A new geometric regularity condition for the end-point estimates of bilinear Calderón-Zygmund operators

Rodolfo H. Torres

University of Kansas

Conference in Harmonic Analysis and Partial Differential Equations in Honor of Eric Sawyer

Fields Institute - Toronto, Canada
July 29, 2011

This is joint work in progress with:

Carlos Pérez

University of Seville, Spain

We recall first the classical linear Calderón-Zygmund theory.

We recall first the classical linear Calderón-Zygmund theory.

$$
\begin{gathered}
T f(x)=k * f(x) \text { or } \widehat{T f}(\xi)=m(\xi) \widehat{f}(\xi) \\
T: L^{2} \rightarrow L^{2} \Longleftrightarrow m \in L^{\infty}
\end{gathered}
$$

We recall first the classical linear Calderón-Zygmund theory.

$$
\begin{gathered}
T f(x)=k * f(x) \text { or } \widehat{T f}(\xi)=m(\xi) \widehat{f}(\xi) \\
T: L^{2} \rightarrow L^{2} \Longleftrightarrow m \in L^{\infty}
\end{gathered}
$$

The question then was: how about L^{p} ?

We recall first the classical linear Calderón-Zygmund theory.

$$
\begin{gathered}
T f(x)=k * f(x) \text { or } \widehat{T f}(\xi)=m(\xi) \widehat{f}(\xi) \\
T: L^{2} \rightarrow L^{2} \Longleftrightarrow m \in L^{\infty}
\end{gathered}
$$

The question then was: how about L^{p} ?
Essentially,

$$
\left.\begin{array}{l}
\left|\partial^{\alpha} k(x)\right| \leq C_{\alpha}|x|^{-(n+|\alpha|)} \\
\text { plus some cancellation }
\end{array}\right\} \Rightarrow T: L^{p} \rightarrow L^{p}, \quad 1<p<\infty
$$

We recall first the classical linear Calderón-Zygmund theory.

$$
\begin{gathered}
T f(x)=k * f(x) \text { or } \widehat{T f}(\xi)=m(\xi) \widehat{f}(\xi) \\
T: L^{2} \rightarrow L^{2} \Longleftrightarrow m \in L^{\infty}
\end{gathered}
$$

The question then was: how about L^{p} ?
Essentially,

$$
\left.\begin{array}{r}
\left|\partial^{\alpha} k(x)\right| \leq C_{\alpha}|x|^{-(n+|\alpha|)} \\
\text { plus some cancellation }
\end{array}\right\} \Rightarrow T: L^{p} \rightarrow L^{p}, \quad 1<p<\infty
$$

In fact, the L^{p} theory is obtained from the L^{2} (or any fixed $L^{p_{0}}$) estimate via an $L^{1, \infty}$ estimate, interpolation, and duality as you all know.

In terms of the symbol, it is often easier to verify the Hörmander-Mihlin's condition:

In terms of the symbol, it is often easier to verify the Hörmander-Mihlin's condition:

$$
\left|\partial^{\alpha} m(\xi)\right| \leq C_{\alpha}|\xi|^{-|\alpha|}
$$

In terms of the symbol, it is often easier to verify the Hörmander-Mihlin's condition:

$$
\left|\partial^{\alpha} m(\xi)\right| \leq \boldsymbol{C}_{\alpha}|\xi|^{-|\alpha|}
$$

which guarantees the needed regularity of the kernel to establish the $L^{1, \infty}$-estimate form which the L^{p}-theory follows.

In terms of the symbol, it is often easier to verify the Hörmander-Mihlin's condition:

$$
\left|\partial^{\alpha} m(\xi)\right| \leq \boldsymbol{C}_{\alpha}|\xi|^{-|\alpha|}
$$

which guarantees the needed regularity of the kernel to establish the $L^{1, \infty}$-estimate form which the L^{p}-theory follows.

It is very useful to have representations of operators and conditions both on the time and frequency domains. For convolution operators the regularity conditions on the kernel or symbol are almost equivalent.

In terms of the symbol, it is often easier to verify the Hörmander-Mihlin's condition:

$$
\left|\partial^{\alpha} m(\xi)\right| \leq C_{\alpha}|\xi|^{-|\alpha|}
$$

which guarantees the needed regularity of the kernel to establish the $L^{1, \infty}$-estimate form which the L^{p}-theory follows.

It is very useful to have representations of operators and conditions both on the time and frequency domains. For convolution operators the regularity conditions on the kernel or symbol are almost equivalent.
(But they can be weakened in some particular cases of rough operators which we will not discuss here.)

For non-convolution operators, it is harder to get a Fourier-side representation of the operator. The most general conditions are stated in terms of the kernel.

For non-convolution operators, it is harder to get a Fourier-side representation of the operator. The most general conditions are stated in terms of the kernel.
Essentially,

$$
T(f)(x)=\int K(x, y) f(y) d y
$$

with

$$
\text { (R) } \quad\left|\partial_{x, y}^{\gamma} K(x, y)\right| \leq C_{\gamma}|x-y|^{-n-|\gamma|}
$$

for $|\gamma|=0,1$, then

$$
T: L^{2} \Rightarrow L^{2} \Longleftrightarrow T: L^{p} \Rightarrow L^{p}, 1<p<\infty
$$

For non-convolution operators, it is harder to get a Fourier-side representation of the operator. The most general conditions are stated in terms of the kernel.
Essentially,

$$
T(f)(x)=\int K(x, y) f(y) d y
$$

with

$$
\text { (R) } \quad\left|\partial_{x, y}^{\gamma} K(x, y)\right| \leq C_{\gamma}|x-y|^{-n-|\gamma|}
$$

for $|\gamma|=0,1$, then

$$
T: L^{2} \Rightarrow L^{2} \Longleftrightarrow T: L^{p} \Rightarrow L^{p}, 1<p<\infty
$$

The condition (R) alone is not enough though to imply L^{2}-boundedness. Some cancellation is again needed.

The characterization of the L^{2}-boundedness is given by the T1-Theorem.

The characterization of the L^{2}-boundedness is given by the T1-Theorem.

$$
\begin{aligned}
& \text { T(1)-Theorem David-Journé (1984) } \\
& T: L^{2} \rightarrow L^{2} \Longleftrightarrow \sup _{\xi}\left(\left\|T\left(e^{i x \cdot \xi}\right)\right\|_{B M O}+\left\|T^{*}\left(e^{i x \cdot \xi}\right)\right\|_{B M O}\right) \leq C
\end{aligned}
$$

The characterization of the L^{2}-boundedness is given by the T1-Theorem.

$$
\begin{aligned}
& \text { T(1)-Theorem David-Journé (1984) } \\
& T: L^{2} \rightarrow L^{2} \Longleftrightarrow \sup _{\xi}\left(\left\|T\left(e^{i x \cdot \xi}\right)\right\|_{B M O}+\left\|T^{*}\left(e^{i x \cdot \xi}\right)\right\|_{B M O}\right) \leq C
\end{aligned}
$$

or, as it is most commonly known and the reason for the name of the theorem,

The characterization of the L^{2}-boundedness is given by the T1-Theorem.

T(1)-Theorem David-Journé (1984)

$$
T: L^{2} \rightarrow L^{2} \Longleftrightarrow \sup _{\xi}\left(\left\|T\left(e^{i x \cdot \xi}\right)\right\|_{B M O}+\left\|T^{*}\left(e^{i x \cdot \xi}\right)\right\|_{B M O}\right) \leq C
$$

or, as it is most commonly known and the reason for the name of the theorem,

$$
T: L^{2} \rightarrow L^{2} \Longleftrightarrow T 1, T^{*} 1 \in B M O \text { and } T \in W B P
$$

The characterization of the L^{2}-boundedness is given by the T1-Theorem.

T(1)-Theorem David-Journé (1984)

$$
T: L^{2} \rightarrow L^{2} \Longleftrightarrow \sup _{\xi}\left(\left\|T\left(e^{i x \cdot \xi}\right)\right\|_{B M O}+\left\|T^{*}\left(e^{i x \cdot \xi}\right)\right\|_{B M O}\right) \leq C
$$

or, as it is most commonly known and the reason for the name of the theorem,

$$
T: L^{2} \rightarrow L^{2} \Longleftrightarrow T 1, T^{*} 1 \in B M O \text { and } T \in W B P
$$

(The WBP property essentially says that T is "well-behaved" with respect to translations and dilations)

The characterization of L^{2}-boundedness

$$
\sup _{\xi}\left(\left\|T\left(e^{i x \cdot \xi}\right)\right\|_{B M O}+\left\|T^{*}\left(e^{i X \cdot \xi}\right)\right\|_{B M O}\right) \leq C
$$

nicely support the basic principle that to understand an operator one should check it on simple functions.

