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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

▶ Based on systematic use of Wolff potentials, Phuc and
Verbitsky [PV] (2008) studied p-Laplacian equations

−Δpu = −div(∇u∣∇u∣p−2) = uq

and Hessian equations

Fk [−u] = uq.

They gave the existence and pointwise estimate of the positive
solutions, in terms of the corresponding Wolff potentials.
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▶ Based on systematic use of Wolff potentials, Phuc and
Verbitsky [PV] (2008) studied p-Laplacian equations

−Δpu = −div(∇u∣∇u∣p−2) = uq

and Hessian equations

Fk [−u] = uq.

They gave the existence and pointwise estimate of the positive
solutions, in terms of the corresponding Wolff potentials.

▶ Recently, Ma, Chen and Li [MCL] proved regularity for
positive solutions of an integral system associated with Wolff
potentials:

u = W�,p(v
q2),

v = W�,p(u
q1).
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

▶ Based on systematic use of Wolff potentials, Phuc and
Verbitsky [PV] (2008) studied p-Laplacian equations

−Δpu = −div(∇u∣∇u∣p−2) = uq

and Hessian equations

Fk [−u] = uq.

They gave the existence and pointwise estimate of the positive
solutions, in terms of the corresponding Wolff potentials.

▶ Recently, Ma, Chen and Li [MCL] proved regularity for
positive solutions of an integral system associated with Wolff
potentials:

u = W�,p(v
q2),

v = W�,p(u
q1).

we will concentrate on some analogous results on homogeneous
spaces.
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

A quasi-metric d on a set X is a mapping d : X× X → [0,∞)
satisfying

(i) d(x , y) = 0 if and only if x = y ;

(ii) d(x , y) = d(y , x) for all x , y ∈ X;

(iii) d(x , z) ≤ k1(d(x , y) + d(y , z)) for all x , y , z ∈ X and some
constant k1 ∈ [1,∞) independent of x , y and z .
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

A quasi-metric d on a set X is a mapping d : X× X → [0,∞)
satisfying

(i) d(x , y) = 0 if and only if x = y ;

(ii) d(x , y) = d(y , x) for all x , y ∈ X;

(iii) d(x , z) ≤ k1(d(x , y) + d(y , z)) for all x , y , z ∈ X and some
constant k1 ∈ [1,∞) independent of x , y and z .

Such quasi-metric d defines a topology on X, for which the balls
Bt(x) = {y ∈ X : d(x , y) < t} form a base. Then homogeneous
spaces introduced by Coifman and Weiss [CW] is defined as follows.
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

A quasi-metric d on a set X is a mapping d : X× X → [0,∞)
satisfying

(i) d(x , y) = 0 if and only if x = y ;

(ii) d(x , y) = d(y , x) for all x , y ∈ X;

(iii) d(x , z) ≤ k1(d(x , y) + d(y , z)) for all x , y , z ∈ X and some
constant k1 ∈ [1,∞) independent of x , y and z .

Such quasi-metric d defines a topology on X, for which the balls
Bt(x) = {y ∈ X : d(x , y) < t} form a base. Then homogeneous
spaces introduced by Coifman and Weiss [CW] is defined as follows.

Definition 1 (Homogeneous spaces)

A space of homogeneous type (X, d , �) is a set X equipped with a
quasi-metric d and a doubling measure �, that is, � is a locally
finite nonnegative measure on Borel subsets of X satisfying
�(B2t(x)) ≤ k2�(Bt(x)) for all balls Bt(x) ⊆ X and some constant
k2 ∈ (0,∞) independent of x and t.
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

In [MS], Macias and Segovia have proved that one can replace the
quasi-metric d by another quasi-metric d∗ ≈ d such that d∗ yields
the same topology on X as d does
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

In [MS], Macias and Segovia have proved that one can replace the
quasi-metric d by another quasi-metric d∗ ≈ d such that d∗ yields
the same topology on X as d does and, moreover, for some N > 0

�(Br (x)) ∼ rN (1.1)

where Br (x) = {y ∈ X : d∗(y , x) < r}
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

In [MS], Macias and Segovia have proved that one can replace the
quasi-metric d by another quasi-metric d∗ ≈ d such that d∗ yields
the same topology on X as d does and, moreover, for some N > 0

