \triangleleft \mathbf{T}_{2}, \ldots, B_{n} \triangleleft \mathbf{T}_{n}$
- $R \cap\left(B_{1} \times B_{2} \times \cdots \times B_{n}\right) \neq \emptyset$

Define

- $i \sim j$ if $\left.R\right|_{i, j} ^{+}\left[B_{i}\right]=B_{j}$ and $\left.R\right|_{j, i} ^{+}\left[B_{j}\right]=B_{i}$, where $\left.R\right|_{i, j}$ is the projection of R to coordinates i, j
Then a tuple $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in B_{1} \times \cdots \times B_{n}$ belongs to R whenever $a_{K} \in R_{K}$ for every \sim-class K.

A note on binary constraints

Using (Hell, Rafiey or Kazda) and $(\mathrm{SD}(\wedge) \Rightarrow \mathrm{BW})$:

Theorem

Let \mathbb{A} be a conservative relational structure (i.e. containing all unary relations) with at most binary relations. If $\operatorname{Pol}(\mathbb{A})$ is Taylor then $\operatorname{CSP}(\mathbb{A})$ has width $(2,3)$.

A conversation

CS guy: Hi , I have this conservative tractable relational structure \mathbb{A}. Give me the P-time algorithm for solving CSP over \mathbb{A} !
me: Hi , first you have to give me a list of all absorbing subuniverses of all subalgebras of $\operatorname{Pol}(\mathbb{A})$.
CS guy: ???????????? ok, how do I find them?
me: I don't know. I don't know whether it's decidable that a given set is an absorbing subuniverse of $\operatorname{Pol}(\mathbb{A})$ for a given set \mathbb{A} of relations on A (or of a given algebra)...
CS guy: So you proved that a P-time algorithm exists without providing the algorithm????
me: Yes.
CS guy: I don't like it. And I don't like you.
me: I love it. And I don't like you too.
CS guy: See you.
me: See you.

Decidability of absorption

Problem

Is the following problem decidable? Input is a finite algebra \mathbf{A} and a subset B. Question is whether $B \triangleleft \mathbf{A}$.

Affirmative answer would generalize Maróti's result that NU is decidable
Special cases: $|B|=1, \mathbf{A}$ is conservative, \mathbf{A} is Taylor, \mathbf{A} is $\mathrm{SD}(\wedge)$, A is Mal'tsev

Problem

Is the following problem decidable? Input is a finite relational structure \mathbb{A} and a subset B. Question is whether $B \triangleleft \operatorname{Pol}(\mathbb{A})$.

Affirmative answer would generalize the result that NU is decidable Recent progress: decidable in $S D(\wedge)$ case (see Jakub Bulín's talk)

More problems

Dichotomy holds for any B in HSP of a conservative algebra...

Problem

Characterize algebras which are in $\operatorname{HSP}(\mathbf{A})$ for some \mathbf{A} conservative.

Recall that for a binary conservative relational structure \mathbb{A}, $\operatorname{Pol}(\mathbb{A})$ is Taylor $\Rightarrow \operatorname{Pol}(\mathbb{A})$ is $\operatorname{SD}(\wedge) \ldots$
Also if \mathbb{A} contains a single binary relation, then $\operatorname{Pol}(\mathbb{A})$ has Mal'tsev $\Rightarrow \operatorname{Pol}(\Gamma)$ has majority (Kazda + ?)

Problem

Take two important properties $\mathrm{Prop}_{1}, \mathrm{Prop}_{2}$ of finite algebras (like omitting types, Mal'tsev, FS...).
Is it true that for every conservative relational structure \mathbb{A} with (i) at most binary relations (ii) at most one binary relation, $\operatorname{Pol}(\mathbb{A})$ has $\operatorname{Prop}_{1} \Rightarrow \operatorname{Pol}(\mathbb{A})$ has Prop_{2} ?