The characterization of L^{2}-boundedness

$$
\sup _{\xi}\left(\left\|T\left(e^{i x \cdot \xi}\right)\right\|_{B M O}+\left\|T^{*}\left(e^{i X \cdot \xi}\right)\right\|_{B M O}\right) \leq C
$$

nicely support the basic principle that to understand an operator one should check it on simple functions.

To understand the music played by T we need to understand how it plays every note

The characterization of L^{2}-boundedness

$$
\sup _{\xi}\left(\left\|T\left(e^{i x \cdot \xi}\right)\right\|_{B M O}+\left\|T^{*}\left(e^{i x \cdot \xi}\right)\right\|_{B M O}\right) \leq C
$$

nicely support the basic principle that to understand an operator one should check it on simple functions.

To understand the music played by T we need to understand how it plays every note

But there other useful characterizations more in the spirit of Eric Sawyer's testing conditions

$$
\Longleftrightarrow\left\|T\left(\varphi_{z, R}\right)\right\|_{L^{2}}+\left\|T^{*}\left(\varphi_{z, R}\right)\right\|_{L^{2}} \leq C R^{n / 2}
$$

(Stein, 1993)
for all normalized bumps supported on the unit ball and such that $\left\|\partial^{\alpha} \varphi\right\|_{L^{\infty}} \leq 1$, for all $|\alpha| \leq N$ and where $\varphi_{z, R}(x)=\varphi\left(\frac{x-z}{R}\right)$.

$$
\Longleftrightarrow\left\|T\left(\varphi_{z, R}\right)\right\|_{L^{2}}+\left\|T^{*}\left(\varphi_{z, R}\right)\right\|_{L^{2}} \leq C R^{n / 2}
$$

(Stein, 1993)
for all normalized bumps supported on the unit ball and such that $\left\|\partial^{\alpha} \varphi\right\|_{L^{\infty}} \leq 1$, for all $|\alpha| \leq N$ and where $\varphi_{z, R}(x)=\varphi\left(\frac{x-z}{R}\right)$.
or even more similar to the testing conditions,
$\Longleftrightarrow\left\|T_{\epsilon}\left(\chi_{B}\right)\right\|_{L^{2}}+\left\|T_{\epsilon}^{*}\left(\chi_{B}\right)\right\|_{L^{2}} \leq C|B|^{1 / 2}$
(Nazarov-Treil-Volberg, 1998)
(T_{ϵ} are the usual truncated integrals)

Most of the above have been extended to the bilinear or multilinear setting. There is by now a fairly developed multilinear Calderón-Zygmund theory:

Most of the above have been extended to the bilinear or multilinear setting. There is by now a fairly developed multilinear Calderón-Zygmund theory:
Coifman-Meyer (70’s-80's); Christ-Journé (1987); Kenig-Stein (1999); Grafakos-T. (2000-2002)

Most of the above have been extended to the bilinear or multilinear setting. There is by now a fairly developed multilinear Calderón-Zygmund theory:

Coifman-Meyer (70’s-80's); Christ-Journé (1987);
Kenig-Stein (1999); Grafakos-T. (2000-2002)
Coifman-Meyer introduced the multipliers

$$
\begin{gathered}
T(f, g)(x)=\int m(\xi, \eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta \\
\left|\partial^{\alpha} m(\xi, \eta)\right| \leq C_{\alpha}(|\xi|+|\eta|)^{-|\alpha|}
\end{gathered}
$$

and showed $T: L^{p} \times L^{q} \rightarrow L^{r}$ for $1 / p+1 / q=1 / r$ and $r>1$.

These operators have a singular integral representation

$$
T(f, g)(x)=\int_{\mathbb{R}^{2 n}} K(x-y, x-z) f(y) g(z) d y d z
$$

More generally we can consider

$$
T(f, g)(x)=\int_{\mathbb{R}^{2 n}} K(x, y, z) f(y) g(z) d y d z
$$

where K is a Calderón-Zygmund kernel in $\mathbb{R}^{2 n}$

$$
\text { (R) } \quad\left|\partial^{\alpha} K(x, y, z)\right| \leq C_{\alpha}(|x-y|+|x-z|)^{-(2 n+|\alpha|)}
$$

which were studied also by Christ-Journé.

More generally we can consider

$$
T(f, g)(x)=\int_{\mathbb{R}^{2 n}} K(x, y, z) f(y) g(z) d y d z
$$

where K is a Calderón-Zygmund kernel in $\mathbb{R}^{2 n}$

$$
\text { (R) } \quad\left|\partial^{\alpha} K(x, y, z)\right| \leq C_{\alpha}(|x-y|+|x-z|)^{-(2 n+|\alpha|)}
$$

which were studied also by Christ-Journé.
However, after the results of Lacey-Thiele (1997-1999) on the bilinear Hilbert transform, Kenig-Stein and Grafakos-T. extended the theory for $1 / 2<r \leq 1$.

Points with coordinates $(1 / p, 1 / q, 1 / r)$ and $1 / p+1 / q=1 / r$

Points with coordinates $(1 / p, 1 / q, 1 / r)$ and $1 / p+1 / q=1 / r$

$$
\begin{gathered}
\text { (R) } \quad\left|\partial^{\alpha} K\left(y_{0}, y_{1}, y_{2}\right)\right| \lesssim\left(\sum\left|y_{j}-y_{k}\right|\right)^{-(2 n+\alpha)}, \quad \alpha=0,1 \\
T^{* 0}=T,\left\langle T^{* 1}(f, g), h\right\rangle=\langle T(h, g), f\rangle,\left\langle T^{* 2}(f, g), h\right\rangle=\langle T(f, h), g\rangle
\end{gathered}
$$

$$
\begin{gathered}
\text { (R) }\left|\partial^{\alpha} K\left(y_{0}, y_{1}, y_{2}\right)\right| \lesssim\left(\sum\left|y_{j}-y_{k}\right|\right)^{-(2 n+\alpha)}, \quad \alpha=0,1 \\
T^{* 0}=T,\left\langle T^{* 1}(f, g), h\right\rangle=\langle T(h, g), f\rangle,\left\langle T^{* 2}(f, g), h\right\rangle=\langle T(f, h), g\rangle
\end{gathered}
$$

Grafakos-T. (2000)
If $T: L^{p_{0}} \times L^{q_{0}} \rightarrow L^{r_{0}}$ for some $1 \leq p_{0}, q_{0}, r_{0} \leq \infty, \frac{1}{p_{0}}+\frac{1}{q_{0}}=\frac{1}{r_{0}}$, then

$$
T: L^{p} \times L^{q} \rightarrow L^{r},
$$

for all $1<p, q, r<\infty, \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{r}$,

$$
\begin{gathered}
\text { (R) }\left|\partial^{\alpha} K\left(y_{0}, y_{1}, y_{2}\right)\right| \lesssim\left(\sum\left|y_{j}-y_{k}\right|\right)^{-(2 n+\alpha)}, \quad \alpha=0,1 \\
T^{* 0}=T,\left\langle T^{* 1}(f, g), h\right\rangle=\langle T(h, g), f\rangle,\left\langle T^{* 2}(f, g), h\right\rangle=\langle T(f, h), g\rangle
\end{gathered}
$$

Grafakos-T. (2000)
If $T: L^{p_{0}} \times L^{q_{0}} \rightarrow L^{r_{0}}$ for some $1 \leq p_{0}, q_{0}, r_{0} \leq \infty, \frac{1}{p_{0}}+\frac{1}{q_{0}}=\frac{1}{r_{0}}$, then

$$
T: L^{p} \times L^{q} \rightarrow L^{r},
$$

for all $1<p, q, r<\infty, \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{r}$,

$$
T: L^{1} \times L^{1} \rightarrow L^{1 / 2, \infty} \text { and } T: L^{\infty} \times L^{\infty} \rightarrow B M O .
$$

$$
\begin{gathered}
\text { (R) }\left|\partial^{\alpha} K\left(y_{0}, y_{1}, y_{2}\right)\right| \lesssim\left(\sum\left|y_{j}-y_{k}\right|\right)^{-(2 n+\alpha)}, \quad \alpha=0,1 \\
T^{* 0}=T,\left\langle T^{* 1}(f, g), h\right\rangle=\langle T(h, g), f\rangle,\left\langle T^{* 2}(f, g), h\right\rangle=\langle T(f, h), g\rangle
\end{gathered}
$$