�(Br (x)) ∼ rN (1.1)

where Br (x) = {y ∈ X : d∗(y , x) < r} and d∗ has the following
regularity property

∣d∗(x , y)−d∗(x ′, y)∣ ≤ C0d
∗(x , x ′)�[d∗(x , y)+d∗(x ′, y)]1−� (1.2)

for some regularity exponent � : 0 < � < 1, 0 < r < ∞ and all
x , x ′, y ∈ X.
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

In [MS], Macias and Segovia have proved that one can replace the
quasi-metric d by another quasi-metric d∗ ≈ d such that d∗ yields
the same topology on X as d does and, moreover, for some N > 0

�(Br (x)) ∼ rN (1.1)

where Br (x) = {y ∈ X : d∗(y , x) < r} and d∗ has the following
regularity property

∣d∗(x , y)−d∗(x ′, y)∣ ≤ C0d
∗(x , x ′)�[d∗(x , y)+d∗(x ′, y)]1−� (1.2)

for some regularity exponent � : 0 < � < 1, 0 < r < ∞ and all
x , x ′, y ∈ X.
From now on, we drop the ∗ in the quasi-metric d∗ and simply
assume d satisfies (1.1) and (1.2). We also call N as the
homogeneous dimension of (X, d , �).
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

▶ The continuous truncated version of Wolff potentials on
homogeneous spaces for ! ∈ M

+(X) is defined as

W r
�,p!(x) =

∫ r

0

[

!(Bt(x))

�(Bt(x))
1−�p

N

]
1

p−1
dt

t
.
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

▶ The continuous truncated version of Wolff potentials on
homogeneous spaces for ! ∈ M

+(X) is defined as

W r
�,p!(x) =

∫ r

0

[

!(Bt(x))

�(Bt(x))
1−�p

N

]
1

p−1
dt

t
.

▶ Similarly, we define the continuous version

W�,p! = W∞

�,p!
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

▶ The continuous truncated version of Wolff potentials on
homogeneous spaces for ! ∈ M

+(X) is defined as

W r
�,p!(x) =

∫ r

0

[

!(Bt(x))

�(Bt(x))
1−�p

N

]
1

p−1
dt

t
.

▶ Similarly, we define the continuous version

W�,p! = W∞

�,p!

and the discrete version

WD
�,p!(x) =

∑

k

∑

diam(Q)∼2−k

[

!(Q)

�(Q)1−
�p
N

]
1

p−1

�Q(x),

using the dyadic construction on homogeneous spaces by
Christ [C] and Sawyer and Wheeden [SW].

Yayuan Xiao Wolff potentials and regularity of solutions to integral systems on



Introduction
Main results
Main tools

Wolff potentials on homogeneous spaces
Lane-Emden type integral system

Consider a Lane-Emden type integral system, that is,
{

u = W�,p(v
q2),

v = W�,p(u
q1),

(1.3)

under the (critical) condition

p − 1

q1 + p − 1
+

p − 1

q2 + p − 1
=

N − �p

N
, (1.4)
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Wolff potentials on homogeneous spaces
Lane-Emden type integral system

Consider a Lane-Emden type integral system, that is,
{

u = W�,p(v
q2),

v = W�,p(u
q1),

(1.3)

under the (critical) condition

p − 1

q1 + p − 1
+

p − 1

q2 + p − 1
=

N − �p

N
, (1.4)

Remark

When v = u and q1 = q2 = q, (1.3) is reduced to

u = W�,p(u
q),

which is the Lane-Emden type integral equation. Given special
pairs of � and p, the equation deduces p-Laplacian equations and
Hessian equations.
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HLS type inequality for Wolff potentials
Integrability estimates
Lipschitz continuity estimates

One of our main theorems is as follows.

Theorem 2.1
Let � > 0, 1 < p < ∞, q > p − 1, ! ∈ M

+(X) and 0 < r ≤ ∞,
then

∥

∥W r
�,p!

