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CSP over algebra

A .. . fixed finite idempotent algebra

Definition (CSP(A) - Constraint Satisfaction Problem over A)

INSTANCE:
V .. .set of variables
C ...set of constraints

constraint . .. pair (x, R), where
x = (x1,...,xx) € VK (scope) assume xi,...,xx distinct
R < Ak (constraint relation)

QUESTION: Does there exist a solution?

solution ... mapping f : V — A such that f(x) € R
for each (x,R) € C



Conservative CSPs

A is conservative, if B < A for every B C A

Theorem ( )

Let A be conservative. If A is Taylor, then CSP(A) is tractable.
(And otherwise CSP(A) is NP-complete. )

Proof is long, complicated case analysis

2 new proofs

(a) using absorption, Prague strategies and one new algebraic
result about conservative algebras B
(today)

(b) using Bulatov's colors and Mar6ti's retraction trick Bulatov
(tommorow)



Algorithm (simplified):
» Make the instance (2,3)-minimal (old stuff)

» Find (using walking) a 1-minimal subinstance going through
minimal absorbing subuniverses (old stuff)

» Use “Rectangularity theorem” (the only new stuff) to either
find a solution, or shrink the instance

Outline:

» Consistency notions ((k, /)-minimality)

v

Walking and Prague strategies
Absorption, finding nice MASes
Rectangularity theorem — baby case
Algorithm for binary constraints, simplified

Algorithm for binary constraints, real

vV vV.v. v .Yy

Rectangularity theorem



Consistency notions

Definition (1-minimality)
An instance of CSP(A) is 1-minimal, if
» for every x € V there is a unique constraint with scope (x)

- (%), 5%)

» for every ((xi1,...,xx), R) € C and every i, the projection of R
to the i-th coordinate is equal to S,
i.e. Rissubdirect in S, x --- xS,




Consistency notions

Definition (1-minimality)
An instance of CSP(A) is 1-minimal, if
» Vx € V unique ((x),Sx) € C
> V((x1,. .., %), R) €C = R<sSq % xS

Definition ((2,3)-minimality, standard definition)

A 1-minimal instance of CSP(A) is (2, 3)-minimal, if
» for every x; # xo € V there is a unique constraint with scope
(Xl,Xz) .. .((X1,X2), SX1,X2) (Iet SX7X = {(a, a) rac SX})
» for every (x, R) € C whose scope contains xj, xp,the projection
of R to the corresponding coordinates is equal to S x,

» every triple of variables is within a scope of some
constraint



Consistency notions

Definition (1-minimality)
An instance of CSP(A) is 1-minimal, if

» Vx € V unique ((x),Sx) € C
> V((Xl,...,Xk),R)EC = R <s le X oee- Xst

Definition ((2,3)-minimality, essentially the same)

A 1-minimal instance of CSP(A) is (2, 3)-minimal, if
» for every x; # xp € V there is a unique constraint with scope
(X1,X2) .. .((X1,X2), 5X1,><2) (Iet Sx,x = {(a, a) 1ae€ SX})
» for every (x, R) € C whose scope contains xj, xp,the projection
of R to the corresponding coordinates is equal to Sy,

» for every xi,x2,x3 € V and every (a, b) € Sy, x, there exists ¢
such that (a,c) € Sy« and (b, c) € S,



Walking in 2-minimal instances

If RC A% and BC A, let R¥[B] = {c € A:3be B (b,c) € R}
Let x,ye Vand 0 # B<S,, 0 # C<S,. We write
(x,B) <1 (y,C) iff S [B]=C

< ...the transitive closure of <; = qoset QOSET
Write (x, B) ~ (y, C), if (x, B) < (v, C) < (x, B)

Definition (Prague strategy, for 2-minimal instances)

A 2-minimal instance is a Prague strategy, if
(x,B) ~ (y, C) implies (x, B) <1 (y, C)

In general, Prague strategy = 1-minimal instance + ...
Our definition suffices for instances with at most binary constraints

Every (2,3)-minimal instance is a Prague strategy.




Absorption

Definition
B is an absorbing subuniverse of T, if T has a term t such that for
every coordinate /

t(B,B,...,B,T,B,B,...,B) C B (T is at the i-th coordinate)
Notation: B« T.

Definition

B is a minimal absorbing subuniverse of T if B< T and B has no
proper absorbing subuniverses. Notation: B < T.

Fact

If P is a Prague strategy, By < Sy and the restriction of P to B's is
1-minimal, then this restriction is a Prague strategy.



Subalgorithm

Fact

Let P be a Prague strategy over A. There exist E, << Sy, x € V
such that the restriction of P to E's is a Prague strategy.
Moreover, there is a P-time algorithm for finding such E'’s.

» Consider subqoset AbsQoset of QOSET formed by all pairs
(x, B) such that B is a proper absorbing subuniverse of S,
(fact: it is an upset)

» Find a maximal component {(x, Ry) : x € W} of AbsQoset
(where W C V). Define Ry = S for x e V — W

» The restriction of P to R's is 1-minimal (because P is a
Prague strategy)

» This restriction is a Prague strategy (from the previous fact)

» Restrict and repeat



Subalgorithm

Fact

Let P be a Prague strategy over A. There exist Ex <1 Sy, x € V
such that the restriction of P to E's is a Prague strategy.