Grafakos-T. (2000)
If $T: L^{p_{0}} \times L^{q_{0}} \rightarrow L^{r_{0}}$ for some $1 \leq p_{0}, q_{0}, r_{0} \leq \infty, \frac{1}{p_{0}}+\frac{1}{q_{0}}=\frac{1}{r_{0}}$, then

$$
T: L^{p} \times L^{q} \rightarrow L^{r},
$$

for all $1<p, q, r<\infty, \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{r}$,

$$
T: L^{1} \times L^{1} \rightarrow L^{1 / 2, \infty} \text { and } T: L^{\infty} \times L^{\infty} \rightarrow B M O .
$$

Also,

$$
T: L^{p} \times L^{q} \rightarrow L^{r} \Longleftrightarrow \sum_{j=0}^{2} \sup _{\xi_{1}, \xi_{2}}\left\|T^{* j}\left(e^{i x \cdot \xi_{1}}, e^{i x \cdot \xi_{2}}\right)\right\|_{B M O} \leq C
$$

Certainly there are m-linear versions

(R) $\left|\partial^{\alpha} K\left(y_{0}, y_{1}, \ldots, y_{m}\right)\right| \leq C_{\alpha}\left(\sum_{k, l=0}^{m}\left|y_{k}-y_{l}\right|\right)^{-m n-|\alpha|}$

$$
T: L^{r_{1}} \times \cdots \times L^{r_{m}} \rightarrow L^{r}
$$

for some $1<r_{1}, \ldots, r_{m}<\infty, \quad \frac{1}{r_{1}}+\cdots+\frac{1}{r_{m}}=\frac{1}{r}$, then

Certainly there are m-linear versions

(R) $\left|\partial^{\alpha} K\left(y_{0}, y_{1}, \ldots, y_{m}\right)\right| \leq C_{\alpha}\left(\sum_{k, l=0}^{m}\left|y_{k}-y_{l}\right|\right)^{-m n-|\alpha|}$

$$
T: L^{r_{1}} \times \cdots \times L^{r_{m}} \rightarrow L^{r}
$$

for some $1<r_{1}, \ldots, r_{m}<\infty, \quad \frac{1}{r_{1}}+\cdots+\frac{1}{r_{m}}=\frac{1}{r}$, then

$$
T: L^{p_{1}} \times \cdots \times L^{p_{m}} \rightarrow L^{p},
$$

for all $1<p_{1}, \ldots, p_{m}<\infty, \quad \frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}=\frac{1}{p}$.

Certainly there are m-linear versions

(R) $\left|\partial^{\alpha} K\left(y_{0}, y_{1}, \ldots, y_{m}\right)\right| \leq C_{\alpha}\left(\sum_{k, l=0}^{m}\left|y_{k}-y_{l}\right|\right)^{-m n-|\alpha|}$

$$
T: L^{r_{1}} \times \cdots \times L^{r_{m}} \rightarrow L^{r}
$$

for some $1<r_{1}, \ldots, r_{m}<\infty, \quad \frac{1}{r_{1}}+\cdots+\frac{1}{r_{m}}=\frac{1}{r}$, then

$$
T: L^{p_{1}} \times \cdots \times L^{p_{m}} \rightarrow L^{p},
$$

for all $1<p_{1}, \ldots, p_{m}<\infty, \quad \frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}=\frac{1}{p}$.
Also,

$$
T: L^{1} \times \cdots \times L^{1} \rightarrow L^{1 / m, \infty}
$$

Certainly there are m-linear versions
(R) $\left|\partial^{\alpha} K\left(y_{0}, y_{1}, \ldots, y_{m}\right)\right| \leq C_{\alpha}\left(\sum_{k, l=0}^{m}\left|y_{k}-y_{l}\right|\right)^{-m n-|\alpha|}$

$$
T: L^{r_{1}} \times \cdots \times L^{r_{m}} \rightarrow L^{r}
$$

for some $1<r_{1}, \ldots, r_{m}<\infty, \quad \frac{1}{r_{1}}+\cdots+\frac{1}{r_{m}}=\frac{1}{r}$, then

$$
T: L^{p_{1}} \times \cdots \times L^{p_{m}} \rightarrow L^{p}
$$

for all $1<p_{1}, \ldots, p_{m}<\infty, \quad \frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}=\frac{1}{p}$.
Also,

$$
T: L^{1} \times \cdots \times L^{1} \rightarrow L^{1 / m, \infty}
$$

We call these operators $m-C Z O$

The result applies, in particular, to operators like the "Riesz transforms" in $\mathbb{R}^{m n}$ when seen as multilinear in $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$

The result applies, in particular, to operators like the "Riesz transforms" in $\mathbb{R}^{m n}$ when seen as multilinear in $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$

$$
\mathcal{R}_{i j}(\mathbf{f})(x)=\text { p.v. } \int_{\left(\mathbb{R}^{n}\right)^{m}} \frac{x_{i}-\left(y_{j}\right)_{i}}{\left(\sum_{j=1}^{m}\left|x-y_{j}\right|^{2}\right)^{\frac{n m+1}{2}}} \mathbf{f}(\mathbf{y}) d \mathbf{y}
$$

for $i=1, \cdots, n$ and $j=1, \ldots, M$, and where
$\mathbf{f}(\mathbf{y})=f_{1}\left(y_{1}\right) \ldots f\left(y_{m}\right)$ and $\left(y_{j}\right)_{i}$ denotes the i-th coordinate of y_{j}.

The result applies, in particular, to operators like the "Riesz transforms" in $\mathbb{R}^{m n}$ when seen as multilinear in $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$

$$
\mathcal{R}_{i j}(\mathbf{f})(x)=\text { p.v. } \int_{\left(\mathbb{R}^{n}\right)^{m}} \frac{x_{i}-\left(y_{j}\right)_{i}}{\left(\sum_{j=1}^{m}\left|x-y_{j}\right|^{2}\right)^{\frac{n m+1}{2}}} \mathbf{f}(\mathbf{y}) d \mathbf{y}
$$

for $i=1, \cdots, n$ and $j=1, \ldots, M$, and where
$\mathbf{f}(\mathbf{y})=f_{1}\left(y_{1}\right) \ldots f\left(y_{m}\right)$ and $\left(y_{j}\right)_{i}$ denotes the i-th coordinate of y_{j}.

For example on $\mathbb{R} \times \mathbb{R}$,

$$
R_{1}(f, g)(x)=\text { p.v. } \int_{\mathbb{R}^{2}} \frac{x-y}{|(x-y, x-z)|^{3}} f(y) g(z) d y d z
$$

The m-linear Calderón-Zygmund theory and related tools also apply to several classes of multilinear pseudodifferential operators,

The m-linear Calderón-Zygmund theory and related tools also apply to several classes of multilinear pseudodifferential operators,

$$
T(f, g)=\int \sigma(x, \xi, \eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x(\xi+\eta)} d \xi d \eta
$$

The m-linear Calderón-Zygmund theory and related tools also apply to several classes of multilinear pseudodifferential operators,

$$
\begin{gathered}
T(f, g)=\int \sigma(x, \xi, \eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x(\xi+\eta)} d \xi d \eta \\
\left|\partial_{x}^{\alpha} \partial_{\xi, \eta}^{\beta} \sigma(x, \xi, \eta)\right| \leq C_{\alpha, \beta}(1+|\xi|+|\eta|)^{m-\rho|\beta|+\delta|\alpha|}
\end{gathered}
$$

The m-linear Calderón-Zygmund theory and related tools also apply to several classes of multilinear pseudodifferential operators,

$$
\begin{gathered}
T(f, g)=\int \sigma(x, \xi, \eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x(\xi+\eta)} d \xi d \eta \\
\left|\partial_{x}^{\alpha} \partial_{\xi, \eta}^{\beta} \sigma(x, \xi, \eta)\right| \leq C_{\alpha, \beta}(1+|\xi|+|\eta|)^{m-\rho|\beta|+\delta|\alpha|}
\end{gathered}
$$

and there are results about multilinear weights, commutators, paraproducts, almost digonal estimates, etc...

The m-linear Calderón-Zygmund theory and related tools also apply to several classes of multilinear pseudodifferential operators,

$$
\begin{gathered}
T(f, g)=\int \sigma(x, \xi, \eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x(\xi+\eta)} d \xi d \eta \\
\left|\partial_{x}^{\alpha} \partial_{\xi, \eta}^{\beta} \sigma(x, \xi, \eta)\right| \leq C_{\alpha, \beta}(1+|\xi|+|\eta|)^{m-\rho|\beta|+\delta|\alpha|}
\end{gathered}
$$

and there are results about multilinear weights, commutators, paraproducts, almost digonal estimates, etc...

There is also a very extensive literature about other multilinear operators which do not fall within the scope of
Calderón-Zygmund theory and that we will not consider in this talk.