∥

∥

q

Lq(d�)
=

∫

X

⎧

⎨

⎩

∫ r

0

[

!(Bt(x))

�(Bt(x))
1−�p

N

]
1

p−1
dt

t

⎫

⎬

⎭

q

d� (2.1)

≃
∥

∥I r�p!
∥

∥

q
p−1

L
q

p−1 (d�)
=

∫

X

[

∫ r

0

!(Bt(x))

�(Bt(x))
1−�p

N

dt

t

]
q

p−1

d�. (2.2)
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HLS type inequality for Wolff potentials
Integrability estimates
Lipschitz continuity estimates

By a HLS inequality proved by Sawyer and Wheeden [SW] (also
see Sawyer, Wheeden and Zhao[SWZ]) for Riesz potentials on
homogeneous spaces, it is not difficult to derive the following HLS
type inequality for Wolff potentials.
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HLS type inequality for Wolff potentials
Integrability estimates
Lipschitz continuity estimates

By a HLS inequality proved by Sawyer and Wheeden [SW] (also
see Sawyer, Wheeden and Zhao[SWZ]) for Riesz potentials on
homogeneous spaces, it is not difficult to derive the following HLS
type inequality for Wolff potentials.

Theorem 2.2 (HLS type inequality for Wolff potentials)

Let � > 0, 1 < p < ∞, q > p − 1 and �p < N. If f ∈ Ls(d�) for
s > 1, then

∥W�,p(f )∥Lq(d�) ≤ C∥f ∥
1

p−1

Ls (d�),

where p−1
q

= 1
s
− �p

N
.

This inequality can be applied to study the Lane-Emden type
integral system (1.3).
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HLS type inequality for Wolff potentials
Integrability estimates
Lipschitz continuity estimates

Our main regularity theorems state

Theorem 2.3 (Integrability estimates)

Let � > 0, 1 < p ≤ 2, �p < N and q1, q2 > 1, assume that (u, v)
is a pair of positive solutions of (1.3) and (1.4) satisfying
(u, v) ∈ Lq1+p−1(d�)× Lq2+p−1(d�), then

(u, v) ∈ Ls1(d�)× Ls2(d�) for all s1 and s2 such that
1

s1
belongs to

(

0,
p

q1 + p − 1

)

∩

(

1

q1 + p − 1
−

1

q2 + p − 1
,

p − 1

q2 + p − 1
+

1

q1 + p − 1

)

and
1

s2
belongs to

(

0,
p

q2 + p − 1

)

∩

(

1

q2 + p − 1
−

1

q1 + p − 1
,

p − 1

q1 + p − 1
+

1

q2 + p − 1

)
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HLS type inequality for Wolff potentials
Integrability estimates
Lipschitz continuity estimates

Theorem 2.4 (L∞ estimates)

Under the same conditions in Theorem 2.3, u and v are both
uniformly bounded on X.
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HLS type inequality for Wolff potentials
Integrability estimates
Lipschitz continuity estimates

Theorem 2.4 (L∞ estimates)

Under the same conditions in Theorem 2.3, u and v are both
uniformly bounded on X.

Theorem 2.5 (Lipschitz continuity estimates)

Under the same conditions in Theorem 2.3, furthermore assume
that k1 = 1, then u and v are both Lipschitz continuous on X,
that is, u, v ∈ C 0,1(d�).
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HLS type inequality for Wolff potentials
Integrability estimates
Lipschitz continuity estimates

Theorem 2.4 (L∞ estimates)

Under the same conditions in Theorem 2.3, u and v are both
uniformly bounded on X.

Theorem 2.5 (Lipschitz continuity estimates)

Under the same conditions in Theorem 2.3, furthermore assume
that k1 = 1, then u and v are both Lipschitz continuous on X,
that is, u, v ∈ C 0,1(d�).

Remark

Theorem 2.2, 2.3, 2.4 and 2.5 also hold for Euclidean spaces Rn

and Heisenberg group Hn.
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

The dyadic decomposition in homogeneous spaces due to Christ
[C] and Swayer and Wheeden [SW] plays an important role in the
proof of Theorem 2.1.
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

The dyadic decomposition in homogeneous spaces due to Christ
[C] and Swayer and Wheeden [SW] plays an important role in the
proof of Theorem 2.1.

