A welcome conservative talk

Libor Barto

McMaster University and Charles University

Algebra & CSP workshop, Toronto, August 2011

CSP over algebra

A ... fixed finite idempotent algebra

Definition (CSP(A) - Constraint Satisfaction Problem over A)

INSTANCE:

```
V \dots set of variables
```

$$\mathcal{C}$$
 ... set of constraints

constraint . . . pair
$$(x, R)$$
, where

$$\mathbf{x} = (x_1, \dots, x_k) \in V^k$$
 (scope) assume x_1, \dots, x_k distinct $R \leq \mathbf{A}^k$ (constraint relation)

QUESTION: Does there exist a solution?

solution ... mapping
$$f: V \to A$$
 such that $f(\mathbf{x}) \in R$ for each $(\mathbf{x}, R) \in C$

Conservative CSPs

A is conservative, if $B \leq \mathbf{A}$ for every $B \subseteq A$

Theorem (Bulatov)

Let **A** be conservative. If **A** is Taylor, then $CSP(\mathbf{A})$ is tractable. (And otherwise $CSP(\mathbf{A})$ is NP-complete.)

Proof is long, complicated case analysis

2 new proofs

- (a) using absorption, Prague strategies and one new algebraic result about conservative algebras B (today)
- (b) using Bulatov's colors and Maróti's retraction trick Bulatov (tommorow)

Outline

Algorithm (simplified):

- ► Make the instance (2,3)-minimal (old stuff)
- Find (using walking) a 1-minimal subinstance going through minimal absorbing subuniverses (old stuff)
- Use "Rectangularity theorem" (the only new stuff) to either find a solution, or shrink the instance

Outline:

- Consistency notions ((k, l)-minimality)
- Walking and Prague strategies
- Absorption, finding nice MASes
- ▶ Rectangularity theorem baby case
- Algorithm for binary constraints, simplified
- Algorithm for binary constraints, real
- Rectangularity theorem

Consistency notions

Definition (1-minimality)

An instance of CSP(A) is 1-minimal, if

- ▶ for every $x \in V$ there is a unique constraint with scope (x) ... $((x), S_x)$
- for every ((x₁,...,x_k), R) ∈ C and every i, the projection of R to the i-th coordinate is equal to S_{xi} i.e. R is subdirect in S_{x1} ×···× S_{xk}

Consistency notions

Definition (1-minimality)

An instance of CSP(A) is 1-minimal, if

- ▶ $\forall x \in V$ unique $((x), S_x) \in C$
- $\forall ((x_1,\ldots,x_k),R) \in \mathcal{C} \Rightarrow R \leq_{\mathcal{S}} S_{x_1} \times \cdots \times S_{x_k}$

Definition ((2,3)-minimality, standard definition)

A 1-minimal instance of CSP(A) is (2,3)-minimal, if

- ▶ for every $x_1 \neq x_2 \in V$ there is a unique constraint with scope $(x_1, x_2) \dots ((x_1, x_2), S_{x_1, x_2})$ (let $S_{x,x} = \{(a, a) : a \in S_x\}$)
- ▶ for every $(\mathbf{x}, R) \in \mathcal{C}$ whose scope contains x_1, x_2 , the projection of R to the corresponding coordinates is equal to S_{x_1,x_2}
- every triple of variables is within a scope of some constraint

Consistency notions

Definition (1-minimality)

An instance of CSP(A) is 1-minimal, if

- ▶ $\forall x \in V$ unique $((x), S_x) \in C$
- $\blacktriangleright \ \forall ((x_1,\ldots,x_k),R) \in \mathcal{C} \ \Rightarrow \ R \leq_{\mathcal{S}} S_{x_1} \times \cdots \times S_{x_k}$

Definition ((2,3)-minimality, essentially the same)

A 1-minimal instance of CSP(A) is (2,3)-minimal, if

- for every $x_1 \neq x_2 \in V$ there is a unique constraint with scope $(x_1, x_2) \dots ((x_1, x_2), S_{x_1, x_2})$ (let $S_{x,x} = \{(a, a) : a \in S_x\}$)
- ▶ for every $(\mathbf{x}, R) \in \mathcal{C}$ whose scope contains x_1, x_2 , the projection of R to the corresponding coordinates is equal to S_{x_1,x_2}
- ▶ for every $x_1, x_2, x_3 \in V$ and every $(a, b) \in S_{x_1,x_2}$ there exists c such that $(a, c) \in S_{x_1,x_3}$ and $(b, c) \in S_{x_2,x_3}$

Walking in 2-minimal instances

If
$$R \subseteq A^2$$
 and $B \subseteq A$, let $R^+[B] = \{c \in A : \exists b \in B \ (b,c) \in R\}$

