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Introduction: The Harmonic Transform

The harmonic transform:

Given a vector field f ∈ L2(Ω, Rn), consider the Dirichlet problem

{

∆u = div f,

u ∈ W
1, 2
0 (Ω).

(1)

We have the L2 estimate

||∇u||L2(Ω) ≤ ||f||L2(Ω).

The harmonic transform is defined by

H : L2(Ω, Rn) → L2(Ω, Rn)

H(f) = ∇u.

Question: Is H also bounded on other Lebesgue spaces?
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The Harmonic Transform

The case Ω = R
n: By means of Fourier transform we find

H(f) = −[Rij ]f

= − c(n)p.v.

ˆ

Rn

< x − y , f(y) > (x − y)

|x − y |n+2
dy .

Here [Rij ] is the matrix of second order Riesz transforms:

Rij(ϕ) = Ri (Rj(ϕ))

= c(n)p.v.

ˆ

Rn

(xi − yi )(xj − yj)

|x − y |n+2
ϕ(y)dy .

Calderón-Zygmund, 1952:

||H(f)||Lq(Rn) ≤ Cq ||f||Lq(Rn), ∀q > 1.
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The Harmonic Transform on bounded domains

For bounded C 1-domains, Jerison-Kenig, 1995:

H : Lq(Ω) → Lq(Ω) for all q > 1.

However, such gradient bounds generally fail to hold on Lipschitz
domains. Here is an example. Let π

2 < θ0 < π and consider the
(non-convex) domain:

Ωθ0 = {(r , θ) : 0 < r < 1 and − θ0 < θ < θ0}.
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The Harmonic Transform on bounded domains

For λ = π
2θ0

< 1, let u(r , θ) = rλ cos(λθ). Near the origin,

|∇u| = λrλ−1 = λr
π

2θ0
−1

.
Bad news: For any q > 4 we can find a θ0 (near π) such that
|∇u| /∈ Lq(Ωθ0).
Good news: For any q > 4 we can find a θ0 (near π

2 ) such that
|∇u| ∈ Lq(Ωθ0).
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The Harmonic Transform with coefficients

One can generalize (1) to the equation

{

div A(x)∇u = div f in Ω,
u = 0 on ∂Ω,

where the matrix A = [Aij ] is uniformly elliptic.
If A ∈ VMO or if A ∈ BMO with small BMO seminorms then

||∇u||Lq(Ω) ≤ C ||f||Lq(Ω), ∀q > 1.

Di Fazio, 1996 (C 1, 1-domains).
Auscher-Qafsaoui, 2002 (C 1-domains).
Byun-Wang, CPAM 2004, AIM 2008 (Reifenberg flat domains).
N. G. Meyer (1963): A counter example for bad A.
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The p-harmonic Transform

The p-harmonic Transform:

Let f ∈ Lp(Ω, Rn). Consider the problem

{

∆pu := div(|∇u|p−2∇u) = div|f|p−2
f,

u ∈ W
1,p
0 (Ω).

(2)

The fundamental estimate (take u as a test function and IBP):

ˆ

Ω
|∇u|pdx ≤

ˆ

Ω
|f|pdx

The p-harmonic transform is defined by

Hp : Lp(Ω, Rn) → Lp(Ω, Rn)

Hp(f) = ∇u.
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The p-harmonic Transform: Basic question

Question: Is Hp also bounded on other Lebesgue spaces?

Theorem (Iwaniec 1983, DiBenedetto-Manfredi 1993 (p-systems))

Let Ω = R
n and p < q < ∞. One has

Hp : Lq(Ω, Rn) → Lq(Ω, Rn)

||Hp(f)||Lq ≤ C ||f||Lq

provided that Hp(f) ∈ Lp.

Theorem (Iwaniec-Sbordone 1994)

Let Ω be a bounded regular domain. There exists small ǫ > 0 such

that for all p − ǫ < q < p one has

Hp : Lq(Ω, Rn) → Lq(Ω, Rn)

||Hp(f)||Lq ≤ C ||f||Lq .
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The p-harmonic Transform: the case Ω = R
n

Conjecture (Iwaniec, 1983): Hp is also bounded on Lq for all
max{1, p − 1} < q < p. We show that under certain positivity
condition this conjecture holds true.

Theorem (P. 2011 )

Suppose that p > 2 − 1
n
, p − 1 < q < p. Let u be a

p-superharmonic function in R
n such that

∆pu = div|f|p−2
f.

Then one has the estimate
ˆ

Rn

|∇u|qdx ≤ C

ˆ

Rn

|f|qdx ,

provided that

lim
R→∞

 

B(O,R)
|∇u|dy = 0.
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Some ingridients in the proofs

Recent work of F. Duzaar and G. Mingione 2009, 2010: Suppose
that u solves the nonlinear equation with measure data

−∆pu = µ ≥ 0 in D′(Rn).

Then we have for a.e. x ∈ R
n:

|∇u(x)| ≤ C

ˆ ∞

0

[

µ(Bt(x))

tn−1

]
1

p−1 dt

t
, if p ≥ 2,

and

|∇u(x)| ≤ C

[
ˆ ∞

0

µ(Bt(x))

tn−1

dt

t

]
1

p−1

, if 2 −
1

n
< p < 2,

provided that

lim
R→∞

 

B(O,R)
|∇u|dy = 0.
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Some ingredients in the proofs

P.-Torres 2008: If f ∈ Lq satisfies div|f|p−2
f = µ ≥ 0, then it holds

that
∥

∥

∥

∥

∥

[
ˆ ∞

0

µ(Bt(·))

tn−1

dt

t

]
1

p−1

∥

∥

∥

∥

∥

Lq

≤ C ‖f‖Lq .