(We will only need that the restriction is 1-minimal.)

Moreover, there is a P-time algorithm for finding such E's.

» Works for Prague strategies over arbitrary idempotent algebra
(not necessarily conservative, not necessarily Taylor)

» Proves that NU implies width (2, 3)



Rectangularity theorem — baby case

Fact (Inspiration: Bulatov's original proof)

Let
» T, T, be conservative Taylor algebras
» R<sT1xTy
>» B« Ty, Bbx Ty
> RD(B:[XB2)7£®
» day € Ty — By 3 € By (a1,b2) €R
Then By x B, C R.



Proof of the baby case

» Draw a potato picture. “linked” below means connected on
the picture.
> LetSZRﬂ(leBz)
» S <s Bj X Bj (as the projection of S to the first coordinate
absorbs By)
» Let C = all elements not R-linked to a3
» If C =0, then
> S is linked (use the fact that connectivity is absorbed)
» S = B; x By (using Absorption Theorem)
» If C #0, then C < By (using conservativity)



Algorithm for binary constraints, simplified

Assume that
» We can solve instances over smaller domains in P-time
» All constraints are at most binary

The algorithm:

1. Find an equivalent (2, 3)-minimal instance P
2. Assume that every S, has a proper absorbing subuniverse

3. Find {Ex : x € V'} such that E, <« Sy and the restriction of P
to E's is 1-minimal (use the subalgorithm)

4. Find a partition V = Vi U... V] such that (x, Ex) ~ (y, E))
whenever x, y are in the same V; (strands)

5. Using inductive assumption, find partial solutions f; : V; — A.

» If some f; does not exist, then we can delete E, from S,,
x € V; and start again

» If all f; exist, then Uf; is a solution by Rectangularity theorem,
baby case



Algorithm for binary constraints

1. Find an equivalent (2, 3)-minimal instance P

2. Consider the subgoset NafaQoset of QOSET formed by
(x, B) such that B has a proper absorbing subuniverse

3. If NafaQoset is nonempty

» Find a maximal component {(x, Dy) : x € W} of NafaQoset
Let Q be the restriction of P to D's
Find E's for the instance @ as before
Solve in strands as before, if impossible, delete E, and go to 1.
Delete D, — E, x € W and go to 1.

4. If NafaQoset is empty, then we are Mal'tsev (use WNU)

vV vyVvVYyy

For general constraints:
» The algorithm is the same

» The proof of correctness requires Rectangularity Theorem in
full generality:



Rectangularity theorem

Let

» T1, Ty, ..., T, be conservative Taylor algebras
» R<sTi xTox---xTh,,
>» Bl Ty, Bb«x Ty, ..., BT,
» RON(By X By x -+ xB,)#0
Define
> i~ j if RI5;[Bi] = B; and R[};[Bj] = Bi, where R|;; is the
projection of R to coordinates i, j

Then a tuple a = (a1,...,a,) € By X --- X By, belongs to R
whenever ax € Ry for every ~-class K.



A note on binary constraints

Using (Hell, Rafiey or Kazda) and (SD(A) = BW):

Theorem

Let A be a conservative relational structure (i.e. containing all
unary relations) with at most binary relations.
If Pol(A) is Taylor then CSP(A) has width (2,3).



A conversation

CS guy: Hi, I have this conservative tractable relational structure
A. Give me the P-time algorithm for solving CSP over Al

me: Hi, first you have to give me a list of all absorbing
subuniverses of all subalgebras of Pol(A).

CS guy: 77777777777 ok, how do | find them?
me: | don't know. | don't know whether it's decidable that a given

set is an absorbing subuniverse of Pol(A) for a given set A of
relations on A (or of a given algebra)...

CS guy: So you proved that a P-time algorithm exists without
providing the algorithm?777

me: Yes.

CS guy: I don't like it. And | don't like you.
me: | love it. And | don't like you too.

CS guy: See you.

me: See you.



Decidability of absorption

Problem

Is the following problem decidable? Input is a finite algebra A and
a subset B. Question is whether B < A.

Affirmative answer would generalize Maréti's result that NU is

decidable

Special cases: |B| =1, A is conservative, A is Taylor, A is SD(A),
A is Mal'tsev

Problem

Is the following problem decidable? Input is a finite relational
structure A and a subset B. Question is whether B < Pol(A).

Affirmative answer would generalize the result that NU is decidable
Recent progress: decidable in SD(A) case (see Jakub Bulin's talk)



More problems

Dichotomy holds for any B in HSP of a conservative algebra. ..

Problem

Characterize algebras which are in HSP(A) for some A
conservative.

Recall that for a binary conservative relational structure A,
Pol(A) is Taylor = Pol(A) is SD(A)...

Also if A contains a single binary relation, then

Pol(A) has Mal'tsev = Pol(I") has majority (Kazda + 7)

Problem

Take two important properties Propy, Propy of finite algebras (like
omitting types, Mal'tsev, FS...).

Is it true that for every conservative relational structure A with (i)
at most binary relations (ii) at most one binary relation,

Pol(A) has Prop; = Pol(A) has Prop,?