Let $x, y \in V$ and $\emptyset \neq B \leq \mathbf{S}_x$, $\emptyset \neq C \leq \mathbf{S}_y$. We write

$$(x,B) \leq_1 (y,C)$$
 iff $S_{x,y}^+[B] = C$

$$\leq \dots$$
 the transitive closure of $\leq_1 \implies$ goset QOSET

Write
$$(x, B) \sim (y, C)$$
, if $(x, B) \leq (y, C) \leq (x, B)$

Definition (Prague strategy, for 2-minimal instances)

A 2-minimal instance is a Prague strategy, if $(x, B) \sim (y, C)$ implies $(x, B) \leq_1 (y, C)$

In general, Prague strategy = 1-minimal instance $+ \dots$ Our definition suffices for instances with at most binary constraints

Fact

Every (2,3)-minimal instance is a Prague strategy.

Absorption

Definition

B is an absorbing subuniverse of T, if T has a term t such that for every coordinate i

$$t(B, B, \dots, B, T, B, B, \dots, B) \subseteq B$$
 (T is at the *i*-th coordinate)

Notation: $B \triangleleft \mathbf{T}$.

Definition

B is a minimal absorbing subuniverse of **T** if $B \triangleleft T$ and **B** has no proper absorbing subuniverses. Notation: $B \triangleleft T$.

Fact

If P is a Prague strategy, $B_x \triangleleft S_x$ and the restriction of P to B's is 1-minimal, then this restriction is a Prague strategy.

Subalgorithm

Fact

Let P be a Prague strategy over A. There exist $E_x \ll S_x$, $x \in V$ such that the restriction of P to E's is a Prague strategy. Moreover, there is a P-time algorithm for finding such E's.

Proof.

- ▶ Consider subqoset AbsQoset of QOSET formed by all pairs (x, B) such that B is a proper absorbing subuniverse of S_x (fact: it is an upset)
- ▶ Find a maximal component $\{(x, R_x) : x \in W\}$ of AbsQoset (where $W \subseteq V$). Define $R_x = S_x$ for $x \in V W$
- ► The restriction of *P* to *R*'s is 1-minimal (because *P* is a Prague strategy)
- ▶ This restriction is a Prague strategy (from the previous fact)
- Restrict and repeat

Subalgorithm

Fact

Let P be a Prague strategy over A. There exist $E_x ext{ } ext{$

- Works for Prague strategies over arbitrary idempotent algebra (not necessarily conservative, not necessarily Taylor)
- ▶ Proves that NU implies width (2,3)

Rectangularity theorem – baby case

Fact (Inspiration: Bulatov's original proof)

Let

- $ightharpoonup T_1, T_2$ be conservative Taylor algebras
- $ightharpoonup R \leq_S \mathbf{T}_1 \times \mathbf{T}_2$,
- \triangleright $B_1 \bowtie \mathbf{T}_1$, $B_2 \bowtie \mathbf{T}_2$
- $\blacktriangleright R \cap (B_1 \times B_2) \neq \emptyset$
- ▶ $\exists a_1 \in T_1 B_1 \ \exists b_2 \in B_2 \ (a_1, b_2) \in R$

Then $B_1 \times B_2 \subseteq R$.

Proof of the baby case

Proof.

- Draw a potato picture. "linked" below means connected on the picture.
- ▶ Let $S = R \cap (B_1 \times B_2)$
- ▶ $S \leq_S B_1 \times B_2$ (as the projection of S to the first coordinate absorbs B_1)
- ▶ Let $C = \text{all elements not } R\text{-linked to } a_1$
- ▶ If $C = \emptyset$, then
 - S is linked (use the fact that connectivity is absorbed)
 - $S = B_1 \times B_2$ (using Absorption Theorem)
- ▶ If $C \neq \emptyset$, then $C \triangleleft \mathbf{B}_1$ (using conservativity)

Algorithm for binary constraints, simplified

Assume that

- ▶ We can solve instances over smaller domains in P-time
- All constraints are at most binary

The algorithm:

- 1. Find an equivalent (2,3)-minimal instance P
- 2. Assume that every S_x has a proper absorbing subuniverse
- 3. Find $\{E_x : x \in V\}$ such that $E_x \bowtie \mathbf{S}_x$ and the restriction of P to E's is 1-minimal (use the subalgorithm)
- 4. Find a partition $V = V_1 \cup ... V_I$ such that $(x, E_x) \sim (y, E_y)$ whenever x, y are in the same V_i (strands)
- 5. Using inductive assumption, find partial solutions $f_i: V_i \rightarrow A$.
 - ▶ If some f_i does not exist, then we can delete E_x from S_x , $x \in V_i$ and start again
 - ▶ If all f_i exist, then $\cup f_i$ is a solution by Rectangularity theorem, baby case

