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CSP over algebra

A . . . fixed finite idempotent algebra

Definition (CSP(A) - Constraint Satisfaction Problem over A)

INSTANCE:
V . . . set of variables
C . . . set of constraints

constraint . . . pair (x, R), where
x = (x1, . . . , xk) ∈ V k (scope) assume x1, . . . , xk distinct
R ≤ Ak (constraint relation)

QUESTION: Does there exist a solution?

solution . . . mapping f : V → A such that f (x) ∈ R
for each (x, R) ∈ C



Conservative CSPs

A is conservative, if B ≤ A for every B ⊆ A

Theorem (Bulatov)

Let A be conservative. If A is Taylor, then CSP(A) is tractable.
(And otherwise CSP(A) is NP-complete. )

Proof is long, complicated case analysis

2 new proofs

(a) using absorption, Prague strategies and one new algebraic
result about conservative algebras B
(today)

(b) using Bulatov’s colors and Maróti’s retraction trick Bulatov
(tommorow)



Outline

Algorithm (simplified):

I Make the instance (2, 3)-minimal (old stuff)

I Find (using walking) a 1-minimal subinstance going through
minimal absorbing subuniverses (old stuff)

I Use “Rectangularity theorem” (the only new stuff) to either
find a solution, or shrink the instance

Outline:

I Consistency notions ((k, l)-minimality)

I Walking and Prague strategies

I Absorption, finding nice MASes

I Rectangularity theorem – baby case

I Algorithm for binary constraints, simplified

I Algorithm for binary constraints, real

I Rectangularity theorem



Consistency notions

Definition (1-minimality)

An instance of CSP(A) is 1-minimal, if

I for every x ∈ V there is a unique constraint with scope (x)
. . . ((x), Sx)

I for every ((x1, . . . , xk), R) ∈ C and every i , the projection of R
to the i-th coordinate is equal to Sxi

i.e. R is subdirect in Sx1 × · · · × Sxk

Definition (1-minimality)

An instance of CSP(A) is 1-minimal, if

I ∀x ∈ V unique ((x), Sx) ∈ C
I ∀((x1, . . . , xk), R) ∈ C ⇒ R ≤S Sx1 × · · · × Sxk



Consistency notions

Definition (1-minimality)

An instance of CSP(A) is 1-minimal, if

I ∀x ∈ V unique ((x), Sx) ∈ C
I ∀((x1, . . . , xk), R) ∈ C ⇒ R ≤S Sx1 × · · · × Sxk

Definition ((2,3)-minimality, standard definition)

A 1-minimal instance of CSP(A) is (2, 3)-minimal, if

I for every x1 6= x2 ∈ V there is a unique constraint with scope
(x1, x2) . . . ((x1, x2), Sx1,x2) (let Sx ,x = {(a, a) : a ∈ Sx})

I for every (x, R) ∈ C whose scope contains x1, x2,the projection
of R to the corresponding coordinates is equal to Sx1,x2

I every triple of variables is within a scope of some
constraint



Consistency notions

Definition (1-minimality)

An instance of CSP(A) is 1-minimal, if

I ∀x ∈ V unique ((x), Sx) ∈ C
I ∀((x1, . . . , xk), R) ∈ C ⇒ R ≤S Sx1 × · · · × Sxk

Definition ((2,3)-minimality, essentially the same)

A 1-minimal instance of CSP(A) is (2, 3)-minimal, if

I for every x1 6= x2 ∈ V there is a unique constraint with scope
(x1, x2) . . . ((x1, x2), Sx1,x2) (let Sx ,x = {(a, a) : a ∈ Sx})

I for every (x, R) ∈ C whose scope contains x1, x2,the projection
of R to the corresponding coordinates is equal to Sx1,x2

I for every x1, x2, x3 ∈ V and every (a, b) ∈ Sx1,x2 there exists c
such that (a, c) ∈ Sx1,x3 and (b, c) ∈ Sx2,x3