Lemma 2 (Dyadic cubes on homogeneous spaces)

For every integer k ∈ ℤ+, there exists a collection of open subsets
{Qk

� ⊆ X : � ∈ Ik}, where Ik denotes some index set depending on
k, and c1, c2 > 0 such that

(i) �({X ∖ ∪Qk
� }) = 0;

(ii) If ℓ ≥ k, then for all � ′ ∈ Iℓ and � ∈ Ik either Qℓ
� ′ ⊆ Qk

� or
Qℓ

� ′ ∩Qk
� = ∅;

(iii) If ℓ < k, for each � ∈ Ik , there is a unique � ′ ∈ Iℓ such that
Qk

� ⊆ Qℓ
� ′ , diam(Qk

� ) ≤ c12
−k, and each Qk

� contains some
ball B(zk� , c22

−k).
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

▶ We say that a cube Q ⊆ X is a dyadic cube if Q = Qk
� for

some k ∈ ℤ+, � ∈ Ik and diam(Q) ∼ 2−k.
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

▶ We say that a cube Q ⊆ X is a dyadic cube if Q = Qk
� for

some k ∈ ℤ+, � ∈ Ik and diam(Q) ∼ 2−k.

▶ For � > 0, 1 < p < ∞ and ! ∈ M+(X), we define the
discrete Wolff potentials on homogeneous space X by

WD
�,p!(x) =

∑

k

∑

diam(Q)∼2−k

[

!(Q)

�(Q)1−
�p
N

]
1

p−1

�Q(x).
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

▶ We say that a cube Q ⊆ X is a dyadic cube if Q = Qk
� for

some k ∈ ℤ+, � ∈ Ik and diam(Q) ∼ 2−k.

▶ For � > 0, 1 < p < ∞ and ! ∈ M+(X), we define the
discrete Wolff potentials on homogeneous space X by

WD
�,p!(x) =

∑

k

∑

diam(Q)∼2−k

[

!(Q)

�(Q)1−
�p
N

]
1

p−1

�Q(x).

▶ When � = �/2 and p = 2, the discrete Riesz follows as

ID� !(x) =
∑

k

∑

diam(Q)∼2−k

!(Q)

�(Q)1−
�

N

�Q(x).
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

▶ We say that a cube Q ⊆ X is a dyadic cube if Q = Qk
� for

some k ∈ ℤ+, � ∈ Ik and diam(Q) ∼ 2−k.

▶ For � > 0, 1 < p < ∞ and ! ∈ M+(X), we define the
discrete Wolff potentials on homogeneous space X by

WD
�,p!(x) =

∑

k

∑

diam(Q)∼2−k

[

!(Q)

�(Q)1−
�p
N

]
1

p−1

�Q(x).

▶ When � = �/2 and p = 2, the discrete Riesz follows as

ID� !(x) =
∑

k

∑

diam(Q)∼2−k

!(Q)

�(Q)1−
�

N

�Q(x).

▶

∥

∥WD
�,p!

∥

∥

q

Lq(d�)
≃

∥

∥ID�p!
∥

∥

q
p−1

L
q

p−1 (d�)
.
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

▶ The main tool to prove regularity estimate in Theorem 2.3 is
the regularity lifting by contracting operators.
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

▶ The main tool to prove regularity estimate in Theorem 2.3 is
the regularity lifting by contracting operators.

▶ Suppose V is a topological vector space with two extended
norms,

∥ ⋅ ∥X , ∥ ⋅ ∥Y : V → [0,∞],

let X := {v ∈ V : ∥v∥X < ∞} and
Y := {v ∈ V : ∥v∥Y < ∞}.
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

▶ The main tool to prove regularity estimate in Theorem 2.3 is
the regularity lifting by contracting operators.

▶ Suppose V is a topological vector space with two extended
norms,

∥ ⋅ ∥X , ∥ ⋅ ∥Y : V → [0,∞],

let X := {v ∈ V : ∥v∥X < ∞} and
Y := {v ∈ V : ∥v∥Y < ∞}.

▶ The operator T : X → Y is said to be contracting if

∥Tf − Th∥Y ≤ �∥f − h∥X ,

∀f , h ∈ X and some 0 < � < 1.
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

▶ The main tool to prove regularity estimate in Theorem 2.3 is
the regularity lifting by contracting operators.