Algorithm for binary constraints

- 1. Find an equivalent (2,3)-minimal instance P
- 2. Consider the subqoset NafaQoset of QOSET formed by (x, B) such that **B** has a proper absorbing subuniverse
- 3. If NafaQoset is nonempty
 - ▶ Find a maximal component $\{(x, D_x) : x \in W\}$ of NafaQoset
 - ▶ Let *Q* be the restriction of *P* to *D*'s
 - ► Find E's for the instance Q as before
 - ▶ Solve in strands as before, if impossible, delete E_x and go to 1.
 - ▶ Delete $D_x E_x$, $x \in W$ and go to 1.
- 4. If NafaQoset is empty, then we are Mal'tsev (use WNU)

For general constraints:

- The algorithm is the same
- The proof of correctness requires Rectangularity Theorem in full generality:

Rectangularity theorem

Theorem

Let

- $ightharpoonup T_1, T_2, \dots, T_n$ be conservative Taylor algebras
- $R \leq_S \mathbf{T}_1 \times \mathbf{T}_2 \times \cdots \times \mathbf{T}_n,$
- \triangleright $B_1 \Leftrightarrow \mathsf{T}_1, B_2 \Leftrightarrow \mathsf{T}_2, \ldots, B_n \Leftrightarrow \mathsf{T}_n$
- $ightharpoonup R \cap (B_1 \times B_2 \times \cdots \times B_n) \neq \emptyset$

Define

▶ $i \sim j$ if $R|_{i,j}^+[B_i] = B_j$ and $R|_{j,i}^+[B_j] = B_i$, where $R|_{i,j}$ is the projection of R to coordinates i, j

Then a tuple $\mathbf{a} = (a_1, \dots, a_n) \in B_1 \times \dots \times B_n$ belongs to R whenever $a_K \in R_K$ for every \sim -class K.

A note on binary constraints

Using (Hell, Rafiey or Kazda) and (SD(\land) \Rightarrow BW):

Theorem

Let \mathbb{A} be a conservative relational structure (i.e. containing all unary relations) with at most binary relations. If $\operatorname{Pol}(\mathbb{A})$ is Taylor then $\operatorname{CSP}(\mathbb{A})$ has width (2,3).

A conversation

CS guy: Hi, I have this conservative tractable relational structure \mathbb{A} . Give me the P-time algorithm for solving CSP over \mathbb{A} ! me: Hi, first you have to give me a list of all absorbing subuniverses of all subalgebras of Pol(\mathbb{A}).

CS guy: ????????? ok, how do I find them?

me: I don't know. I don't know whether it's decidable that a given set is an absorbing subuniverse of $Pol(\mathbb{A})$ for a given set \mathbb{A} of relations on A (or of a given algebra)...

CS guy: So you proved that a P-time algorithm exists without providing the algorithm????

me: Yes.

CS guy: I don't like it. And I don't like you.

me: I love it. And I don't like you too.

CS guy: See you.

me: See you.

Decidability of absorption

Problem

Is the following problem decidable? Input is a finite algebra \mathbf{A} and a subset B. Question is whether $B \triangleleft \mathbf{A}$.

Affirmative answer would generalize Maróti's result that NU is decidable

Special cases: |B|=1, **A** is conservative, **A** is Taylor, **A** is SD(\wedge), **A** is Mal'tsev

Problem

Is the following problem decidable? Input is a finite relational structure \mathbb{A} and a subset B. Question is whether $B \triangleleft Pol(\mathbb{A})$.

Affirmative answer would generalize the result that NU is decidable Recent progress: decidable in $SD(\land)$ case (see Jakub Bulín's talk)

More problems

Dichotomy holds for any **B** in HSP of a conservative algebra...

Problem

Characterize algebras which are in HSP(A) for some A conservative.

Recall that for a binary conservative relational structure \mathbb{A} , $Pol(\mathbb{A})$ is $Taylor \Rightarrow Pol(\mathbb{A})$ is $SD(\wedge)...$

Also if $\mathbb A$ contains a single binary relation, then $Pol(\mathbb A)$ has Mal'tsev $\Rightarrow Pol(\Gamma)$ has majority (Kazda +?)

Problem

Take two important properties $Prop_1$, $Prop_2$ of finite algebras (like omitting types, Mal'tsev, FS...).

Is it true that for every conservative relational structure \mathbb{A} with (i) at most binary relations (ii) at most one binary relation, $Pol(\mathbb{A})$ has $Prop_1 \Rightarrow Pol(\mathbb{A})$ has $Prop_2$?