The almost minimal amount of smoothness required to guarantee the weak-type $(1,1)$ property for an a priori bounded operator T is the classical Hörmander integral condition:

The almost minimal amount of smoothness required to guarantee the weak-type $(1,1)$ property for an a priori bounded operator T is the classical Hörmander integral condition:

$$
\text { (H) } \int_{|x|>2|y|}|K(x-y)-K(x)| d x \leq C \quad y \neq 0
$$

if the operator is of convolution type, or more generally

The almost minimal amount of smoothness required to guarantee the weak-type $(1,1)$ property for an a priori bounded operator T is the classical Hörmander integral condition:

$$
\text { (H) } \int_{|x|>2|y|}|K(x-y)-K(x)| d x \leq C \quad y \neq 0
$$

if the operator is of convolution type, or more generally
(H) $\int_{|x-y|>2|z-y|}|K(x, y)-K(x, z)| d x \leq C \quad y, z \in \mathbb{R}^{n}, y \neq z$

In the convolution case,

$$
\widehat{T f}(\xi)=m(\xi) \widehat{f}(\xi)
$$

In the convolution case,

$$
\widehat{T f}(\xi)=m(\xi) \widehat{f}(\xi)
$$

condition (H) is implied by

In the convolution case,

$$
\widehat{T f}(\xi)=m(\xi) \widehat{f}(\xi)
$$

condition (H) is implied by

$$
(F H) \quad \sup _{j}\left\|m\left(2^{j} \cdot\right) \psi\right\|_{L_{\alpha}^{2}} \leq C
$$

In the convolution case,

$$
\widehat{T f}(\xi)=m(\xi) \widehat{f}(\xi)
$$

condition (H) is implied by

$$
(F H) \quad \sup _{j}\left\|m\left(2^{j} \cdot\right) \psi\right\|_{L_{\alpha}^{2}} \leq C
$$

for $\alpha>n / 2$ and ψ a smooth bump supported on $|\xi| \sim 1$ as considered by Hörmander (1960).

Conditions of the form

$$
\sup _{j}\left\|m\left(2^{j} \cdot\right) \psi\right\|_{L_{s}^{r}} \leq C
$$

where also considered by Kurtz-Wheeden (1979) to obtain weighted estimates

$$
\|T(f)\|_{L^{p}(w)} \leq C\|f\|_{L^{p}(w)}
$$

for w in some A_{t} classes, t depeding on r, s, p and n.

Conditions of the form

$$
\sup _{j}\left\|m\left(2^{j} \cdot\right) \psi\right\|_{L_{s}^{r}} \leq C
$$

where also considered by Kurtz-Wheeden (1979) to obtain weighted estimates

$$
\|T(f)\|_{L^{p}(w)} \leq C\|f\|_{L^{p}(w)}
$$

for w in some A_{t} classes, t depeding on r, s, p and n.
Similar conditions were used more recently by Garrigos and Seeger and Heo, Nazarov and Seeger to obtain L^{p} results for multipliers which are not necessarily Calderón-Zygmund operators.

Conditions of the form

$$
\sup _{j}\left\|m\left(2^{j} \cdot\right) \psi\right\|_{L_{s}^{r}} \leq C
$$

where also considered by Kurtz-Wheeden (1979) to obtain weighted estimates

$$
\|T(f)\|_{L^{p}(w)} \leq C\|f\|_{L^{p}(w)}
$$

for w in some A_{t} classes, t depeding on r, s, p and n.
Similar conditions were used more recently by Garrigos and Seeger and Heo, Nazarov and Seeger to obtain L^{p} results for multipliers which are not necessarily Calderón-Zygmund operators.

However all this only applies to convolution operators.

In general, for non-convolution operators,
(H) $\int_{|x-y|>2|z-y|}|K(x, y)-K(x, z)| d x \leq C \quad y, z \in \mathbb{R}^{n}, y \neq z$
is a very weak condition:

In general, for non-convolution operators,
(H) $\int_{|x-y|>2|z-y|}|K(x, y)-K(x, z)| d x \leq C \quad y, z \in \mathbb{R}^{n}, y \neq z$
is a very weak condition:

- There is no A_{p} theory of weights.

In general, for non-convolution operators,
(H) $\int_{|x-y|>2|z-y|}|K(x, y)-K(x, z)| d x \leq C \quad y, z \in \mathbb{R}^{n}, y \neq z$
is a very weak condition:

- There is no A_{p} theory of weights.
- There is no good- λ inequality between T and M.

In general, for non-convolution operators,
(H) $\int_{|x-y|>2|z-y|}|K(x, y)-K(x, z)| d x \leq C \quad y, z \in \mathbb{R}^{n}, y \neq z$
is a very weak condition:

- There is no A_{p} theory of weights.
- There is no good- λ inequality between T and M.
- It is not enough for the $T(1)$ theorem

In general, for non-convolution operators,
(H) $\int_{|x-y|>2|z-y|}|K(x, y)-K(x, z)| d x \leq C \quad y, z \in \mathbb{R}^{n}, y \neq z$
is a very weak condition:

- There is no A_{p} theory of weights.
- There is no good- λ inequality between T and M.
- It is not enough for the $T(1)$ theorem (I think ?)

In general, for non-convolution operators,
(H) $\int_{|x-y|>2|z-y|}|K(x, y)-K(x, z)| d x \leq C \quad y, z \in \mathbb{R}^{n}, y \neq z$
is a very weak condition:

- There is no A_{p} theory of weights.
- There is no good- λ inequality between T and M.
- It is not enough for the $T(1)$ theorem (I think ?)

It is barely enough to get the end-point estimate.

There has been some interest is weakening the amount of regularity (the gradient condition) in the bilinear case too.

There has been some interest is weakening the amount of regularity (the gradient condition) in the bilinear case too.

Some recent works include

There has been some interest is weakening the amount of regularity (the gradient condition) in the bilinear case too.

Some recent works include

- Maldonado-Naibo (2009) use a "Dini-type condition"

There has been some interest is weakening the amount of regularity (the gradient condition) in the bilinear case too.

Some recent works include

- Maldonado-Naibo (2009) use a "Dini-type condition"
- Tomita (2010), Grafakos-Si (2010) use in the translation invariant case a multiliear version of (FH).

There has been some interest is weakening the amount of regularity (the gradient condition) in the bilinear case too.

Some recent works include

- Maldonado-Naibo (2009) use a "Dini-type condition"
- Tomita (2010), Grafakos-Si (2010) use in the translation invariant case a multiliear version of (FH).

We want a condition in the spirit of Hörmander's integral condition.

There has been some interest is weakening the amount of regularity (the gradient condition) in the bilinear case too.

Some recent works include

- Maldonado-Naibo (2009) use a "Dini-type condition"
- Tomita (2010), Grafakos-Si (2010) use in the translation invariant case a multiliear version of (FH).

We want a condition in the spirit of Hörmander's integral condition.

To present the result we have obtained with C. Pérez we need to look one more time to the condition (H).

The Hörmander condition can be rephrased in the following more geometric form

The Hörmander condition can be rephrased in the following more geometric form

$$
\sup _{Q} \sup _{y \in Q} \int_{\mathbb{R}^{n} \backslash Q^{*}}\left|K(x, y)-K\left(x, c_{Q}\right)\right| d x<\infty
$$

The Hörmander condition can be rephrased in the following more geometric form

$$
\sup _{Q} \sup _{y \in Q} \int_{\mathbb{R}^{n} \backslash Q^{*}}\left|K(x, y)-K\left(x, c_{Q}\right)\right| d x<\infty
$$

However, if one looks at the proof of the weak-type $(1,1)$ estimate, the following alternative condition can be used:

The Hörmander condition can be rephrased in the following more geometric form

$$
\sup _{Q} \sup _{y \in Q} \int_{\mathbb{R}^{n} \backslash Q^{*}}\left|K(x, y)-K\left(x, c_{Q}\right)\right| d x<\infty
$$

However, if one looks at the proof of the weak-type $(1,1)$ estimate, the following alternative condition can be used:

There exists constant c such that for any family D of disjoint dyadic cubes with finite measure

The Hörmander condition can be rephrased in the following more geometric form

$$
\sup _{Q} \sup _{y \in Q} \int_{\mathbb{R}^{n} \backslash Q^{*}}\left|K(x, y)-K\left(x, c_{Q}\right)\right| d x<\infty
$$

However, if one looks at the proof of the weak-type $(1,1)$ estimate, the following alternative condition can be used:

There exists constant c such that for any family D of disjoint dyadic cubes with finite measure

$$
\sum_{Q \in D}|Q| \sup _{y \in Q} \int_{\mathbb{R}^{n} \backslash Q^{*}}\left|K(x, y)-K\left(x, c_{Q}\right)\right| d x \leq c\left|\bigcup_{Q \in D} Q\right|
$$

(Notation: $Q^{*}=3 Q$ and c_{Q} is the center of the cube Q.)