▶ Suppose V is a topological vector space with two extended
norms,

∥ ⋅ ∥X , ∥ ⋅ ∥Y : V → [0,∞],

let X := {v ∈ V : ∥v∥X < ∞} and
Y := {v ∈ V : ∥v∥Y < ∞}.

▶ The operator T : X → Y is said to be contracting if

∥Tf − Th∥Y ≤ �∥f − h∥X ,

∀f , h ∈ X and some 0 < � < 1.

▶ And T is said to be shrinking if

∥Tf ∥Y ≤ �∥f ∥X ,

∀f ∈ X and some 0 < � < 1.
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

Theorem 3.1 (Regularity lifting by contracting operators)

[MCL](2011) Let T be a contracting operator from X to itself and
from Y to itself, and assume that X ,Y are both complete. If
f ∈ X, and there exists g ∈ Z := X ∩ Y such that f = Tf + g in
X , then f ∈ Z.
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

Theorem 3.1 (Regularity lifting by contracting operators)

[MCL](2011) Let T be a contracting operator from X to itself and
from Y to itself, and assume that X ,Y are both complete. If
f ∈ X, and there exists g ∈ Z := X ∩ Y such that f = Tf + g in
X , then f ∈ Z.

f ∈ X
Regularity lifting
−−−−−−−−−−→ f ∈ Y
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

Theorem 3.1 (Regularity lifting by contracting operators)

[MCL](2011) Let T be a contracting operator from X to itself and
from Y to itself, and assume that X ,Y are both complete. If
f ∈ X, and there exists g ∈ Z := X ∩ Y such that f = Tf + g in
X , then f ∈ Z.

f ∈ X
Regularity lifting
−−−−−−−−−−→ f ∈ Y

Remark

We apply Theorem 3.1 to prove Theorem 2.3 by letting
X = Lq1+p−1(d�)× Lq2+p−1(d�) and Y = Ls1(d�)× Ls2(d�).
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

▶ To prove Lipschitz continuity estimate in Theorem 2.5, a
modified regularity lifting method is needed.
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

▶ To prove Lipschitz continuity estimate in Theorem 2.5, a
modified regularity lifting method is needed.

▶ Two normed subspaces X and Y are called an “XY-pair”, if
whenever the sequence {un} ⊆ X with un → u in X and
∥un∥Y ≤ C will imply u ∈ Y .
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

▶ To prove Lipschitz continuity estimate in Theorem 2.5, a
modified regularity lifting method is needed.

▶ Two normed subspaces X and Y are called an “XY-pair”, if
whenever the sequence {un} ⊆ X with un → u in X and
∥un∥Y ≤ C will imply u ∈ Y .

Remark

There are some “XY-pairs” of important spaces, and the pair we
use here is L∞ and C 0,1.
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

Theorem 3.2 (Regularity lifting by combinations of contracting
and shrinking operators)

[MCL] (2011) Let X and Y be an “XY-pair”, and assume that
X ,Y are both complete. Let A and B be closed subsets of X and
Y respectively, and T be an operator, which is contracting from A
to X and shrinking from B to Y . Define Sw = Tw + g for some
g ∈ A ∩ B, and assume that S : A ∩ B → A ∩ B. Then there exists
a unique solution u of the equation w = Tw + g in A, and u ∈ Y .
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Dyadic cubes on homogeneous spaces
Regularity lifting
Modified version of regularity lifting

Theorem 3.2 (Regularity lifting by combinations of contracting
and shrinking operators)

[MCL] (2011) Let X and Y be an “XY-pair”, and assume that
X ,Y are both complete. Let A and B be closed subsets of X and
Y respectively, and T be an operator, which is contracting from A
to X and shrinking from B to Y . Define Sw = Tw + g for some
g ∈ A ∩ B, and assume that S : A ∩ B → A ∩ B. Then there exists
a unique solution u of the equation w = Tw + g in A, and u ∈ Y .

u ∈ A ⊆ X
Regularity lifting
−−−−−−−−−−→ u ∈ Y
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Thank you!
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