P.-Verbitsky 2008 (Wolff type inequalities): For all q > p − 1 > 0
one has the equivalence

∥

∥

∥

∥

∥

[
ˆ ∞

0

µ(Bt(·))

tn−1

dt

t

]
1

p−1

∥

∥

∥

∥

∥

Lq

≃

∥

∥

∥

∥

∥

ˆ ∞

0

[

µ(Bt(·))

tn−1

]
1

p−1 dt

t

∥

∥

∥

∥

∥

Lq

.
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The p-harmonic transform with general structures

More generally, one can consider the equation

divA(x ,∇u) = div|f|p−2
f,

where

|A(x , ξ)| ≤ β|ξ|p−1,

〈Aξ(x , ξ)λ, λ〉 ≥ α|ξ|p−2|λ|2, |Aξ(x , ξ)| ≤ β|ξ|p−2,

for all x , ξ, and λ in R
n. For our purpose we also require that A

satisfy a δ-BMO condition in the x-variable. For each ball B ⊂ R
n

we let β = β(B) : R
n → R be defined by

β(B)(x) := sup
ξ∈Rn\{0}

|A(x , ξ) −AB(ξ)|

|ξ|p−1
,

where

AB(ξ) =

 

B

A(x , ξ)dx =
1

|B|

ˆ

B

A(x , ξ)dx .
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The p-harmonic transform with general structures

In the linear case where A(x , ξ) = A(x)ξ, we see that

β(B)(x) ≤ |A(x) − AB |

Definition

We say that A(x , ξ) satisfies a δ-BMO condition for some δ > 0
(with exponent s) if

‖A‖#
s := sup

B⊂Rn

(
 

B

β(B)(x)sdx

)
1
s

≤ δ.
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The case q > p on bounded domains

Some earlier works:

Kinnunen-Zhou, 1999, 2001 (VMO coefficients, C 1, α

domains)): lies deeply in the C 1,α-regularity for the
homogeneous p-harmonic equation ∆pu = 0.
The boundedness of Fefferman-Stein sharp maximal function
M# was also employed.

Byun-Wang-Zhou, 2007, Byun-Wang, 2008 (small BMO
coefficients, Reifenberg flat domains)): relies on W 1,∞

estimates for the homogeneous p-harmonic equation.
Perturbation approach in Caffarelli-Peral, 1998.
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The case q > p on bounded domains

P.-Mengesha 2011 and P.-Mengesha (in preparation):

Theorem

There exists a constant δ > 0 such that if u is a solution to

{

divA(x ,∇u) = div |f|p−2
f in Ω,

u = 0 on ∂Ω,

where A satisfies the (δ, R)-BMO condition and Ω is

(δ, R)-Reifenberg flat then one has the estimate

||∇u||Fq ≤ C ||f||Fq , ∀q > p.

The A-superharmonicity condition is not needed here.
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The case q > p on bounded domains

Here Fq can be any of the following spaces: p < q < ∞

Lq(Ω); L
q
w (Ω) where w ∈ Aq/p. This gives a nonlinear version

of weighted norm inequalities for singular integrals:
Hunt-Muckenhoupt-Wheeden, 1973 (1D), Coifman-Fefferman,
1974.

Weighted Lorentz spaces L
q,t
w (Ω) where w ∈ Aq/p. Here

‖g‖L
q, t
w (Ω) :=

[

q

ˆ ∞

0
(αqw({x ∈ Ω : |g(x)| > α}))

t
q
dα

α

]
1
t

.

Morrey spaces: Mq; θ(Ω), 0 < θ ≤ n with

‖g‖Mq; θ(Ω) := sup
0<r≤diam(Ω)

z∈Ω

r
θ−n

q ‖g‖Lq(Br (z)∩Ω) .
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The case q > p on bounded domains

Lorentz-Morrey spaces LMq, t; θ(Ω), 0 < t ≤ ∞, 0 < θ ≤ n.

‖g‖LMq, t; θ(Ω) := sup
0<r≤diam(Ω)

z∈Ω

r
θ−n

q ‖g‖Lq, t(Br (z)∩Ω) < +∞.

When θ = n: LMq, t; θ(Ω) = Lq, t(Ω).
When q = t: LMq, t; θ(Ω) = Mq; θ(Ω).
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The case q > p on bounded domains

Fq can also be a “capacitary space”’ Cq(Ω) defined via

‖g‖Cq(Ω) := sup
K⊂Ω

{

´

K
|g |qdy

Cap1, s(K )

}

1
q

,

where Cap1, s(·) is the capacity associated to the Sobolev
space W 1, s(Rn).
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Application to quasilinear Riccati type equations

This estimate has an application to Riccati type equations with
super-natural growth in the gradient.

{

−divA(x ,∇u) = |∇u|q + µ in Ω,
u = 0 on ∂Ω,

where q > p > 1.

m

µ(K ) ≤ C Cap1, q
q−p+1

(K ) (3)

P. 2009: A ∈ VMO, ∂Ω ∈ C 1.
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Some consequences

Solvability in Lebesgue spaces:

ω ∈ L
n(q−p+1)

q
,∞

(Ω) ⇒ (3).

For example,

−∆pu = |∇u|q +
c

|x |s
, O ∈ Ω,

has a solution if and only if s ≤ q
q−p+1 .

Solvability in Morrey Spaces: Suppose dω = fdx . Let ǫ > 0.

ω ∈ L1+ǫ,
(1+ǫ)q
q−p+1 ⇒ ω(E ) ≤ CCap1, q

q−p+1
(E ).

This is also called Fefferman-Phong condition.
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