We propose the following (GBH) condition:

We propose the following (GBH) condition:

There exists a constant c such that for any two families D_{1} and D_{2} of disjoint dyadic cubes with finite measure

We propose the following (GBH) condition:

There exists a constant c such that for any two families D_{1} and D_{2} of disjoint dyadic cubes with finite measure

$$
\begin{gathered}
\sum_{(P, Q) \in D_{1} \times D_{2}}|P||Q| \sup _{(y, z) \in P \times Q} \int_{\mathbb{R}^{n} \backslash\left(P^{*} \cup Q^{*}\right)}\left|K(x, y, z)-K\left(x, c_{P}, c_{Q}\right)\right| d x \\
\quad \leq c\left(\left|\bigcup_{P \in D_{1}} P\right|+\left|\bigcup_{Q \in D_{2}} Q\right|\right)
\end{gathered}
$$

Theorem (Pérez-T.)

Let T be a bilinear operator with kernel K satisfying the GBH condition as defined before and such that

$$
T: L^{p}\left(\mathbb{R}^{n}\right) \times L^{q}\left(\mathbb{R}^{n}\right) \rightarrow L^{r}\left(\mathbb{R}^{n}\right)
$$

for some $1 \leq p, q \leq \infty$ and some $0<r<\infty$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$.

Theorem (Pérez-T.)

Let T be a bilinear operator with kernel K satisfying the GBH condition as defined before and such that

$$
T: L^{p}\left(\mathbb{R}^{n}\right) \times L^{q}\left(\mathbb{R}^{n}\right) \rightarrow L^{r}\left(\mathbb{R}^{n}\right)
$$

for some $1 \leq p, q \leq \infty$ and some $0<r<\infty$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Then,

$$
T: L^{1}\left(\mathbb{R}^{n}\right) \times L^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{\frac{1}{2}, \infty}\left(\mathbb{R}^{n}\right)
$$

Before we prove the result we want to make some remarks.

Before we prove the result we want to make some remarks.
Consider again the linear situation.

Before we prove the result we want to make some remarks.
Consider again the linear situation.

- Let $K \in L^{1}\left(\mathbb{R}^{n}\right)$ and let T_{K} be the operator

$$
T_{K} f=K * f
$$

Before we prove the result we want to make some remarks.
Consider again the linear situation.

- Let $K \in L^{1}\left(\mathbb{R}^{n}\right)$ and let T_{K} be the operator

$$
T_{K} f=K * f
$$

then T_{K} is bounded on L^{p} for $1 \leq p \leq \infty$. Trivially K satisfies the Hörmander integral condition but there is no need to use the Calderón-Zygmund theory to obtain L^{p}-results.

Before we prove the result we want to make some remarks.
Consider again the linear situation.

- Let $K \in L^{1}\left(\mathbb{R}^{n}\right)$ and let T_{K} be the operator

$$
T_{K} f=K * f
$$

then T_{K} is bounded on L^{p} for $1 \leq p \leq \infty$. Trivially K satisfies the Hörmander integral condition but there is no need to use the Calderón-Zygmund theory to obtain L^{p}-results. Minkowski's inequality suffices!

Before we prove the result we want to make some remarks.
Consider again the linear situation.

- Let $K \in L^{1}\left(\mathbb{R}^{n}\right)$ and let T_{K} be the operator

$$
T_{K} f=K * f
$$

then T_{K} is bounded on L^{p} for $1 \leq p \leq \infty$. Trivially K satisfies the Hörmander integral condition but there is no need to use the Calderón-Zygmund theory to obtain L^{p}-results. Minkowski's inequality suffices!

- Furthermore, if $K \geq 0$ we have

Before we prove the result we want to make some remarks.
Consider again the linear situation.

- Let $K \in L^{1}\left(\mathbb{R}^{n}\right)$ and let T_{K} be the operator

$$
T_{K} f=K * f
$$

then T_{K} is bounded on L^{p} for $1 \leq p \leq \infty$. Trivially K satisfies the Hörmander integral condition but there is no need to use the Calderón-Zygmund theory to obtain L^{p}-results. Minkowski's inequality suffices!

- Furthermore, if $K \geq 0$ we have

$$
T_{K}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p, \infty}\left(\mathbb{R}^{n}\right) \quad \Rightarrow \quad K \in L^{1}\left(\mathbb{R}^{n}\right)
$$

In the bilinear case the situation is a little different.

A regularity condition for end-point estimates of bilinear CZOs

In the bilinear case the situation is a little different.
For $K \geq 0$ consider the bilinear operator

$$
T_{K}(f, g)(x)=\int_{\mathbb{R}^{2 n}} K(x-y, x-z) f(y) g(z) d y d z
$$

In the bilinear case the situation is a little different.
For $K \geq 0$ consider the bilinear operator

$$
T_{K}(f, g)(x)=\int_{\mathbb{R}^{2 n}} K(x-y, x-z) f(y) g(z) d y d z
$$

Then, if $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ and $r \geq \frac{1}{2}$

$$
T_{K}: L^{p}\left(\mathbb{R}^{n}\right) \times L^{q}\left(\mathbb{R}^{n}\right) \rightarrow L^{r, \infty}\left(\mathbb{R}^{n}\right) \quad \Rightarrow \quad K \in L^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)
$$

In the bilinear case the situation is a little different.
For $K \geq 0$ consider the bilinear operator

$$
T_{K}(f, g)(x)=\int_{\mathbb{R}^{2 n}} K(x-y, x-z) f(y) g(z) d y d z
$$

Then, if $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ and $r \geq \frac{1}{2}$

$$
T_{K}: L^{p}\left(\mathbb{R}^{n}\right) \times L^{q}\left(\mathbb{R}^{n}\right) \rightarrow L^{r, \infty}\left(\mathbb{R}^{n}\right) \quad \Rightarrow \quad K \in L^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)
$$

This result is due to L. Grafakos-J.Soria (2009).

On the other hand, from Minkowski's inequality, if $K \in L^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$

$$
T_{K}: L^{p}\left(\mathbb{R}^{n}\right) \times L^{q}\left(\mathbb{R}^{n}\right) \rightarrow L^{r}\left(\mathbb{R}^{n}\right) \quad \text { if } \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{r}, \quad r \geq 1
$$

On the other hand, from Minkowski's inequality, if
$K \in L^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$

$$
T_{K}: L^{p}\left(\mathbb{R}^{n}\right) \times L^{q}\left(\mathbb{R}^{n}\right) \rightarrow L^{r}\left(\mathbb{R}^{n}\right) \quad \text { if } \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{r}, \quad r \geq 1
$$

However, Grafakos-Soria (2009) gave counterexamples showing that, in general, the boundedness is false when $r<1$.

On the other hand, from Minkowski's inequality, if
$K \in L^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$

$$
T_{K}: L^{p}\left(\mathbb{R}^{n}\right) \times L^{q}\left(\mathbb{R}^{n}\right) \rightarrow L^{r}\left(\mathbb{R}^{n}\right) \quad \text { if } \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{r}, \quad r \geq 1
$$

However, Grafakos-Soria (2009) gave counterexamples showing that, in general, the boundedness is false when $r<1$.

So even in this is case of integrable kernels, it is of interest to have some additional condition that allows for $r<1$.

Dini-type condition:

A regularity condition for end-point estimates of bilinear CZOs

Dini-type condition:

Let Φ be increasing and such that $\int_{0}^{1} \Phi(t) \frac{d t}{t}<\infty$. If

Dini-type condition:

Let Φ be increasing and such that $\int_{0}^{1} \Phi(t) \frac{d t}{t}<\infty$. If

$$
\begin{gathered}
\left|K(x, y, z)-K\left(x, y^{\prime}, z^{\prime}\right)\right| \leq \\
\frac{1}{(|x-y|+|x-z|)^{2 n}} \Phi\left(\frac{\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|}{|x-y|+|x-z|}\right)
\end{gathered}
$$

whenever $\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right| \leq \frac{1}{2} \max \{|x-y|,|x-z|\}$,

Dini-type condition:

Let Φ be increasing and such that $\int_{0}^{1} \Phi(t) \frac{d t}{t}<\infty$. If

$$
\begin{gathered}
\left|K(x, y, z)-K\left(x, y^{\prime}, z^{\prime}\right)\right| \leq \\
\frac{1}{(|x-y|+|x-z|)^{2 n}} \Phi\left(\frac{\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|}{|x-y|+|x-z|}\right)
\end{gathered}
$$

whenever $\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right| \leq \frac{1}{2} \max \{|x-y|,|x-z|\}$, then the GBH condition holds.