Walking in 2-minimal instances

If R ⊆ A2 and B ⊆ A, let R+[B] = {c ∈ A : ∃b ∈ B (b, c) ∈ R}

Let x , y ∈ V and ∅ 6= B ≤ Sx , ∅ 6= C ≤ Sy . We write

(x , B) ≤1 (y , C ) iff S+
x ,y [B] = C

≤ . . . the transitive closure of ≤1 ⇒ qoset QOSET

Write (x , B) ∼ (y , C ), if (x , B) ≤ (y , C ) ≤ (x , B)

Definition (Prague strategy, for 2-minimal instances)

A 2-minimal instance is a Prague strategy, if
(x , B) ∼ (y , C ) implies (x , B) ≤1 (y , C )

In general, Prague strategy = 1-minimal instance + . . .
Our definition suffices for instances with at most binary constraints

Fact

Every (2, 3)-minimal instance is a Prague strategy.



Absorption

Definition

B is an absorbing subuniverse of T, if T has a term t such that for
every coordinate i

t(B, B, . . . , B, T , B, B, . . . , B) ⊆ B (T is at the i-th coordinate)

Notation: B / T.

Definition

B is a minimal absorbing subuniverse of T if B / T and B has no
proper absorbing subuniverses. Notation: B // T.

Fact

If P is a Prague strategy, Bx / Sx and the restriction of P to B’s is
1-minimal, then this restriction is a Prague strategy.



Subalgorithm

Fact

Let P be a Prague strategy over A. There exist Ex // Sx , x ∈ V
such that the restriction of P to E ’s is a Prague strategy.
Moreover, there is a P-time algorithm for finding such E’s.

Proof.

I Consider subqoset AbsQoset of QOSET formed by all pairs
(x , B) such that B is a proper absorbing subuniverse of Sx

(fact: it is an upset)

I Find a maximal component {(x , Rx) : x ∈W } of AbsQoset
(where W ⊆ V ). Define Rx = Sx for x ∈ V −W

I The restriction of P to R’s is 1-minimal (because P is a
Prague strategy)

I This restriction is a Prague strategy (from the previous fact)

I Restrict and repeat



Subalgorithm

Fact

Let P be a Prague strategy over A. There exist Ex // Sx , x ∈ V
such that the restriction of P to E ’s is a Prague strategy.

(We will only need that the restriction is 1-minimal.)

Moreover, there is a P-time algorithm for finding such E’s.

I Works for Prague strategies over arbitrary idempotent algebra
(not necessarily conservative, not necessarily Taylor)

I Proves that NU implies width (2, 3)



Rectangularity theorem – baby case

Fact (Inspiration: Bulatov’s original proof)

Let

I T1,T2 be conservative Taylor algebras

I R ≤S T1 × T2,

I B1 // T1, B2 // T2

I R ∩ (B1 × B2) 6= ∅
I ∃a1 ∈ T1 − B1 ∃b2 ∈ B2 (a1, b2) ∈ R

Then B1 × B2 ⊆ R.



Proof of the baby case

Proof.

I Draw a potato picture. “linked” below means connected on
the picture.

I Let S = R ∩ (B1 × B2)

I S ≤S B1 × B2 (as the projection of S to the first coordinate
absorbs B1)

I Let C = all elements not R-linked to a1

I If C = ∅, then
I S is linked (use the fact that connectivity is absorbed)
I S = B1 × B2 (using Absorption Theorem)

I If C 6= ∅, then C / B1 (using conservativity)



Algorithm for binary constraints, simplified

Assume that

I We can solve instances over smaller domains in P-time

I All constraints are at most binary

The algorithm:

1. Find an equivalent (2, 3)-minimal instance P

2. Assume that every Sx has a proper absorbing subuniverse

3. Find {Ex : x ∈ V } such that Ex // Sx and the restriction of P
to E ’s is 1-minimal (use the subalgorithm)

4. Find a partition V = V1 ∪ . . . Vl such that (x , Ex) ∼ (y , Ey )
whenever x , y are in the same Vi (strands)

5. Using inductive assumption, find partial solutions fi : Vi → A.
I If some fi does not exist, then we can delete Ex from Sx ,

x ∈ Vi and start again
I If all fi exist, then ∪fi is a solution by Rectangularity theorem,

baby case



Algorithm for binary constraints

1. Find an equivalent (2, 3)-minimal instance P

2. Consider the subqoset NafaQoset of QOSET formed by
(x , B) such that B has a proper absorbing subuniverse

3. If NafaQoset is nonempty
I Find a maximal component {(x , Dx) : x ∈W } of NafaQoset
I Let Q be the restriction of P to D’s
I Find E ’s for the instance Q as before
I Solve in strands as before, if impossible, delete Ex and go to 1.
I Delete Dx − Ex , x ∈W and go to 1.

4. If NafaQoset is empty, then we are Mal’tsev (use WNU)

For general constraints:

I The algorithm is the same

I The proof of correctness requires Rectangularity Theorem in
full generality:



Rectangularity theorem

Theorem

Let

I T1,T2, . . . ,Tn be conservative Taylor algebras

I R ≤S T1 × T2 × · · · × Tn,

I B1 // T1, B2 // T2, . . . , Bn // Tn

I R ∩ (B1 × B2 × · · · × Bn) 6= ∅
Define

I i ∼ j if R|+i ,j [Bi ] = Bj and R|+j ,i [Bj ] = Bi , where R|i ,j is the
projection of R to coordinates i , j

Then a tuple a = (a1, . . . , an) ∈ B1 × · · · × Bn belongs to R
whenever aK ∈ RK for every ∼-class K .



A note on binary constraints

Using (Hell, Rafiey or Kazda) and (SD(∧) ⇒ BW):

Theorem

Let A be a conservative relational structure (i.e. containing all
unary relations) with at most binary relations.
If Pol(A) is Taylor then CSP(A) has width (2, 3).



A conversation

CS guy: Hi, I have this conservative tractable relational structure
A. Give me the P-time algorithm for solving CSP over A!

me: Hi, first you have to give me a list of all absorbing
subuniverses of all subalgebras of Pol(A).

CS guy: ??????????? ok, how do I find them?

me: I don’t know. I don’t know whether it’s decidable that a given
set is an absorbing subuniverse of Pol(A) for a given set A of
relations on A (or of a given algebra)...

CS guy: So you proved that a P-time algorithm exists without
providing the algorithm????

me: Yes.

CS guy: I don’t like it. And I don’t like you.

me: I love it. And I don’t like you too.

CS guy: See you.

me: See you.



Decidability of absorption

Problem

Is the following problem decidable? Input is a finite algebra A and
a subset B. Question is whether B / A.

Affirmative answer would generalize Maróti’s result that NU is
decidable

Special cases: |B| = 1, A is conservative, A is Taylor, A is SD(∧),
A is Mal’tsev

Problem

Is the following problem decidable? Input is a finite relational
structure A and a subset B. Question is whether B / Pol(A).

Affirmative answer would generalize the result that NU is decidable

Recent progress: decidable in SD(∧) case (see Jakub Buĺın’s talk)



More problems

Dichotomy holds for any B in HSP of a conservative algebra. . .

Problem

Characterize algebras which are in HSP(A) for some A
conservative.

Recall that for a binary conservative relational structure A,
Pol(A) is Taylor ⇒ Pol(A) is SD(∧)...

Also if A contains a single binary relation, then
Pol(A) has Mal’tsev ⇒ Pol(Γ) has majority (Kazda + ?)

Problem

Take two important properties Prop1, Prop2 of finite algebras (like
omitting types, Mal’tsev, FS...).
Is it true that for every conservative relational structure A with (i)
at most binary relations (ii) at most one binary relation,
Pol(A) has Prop1 ⇒ Pol(A) has Prop2?