Dini-type condition:
Let Φ be increasing and such that $\int_{0}^{1} \Phi(t) \frac{d t}{t}<\infty$. If

$$
\begin{gathered}
\left|K(x, y, z)-K\left(x, y^{\prime}, z^{\prime}\right)\right| \leq \\
\frac{1}{(|x-y|+|x-z|)^{2 n}} \Phi\left(\frac{\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|}{|x-y|+|x-z|}\right)
\end{gathered}
$$

whenever $\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right| \leq \frac{1}{2} \max \{|x-y|,|x-z|\}$, then the GBH condition holds.

Example: $\quad \Phi(t)=t^{\epsilon} \quad$ (the Hölder-Lipschitz condition).

Dini-type condition:
Let Φ be increasing and such that $\int_{0}^{1} \Phi(t) \frac{d t}{t}<\infty$. If

$$
\begin{gathered}
\left|K(x, y, z)-K\left(x, y^{\prime}, z^{\prime}\right)\right| \leq \\
\frac{1}{(|x-y|+|x-z|)^{2 n}} \Phi\left(\frac{\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|}{|x-y|+|x-z|}\right)
\end{gathered}
$$

whenever $\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right| \leq \frac{1}{2} \max \{|x-y|,|x-z|\}$, then the GBH condition holds.

Example: $\quad \Phi(t)=t^{\epsilon} \quad$ (the Hölder-Lipschitz condition).
So the GBH condition is in fact a weaker than regularity condition (R).

Dini-type condition:
Let Φ be increasing and such that $\int_{0}^{1} \Phi(t) \frac{d t}{t}<\infty$. If

$$
\begin{gathered}
\left|K(x, y, z)-K\left(x, y^{\prime}, z^{\prime}\right)\right| \leq \\
\frac{1}{(|x-y|+|x-z|)^{2 n}} \Phi\left(\frac{\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|}{|x-y|+|x-z|}\right)
\end{gathered}
$$

whenever $\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right| \leq \frac{1}{2} \max \{|x-y|,|x-z|\}$, then the GBH condition holds.

Example: $\quad \Phi(t)=t^{\epsilon} \quad$ (the Hölder-Lipschitz condition).
So the GBH condition is in fact a weaker than regularity condition (R).

Recall the result we are trying to show.

Theorem

Let T be a biilinear operator with kernel K satisfying the GBH condition as defined before and such that

$$
T: L^{p}\left(\mathbb{R}^{n}\right) \times L^{q}\left(\mathbb{R}^{n}\right) \rightarrow L^{r}\left(\mathbb{R}^{n}\right)
$$

for some $1 \leq p, q \leq \infty$ and some $0<r<\infty$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$.

Recall the result we are trying to show.

Theorem

Let T be a biilinear operator with kernel K satisfying the GBH condition as defined before and such that

$$
\begin{aligned}
& \qquad T: L^{p}\left(\mathbb{R}^{n}\right) \times L^{q}\left(\mathbb{R}^{n}\right) \rightarrow L^{r}\left(\mathbb{R}^{n}\right) \\
& \text { for some } 1 \leq p, q \leq \infty \text { and some } 0<r<\infty \text { with } \\
& \frac{1}{p}+\frac{1}{q}=\frac{1}{r} . \text { Then, } \\
& T: L^{1}\left(\mathbb{R}^{n}\right) \times L^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{\frac{1}{2}, \infty}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

Proof:

We want to show

$$
\begin{gathered}
\left|\left\{x \in \mathbb{R}^{n}:\left|T\left(f_{1}, f_{2}\right)(x)\right|>\lambda^{2}\right\}\right| \\
\leq C\left(\int_{\mathbb{R}^{n}} \frac{\left|f_{1}(x)\right|}{\lambda} d x\right)^{1 / 2}\left(\int_{\mathbb{R}^{n}} \frac{\left|f_{2}(x)\right|}{\lambda} d x\right)^{1 / 2}
\end{gathered}
$$

and we may assume

$$
\left\|f_{1}\right\|_{1}=\left\|f_{2}\right\|_{1}=1
$$

Fixed $\lambda>0$, and consider a Calderón-Zygmund decomposition at level λ for each $f_{j}, j=1,2$

We obtain a collection of dyadic non-overlapping cubes $Q_{j, k}=Q\left(c_{j, k}, r_{j, k}\right)$, that satisfies

We obtain a collection of dyadic non-overlapping cubes
$Q_{j, k}=Q\left(c_{j, k}, r_{j, k}\right)$, that satisfies

$$
\lambda<\frac{1}{\left|Q_{j, k}\right|} \int_{Q_{j, k}}\left|f_{j}(x)\right| d x \leq 2^{n} \lambda
$$

We set $\Omega_{j}=\cup_{k} Q_{j, k}$, so $\left|\Omega_{j}\right| \leq \frac{C}{\lambda}$, and as usual

$$
\left|f_{j}(x)\right| \leq \lambda \quad \text { a.e. } x \in \mathbb{R}^{n} \backslash \Omega_{j}
$$

We obtain a collection of dyadic non-overlapping cubes
$Q_{j, k}=Q\left(c_{j, k}, r_{j, k}\right)$, that satisfies

$$
\lambda<\frac{1}{\left|Q_{j, k}\right|} \int_{Q_{j, k}}\left|f_{j}(x)\right| d x \leq 2^{n} \lambda
$$

We set $\Omega_{j}=\cup_{k} Q_{j, k}$, so $\left|\Omega_{j}\right| \leq \frac{C}{\lambda}$, and as usual

$$
\left|f_{j}(x)\right| \leq \lambda \quad \text { a.e. } x \in \mathbb{R}^{n} \backslash \Omega_{j}
$$

We write $f_{j}=g_{j}+b_{j}$, where g_{j} is defined by

$$
g_{j}(x)= \begin{cases}f_{j}(x), & x \in \mathbb{R}^{n} \backslash \Omega_{j} \\ f_{Q_{j, k},} & x \in Q_{j, k}\end{cases}
$$

and for any $s \geq 1$

$$
\left\|g_{1}\right\|_{s} \leq C \lambda^{1 / s^{\prime}}\left\|f_{1}\right\|_{1}^{\frac{1}{s}}
$$

Also b_{j} is written as

$$
b_{j}(x)=\sum_{k} b_{j, k}(x)=\sum_{k}\left(f_{j}(x)-f_{Q_{j, k}}\right) \chi_{Q_{j, k}}(x)
$$

Also b_{j} is written as

$$
b_{j}(x)=\sum_{k} b_{j, k}(x)=\sum_{k}\left(f_{j}(x)-f_{Q_{j, k}}\right) \chi_{Q_{j, k}}(x)
$$

Set

$$
\Omega^{*}=\cup_{j=1}^{2} \cup_{k} Q_{j, k}^{*}
$$

and observe that

$$
\left|\Omega^{*}\right| \lesssim \frac{1}{\lambda}
$$

Also b_{j} is written as

$$
b_{j}(x)=\sum_{k} b_{j, k}(x)=\sum_{k}\left(f_{j}(x)-f_{Q_{j, k}}\right) \chi_{Q_{j, k}}(x)
$$

Set

$$
\Omega^{*}=\cup_{j=1}^{2} \cup_{k} Q_{j, k}^{*}
$$

and observe that

$$
\left|\Omega^{*}\right| \lesssim \frac{1}{\lambda}
$$

We split the distribution set in several parts using the Calderón-Zygmund decomposition of the functions f_{1} and f_{2} as follows,

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n}:\left|T\left(f_{1}, f_{2}\right)(x)\right|>\lambda^{2}\right\}\right| \\
\leq & \left|\left\{x \in \mathbb{R}^{n}:\left|T\left(g_{1}, g_{2}\right)(x)\right|>\lambda^{2} / 4\right\}\right| \\
+ & \left|\left\{x \in \mathbb{R}^{n} \backslash \Omega^{*}:\left|T\left(g_{1}, b_{2}\right)(x)\right|>\lambda^{2} / 4\right\}\right| \\
+ & \left|\left\{x \in \mathbb{R}^{n} \backslash \Omega^{*}:\left|T\left(b_{1}, g_{2}\right)(x)\right|>\lambda^{2} / 4\right\}\right| \\
+ & \left|\left\{x \in \mathbb{R}^{n} \backslash \Omega^{*}:\left|T\left(b_{1}, b_{2}\right)(x)\right|>\lambda^{2} / 4\right\}\right| \\
+ & \left|\Omega^{*}\right| \\
= & \left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right|+\left|E_{4}\right|+\left|\Omega^{*}\right|
\end{aligned}
$$

Let's see the estimate for E_{4} to see how the GBH conditions appear (the other terms are similar or easier).

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n}:\left|T\left(f_{1}, f_{2}\right)(x)\right|>\lambda^{2}\right\}\right| \\
\leq & \left|\left\{x \in \mathbb{R}^{n}:\left|T\left(g_{1}, g_{2}\right)(x)\right|>\lambda^{2} / 4\right\}\right| \\
+ & \left|\left\{x \in \mathbb{R}^{n} \backslash \Omega^{*}:\left|T\left(g_{1}, b_{2}\right)(x)\right|>\lambda^{2} / 4\right\}\right| \\
+ & \left|\left\{x \in \mathbb{R}^{n} \backslash \Omega^{*}:\left|T\left(b_{1}, g_{2}\right)(x)\right|>\lambda^{2} / 4\right\}\right| \\
+ & \left|\left\{x \in \mathbb{R}^{n} \backslash \Omega^{*}:\left|T\left(b_{1}, b_{2}\right)(x)\right|>\lambda^{2} / 4\right\}\right| \\
+ & \left|\Omega^{*}\right| \\
= & \left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right|+\left|E_{4}\right|+\left|\Omega^{*}\right|
\end{aligned}
$$

Let's see the estimate for E_{4} to see how the GBH conditions appear (the other terms are similar or easier).
In fact, the whole argument with the new condition is much simpler than the one in other proofs of the end-point estimate bilinear Calderón-Zygmund operators already in the literature.

First we split the operator

$$
T\left(b_{1}, b_{2}\right)=\sum_{l, k} T\left(b_{1, l}, b_{2, k}\right)
$$

Thus,

$$
\begin{gathered}
\left|E_{4}\right| \leq \frac{C}{\lambda^{2}} \sum_{l, k} \int_{\mathbb{R}^{n} \backslash \Omega^{*}}\left|T\left(b_{1, l}, b_{2, k}\right)(x)\right| d x \leq \\
\frac{C}{\lambda^{2}} \sum_{l, k} \int_{\mathbb{R}^{n} \backslash\left(Q_{1, l}^{*} \cup Q_{2, k}^{*}\right)}\left|\int_{Q_{1, l}} \int_{Q_{2, k}} K(x, y, z) b_{1, l}(y) b_{2, k}(z) d z d y\right| d x
\end{gathered}
$$

First we split the operator

$$
T\left(b_{1}, b_{2}\right)=\sum_{l, k} T\left(b_{1, l}, b_{2, k}\right)
$$

Thus,

$$
\begin{gathered}
\left|E_{4}\right| \leq \frac{C}{\lambda^{2}} \sum_{l, k} \int_{\mathbb{R}^{n} \backslash \Omega^{*}}\left|T\left(b_{1, l}, b_{2, k}\right)(x)\right| d x \leq \\
\frac{C}{\lambda^{2}} \sum_{l, k} \int_{\mathbb{R}^{n} \backslash\left(Q_{1, l}^{*} \cup Q_{2, k}^{*}\right)}\left|\int_{Q_{1, l}} \int_{Q_{2, k}} K(x, y, z) b_{1, l}(y) b_{2, k}(z) d z d y\right| d x
\end{gathered}
$$

We fix one of these $Q_{1, /}$ and $Q_{2, k}$ and use the cancellation of the b_{j} to obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{n} \backslash\left(Q_{1, l}^{*}, \cup Q_{2, k}^{*}\right.}\left|\int_{Q_{1, l}} \int_{Q_{2, k}} K(x, y, z) b_{2, k}(z) b_{1, /}(y) d z d y\right| d x \\
&= \int_{\left(Q_{1, l}^{*} \cup Q_{2, k}^{*}\right)}\left|\int_{Q_{1, l}} \int_{Q_{2, k}}\left(K(x, y, z)-K\left(x, c_{Q_{1, l}}, c_{Q_{2, k}}\right)\right) b_{2, k}(z) b_{1, l}(y) d z d y\right| d x \\
&= \int_{Q_{1, l}} \int_{Q_{2, k}} \int_{\left(Q_{1, l}^{*} \cup Q_{2, k}^{*}\right)^{c}} \mid K(x, y, z)-K\left(x, c_{\left.Q_{1, l}, c_{Q_{2, k}}\right)|d x| b_{2, k}(z)| | b_{1, I}(y) \mid d z d y}\right. \\
& \lesssim \lambda^{2}\left|Q_{1, l}\right|\left|Q_{2, k}\right| \\
& \sup _{(y, z) \in P \times Q} \int_{\left(Q_{1, l}^{*}, \cup Q_{2, k}^{*}\right)^{c}} \mid K(x, y, z)-K\left(x, c_{Q_{1, l}}, c_{\left.Q_{2, k}\right)} \mid d x\right.
\end{aligned}
$$

and therefore

$$
\left|E_{4}\right| \lesssim
$$

$$
\begin{gathered}
\sum_{l, k}\left|Q_{1, l}\right|\left|Q_{2, k}\right| \sup _{(y, z) \in P \times Q} \int_{\mathbb{R}^{n} \backslash\left(Q_{1, l}^{*} \cup Q_{2, k}^{*}\right)}\left|K(x, y, z)-K\left(x, c_{Q_{1, l},}, c_{Q_{2, k}}\right)\right| d x \\
\lesssim\left(\left|\cup, Q_{1, l}\right|+\left|\cup_{k} Q_{2, k}\right|\right)=\left(\left|\Omega_{1}\right|+\left|\Omega_{2}\right|\right) \lesssim \frac{1}{\lambda}
\end{gathered}
$$

and therefore

$$
\left|E_{4}\right| \lesssim
$$

$$
\begin{gathered}
\sum_{l, k}\left|Q_{1, l}\right|\left|Q_{2, k}\right| \sup _{(y, z) \in P \times Q} \int_{\mathbb{R}^{n} \backslash\left(Q_{1, l}^{*} \cup Q_{2, k}^{*}\right)}\left|K(x, y, z)-K\left(x, c_{Q_{1, l},}, c_{Q_{2, k}}\right)\right| d x \\
\lesssim\left(\left|\cup, Q_{1, l}\right|+\left|\cup_{k} Q_{2, k}\right|\right)=\left(\left|\Omega_{1}\right|+\left|\Omega_{2}\right|\right) \lesssim \frac{1}{\lambda}
\end{gathered}
$$

as we wanted to prove.

We were looking for conditions to obtained the bilinear estimate

$$
L^{1} \times L^{1} \rightarrow L^{1 / 2, \infty}
$$

or similarly the m-linear one

$$
L^{1} \times \cdots \times L^{1} \rightarrow L^{1 / m, \infty}
$$

from a strong one, and then by duality and interpolation obtain all the ranges of exponents.

We were looking for conditions to obtained the bilinear estimate

$$
L^{1} \times L^{1} \rightarrow L^{1 / 2, \infty}
$$

or similarly the m-linear one

$$
L^{1} \times \cdots \times L^{1} \rightarrow L^{1 / m, \infty}
$$

from a strong one, and then by duality and interpolation obtain all the ranges of exponents.
There are however other naturally appearing weak-type end-point estimates in the multilinear case.

We were looking for conditions to obtained the bilinear estimate

$$
L^{1} \times L^{1} \rightarrow L^{1 / 2, \infty}
$$

or similarly the m-linear one

$$
L^{1} \times \cdots \times L^{1} \rightarrow L^{1 / m, \infty}
$$

from a strong one, and then by duality and interpolation obtain all the ranges of exponents.
There are however other naturally appearing weak-type end-point estimates in the multilinear case.
They take the form

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n}:\left|T\left(f_{1}, \cdots, f_{m}\right)(x)\right|>\lambda^{m}\right\}\right| \\
& \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} \Phi\left(\frac{\left|f_{j}(x)\right|}{\lambda}\right) d x\right)^{1 / m}
\end{aligned}
$$

Examples:

A regularity condition for end-point estimates of bilinear CZOs

Examples:

Multilinear commutators of m-CZOs and BMO functions:
Lerner, Ombrosi, Pérez, T. , Trujillo-González

$$
T_{\Sigma \mathbf{b}}(\mathbf{f})(x)=\int \sum_{j=1}^{m}\left(b_{j}(x)-b_{j}\left(y_{j}\right)\right) K\left(x, y_{1}, \ldots, y_{m}\right) f_{1}\left(y_{1}\right) \ldots f_{m}\left(y_{m}\right) d \mathbf{y}
$$

Pérez, Pradolini, T., Trujillo-González

$$
T_{\Pi \mathbf{b}}(\mathbf{f})(x)=\int \prod_{j=1}^{m}\left(b_{j}(x)-b_{j}\left(y_{j}\right)\right) K\left(x, y_{1}, \ldots, y_{m}\right) f_{1}\left(y_{1}\right) \ldots f_{m}\left(y_{m}\right) d \mathbf{y}
$$

Examples:

Multilinear commutators of m-CZOs and BMO functions:
Lerner, Ombrosi, Pérez, T. , Trujillo-González

$$
T_{\Sigma \mathbf{b}}(\mathbf{f})(x)=\int \sum_{j=1}^{m}\left(b_{j}(x)-b_{j}\left(y_{j}\right)\right) K\left(x, y_{1}, \ldots, y_{m}\right) f_{1}\left(y_{1}\right) \ldots f_{m}\left(y_{m}\right) d \mathbf{y}
$$

Pérez, Pradolini, T., Trujillo-González

$$
T_{\Pi \mathbf{b}}(\mathbf{f})(x)=\int \prod_{j=1}^{m}\left(b_{j}(x)-b_{j}\left(y_{j}\right)\right) K\left(x, y_{1}, \ldots, y_{m}\right) f_{1}\left(y_{1}\right) \ldots f_{m}\left(y_{m}\right) d \mathbf{y}
$$

Multi(sub)linear strong maximal function:
Grafakos, Liu, Pérez, T.

$$
\mathcal{M}_{\mathcal{R}}\left(f_{1}, \ldots, f_{m}\right)(x)=\sup _{R \ni x} \prod_{i=1}^{m}\left(\frac{1}{|R|} \int_{R}\left|f_{i}(y)\right| d y\right)
$$

Let

$$
\begin{gathered}
\Phi_{n}(t)=t\left(1+\left(\log ^{+} t\right)^{n-1}\right) \approx t(\log (e+t))^{n-1} \\
\Phi_{n}^{(m)}:=\overbrace{\Phi_{n} \circ \cdots \circ \Phi_{n}}^{m} .
\end{gathered}
$$

Let

$$
\begin{gathered}
\Phi_{n}(t)=t\left(1+\left(\log ^{+} t\right)^{n-1}\right) \approx t(\log (e+t))^{n-1} \\
\Phi_{n}^{(m)}:=\overbrace{\Phi_{n} \circ \cdots \circ \Phi_{n}}^{m} .
\end{gathered}
$$

We have the end-point estimates

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n}:\left|T_{\Sigma \mathbf{b}}(\mathbf{f})(x)\right|>t^{m}\right\}\right| \lesssim \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} \Phi_{2}\left(\frac{\left|f_{j}(x)\right|}{t}\right) d x\right)^{1 / m} \\
& \left|\left\{x \in \mathbb{R}^{n}:\left|T_{\Pi \mathbf{b}}(\mathbf{f})(x)\right|>t^{m}\right\}\right| \lesssim \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} \Phi_{2}^{(m)}\left(\frac{\left|f_{j}(x)\right|}{t}\right) d x\right)^{1 / m} \\
& \left|\left\{x \in \mathbb{R}^{n}: \mathcal{M}_{\mathcal{R}}(\mathbf{f})(x)>t^{m}\right\}\right| \lesssim \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n}} \Phi_{n}^{(m)}\left(\frac{\left|f_{i}(x)\right|}{t}\right) d x\right)^{1 / m}
\end{aligned}
$$

Let

$$
\begin{gathered}
\Phi_{n}(t)=t\left(1+\left(\log ^{+} t\right)^{n-1}\right) \approx t(\log (e+t))^{n-1} \\
\Phi_{n}^{(m)}:=\overbrace{\Phi_{n} \circ \cdots \circ \Phi_{n}}^{m} .
\end{gathered}
$$

We have the end-point estimates

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n}:\left|T_{\Sigma \mathbf{b}}(\mathbf{f})(x)\right|>t^{m}\right\}\right| \lesssim \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} \Phi_{2}\left(\frac{\left|f_{j}(x)\right|}{t}\right) d x\right)^{1 / m} \\
& \left|\left\{x \in \mathbb{R}^{n}:\left|T_{\Pi \mathbf{b}}(\mathbf{f})(x)\right|>t^{m}\right\}\right| \lesssim \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} \Phi_{2}^{(m)}\left(\frac{\left|f_{j}(x)\right|}{t}\right) d x\right)^{1 / m} \\
& \left|\left\{x \in \mathbb{R}^{n}: \mathcal{M}_{\mathcal{R}}(\mathbf{f})(x)>t^{m}\right\}\right| \lesssim \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n}} \Phi_{n}^{(m)}\left(\frac{\left|f_{i}(x)\right|}{t}\right) d x\right)^{1 / m}
\end{aligned}
$$

which are sharp in appropriate senses.

Let

$$
\begin{gathered}
\Phi_{n}(t)=t\left(1+\left(\log ^{+} t\right)^{n-1}\right) \approx t(\log (e+t))^{n-1} \\
\Phi_{n}^{(m)}:=\overbrace{\Phi_{n} \circ \cdots \circ \Phi_{n}}^{m} .
\end{gathered}
$$

We have the end-point estimates

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n}:\left|T_{\Sigma \mathbf{b}}(\mathbf{f})(x)\right|>t^{m}\right\}\right| \lesssim \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} \Phi_{2}\left(\frac{\left|f_{j}(x)\right|}{t}\right) d x\right)^{1 / m} \\
& \left|\left\{x \in \mathbb{R}^{n}:\left|T_{\Pi \mathbf{b}}(\mathbf{f})(x)\right|>t^{m}\right\}\right| \lesssim \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} \Phi_{2}^{(m)}\left(\frac{\left|f_{j}(x)\right|}{t}\right) d x\right)^{1 / m} \\
& \left|\left\{x \in \mathbb{R}^{n}: \mathcal{M}_{\mathcal{R}}(\mathbf{f})(x)>t^{m}\right\}\right| \lesssim \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n}} \Phi_{n}^{(m)}\left(\frac{\left|f_{i}(x)\right|}{t}\right) d x\right)^{1 / m}
\end{aligned}
$$

which are sharp in appropriate senses.
They can also be use to interpolate!

Theorem (Grafakos, Liu, Pérez, T.)

Suppose a bisublinear operator T maps $L^{s_{1}} \times L^{s_{2}} \rightarrow L^{s, \infty}$ for all $1<s_{1}, s_{2}, s<\infty$ with $1 / s_{1}+1 / s_{2}=1 / s$ and also satisfies the endpoint distributional estimate

$$
\left|\left\{\left|T\left(f_{1}, f_{2}\right)\right|>\lambda\right\}\right| \leq C\left(\int \Phi\left(\frac{f_{1}}{\sqrt{\lambda}}\right) d x\right)^{\frac{1}{2}}\left(\int \Phi\left(\frac{f_{2}}{\sqrt{\lambda}}\right) d x\right)^{\frac{1}{2}}
$$

where Φ is a nonnegative function that satisfies $\Phi(0)=0$ and

$$
\int_{0}^{1} \lambda^{\alpha} \Phi\left(\frac{1}{\lambda}\right) d \lambda<\infty
$$

for all $\alpha>0$.

Theorem (Grafakos, Liu, Pérez, T.)

Suppose a bisublinear operator T maps $L^{s_{1}} \times L^{s_{2}} \rightarrow L^{s, \infty}$ for all $1<s_{1}, s_{2}, s<\infty$ with $1 / s_{1}+1 / s_{2}=1 / s$ and also satisfies the endpoint distributional estimate

$$
\left|\left\{\left|T\left(f_{1}, f_{2}\right)\right|>\lambda\right\}\right| \leq C\left(\int \Phi\left(\frac{f_{1}}{\sqrt{\lambda}}\right) d x\right)^{\frac{1}{2}}\left(\int \Phi\left(\frac{f_{2}}{\sqrt{\lambda}}\right) d x\right)^{\frac{1}{2}}
$$

where Φ is a nonnegative function that satisfies $\Phi(0)=0$ and

$$
\int_{0}^{1} \lambda^{\alpha} \Phi\left(\frac{1}{\lambda}\right) d \lambda<\infty
$$

for all $\alpha>0$.
Then $T: L^{p_{1}} \times L^{p_{2}} \rightarrow L^{p}$ for all $1 / p_{1}+1 / p_{2}=1 / p$ with $1<p_{1}, p_{2}<\infty$ and $1 / 2<p<\infty$.

Many thanks for your attention

A regularity condition for end-point estimates of bilinear CZOs

Happy Birthday Eric!!!

A regularity condition for end-point estimates of bilinear CZOs

