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Consider the first eigenvalue defined by its quadratic, called the Rayleigh quo-
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λ1 = inf
g∈C∞o

〈Hg, g〉
〈g, g〉

By a formula due to of R. Kerman and E. Sawyer

−λ1 = inf{λ ≥ 0 : Cλ(V ) ≤ 1},

where Cλ(V ) is the smallest constant satisfying

∫
Rn
g(y)2 V (y)dy ≤ Cλ(V )2

∫
Rn

(
∇g(y)2 + λ2g(y)2

)
dy
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Then, is interesting to find conditions on the positive measure dµ such that

∫
Rn
TΦf(x)p dµ(x) ≤ c

∫
Rn
f(x)p dx

Kerman and Sawyer related these operators with their dual ones, namely

T
µ
Φ(f)(x) =

∫
Rn

Φ(x− y)f(y) dµ(y)

and its associated maximal type fractional operators

M
µ
Φ̃

(f)(x) = sup
x∈Q

Φ̃(`(Q))

|Q|

∫
Q
f(y) dµ(y).
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Φ is a decreasing function and µ a positive measure on Rn.

theorem
T.F.A.E.:
i) The trace inequality holds:(∫

Rn
TΦf(x)p dµ(x)

)1/p
≤ c

(∫
Rn
f(x)p dx

)1/p
f ≥ 0

ii) (∫
Rn
T
µ
Φ(χQ)(x)p

′
dx

)1/p′

≤ c µ(Q)1/p′ Q ∈ D

iii) (∫
Q
M
µ
Φ̃

(χQ)(x)p
′
dx

)1/p′

≤ c µ(Q)1/p′ Q ∈ D
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′ ≈
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Finally step: prove a testing type condition “a la Sawyer”
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Solution to the Fefferman-Phong problem

After proving
Cλ(V ) ≈ sup

Q

1

v(Q)

∫
Q
I2(vχQ) vdx

they proved,

Theorem (Kerman-Sawyer)
There are dimensional constans c, C such that such that the least eigenvalue
λ1 of satisfies

Esmall ≤ −λ1 ≤ Elarge
where

Esmall = sup
Q

{
|Q|−2/n :

1

v(Q)

∫
Q
I2(vχQ) vdx ≥ C

}
and

Elarge = sup
Q

{
|Q|−2/n :

1

v(Q)

∫
Q
I2(vχQ) vdx ≥ c

}

9
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(
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Eric Sawyer: A weighted inequality and eigenvalue estimates for Schrodinger
operators”, Indiana Journal of Mathematics, 35, (1986)
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The model example: Muckenhoupt Ap class of weights

The Hardy–Littlewood maximal function:

Mf(x) = sup
x∈Q

1

|Q|

∫
Q
|f(y)| dy.

Theorem
Let 1 < p <∞, then

M : Lp(w) −→ Lp(w)

if and only if w satisfies the Ap condition:

sup
Q

(
1

|Q|

∫
Q
w dx

)(
1

|Q|

∫
Q
w1−p′ dx

)p−1
<∞
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∫
Rn
Mf(x)p udx ≤ C

∫
Rn
|f(x)|pvdx

if and only if (u, v) satisfies the Sp condition: there is a constant c s.t.

(Sp)
∫
Q
M(χ

Q
σ)p udx ≤ c σ(Q)

where σ = v1−p′

He tested this “philosophy” with many other operators.

For instance: One sided maximal Hardy–Littlewood maximal function

M+f(x) = sup
h>0

1

h

∫ x+h

x
|f(t)| dt
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Recall the definition of the classical fractional integral: if 0 < α < n

Iα(f)(x) =
∫
Rn

f(y)

|x− y|n−α
dy.

Theorem [Sawyer] (1985)

∥∥∥Iα(f)
∥∥∥
Lp,∞(u)

≤ c ‖f‖Lp(v)

if and only if (u, v) satisfies the following condition:

∫
Q
Iα(uχ

Q
)p
′
σdx ≤ c u(Q)

where σ = v1−p′
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”A characterization of two weight norm inequalities for fractional and
Poisson integrals”, Trans. A.M.S. (1988)
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Sawyer-Wheeden two weight bump condition

The two weight Fefferman-Phong condition in 1992 by Sawyer and Wheeden
showed that the

Theorem [Sawyer-Wheeden] (1992)
Suppose that (u, v) be a couple of weights such that for some r > 1

K = sup
Q

`(Q)α
(

1

|Q|

∫
Q
ur dx

)1/r ( 1

|Q|

∫
Q
v−r dx

)1/r
<∞

Then ∫
Rn
|Iαf(x)|2 u(x)dx ≤ C

∫
Rn
|f |2v(x)dx.
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(
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∫
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v−r dx

)1/r
<∞

Then ∫
Rn
|Iαf(x)|2 u(x)dx ≤ C

∫
Rn
|f |2v(x)dx.

E. Sawyer and R.L. Wheeden, ”Weighted inequalities for fractional in-
tegrals on Euclidean and homogeneous spaces, American Journal of
Mathematics, (1992)
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|Q|α/n

|Q|

∫
Q
f(y) dy χQ(x),

and then after “averaging”

Iαf(x) ≈
∑
k,j

|Qj,k|α/n

|Qj,k|

∫
Qj,k

f(y) dy χQj,k(x),

where the family {Qj,k} is formed by special dyadic Calderón-Zyygmund cubes.
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bauer.

• Improves: Chang-Wilson-Wolff and Fefferman-Phong

• The failure of the Besicovitch covering lemma for the Heisenberg group was
obtained (also independently by Koranyi and Reimann).

• A construction of a dyadic grid for spaces of homogeneous type was given
(also independently by Christ, see as well David)

• later with Cruz-Uribe and Martell, obtained nice results for singular integrals
in this vein.
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|f(x)|udx.

E. Sawyer, “A weighted weak type inequality for the maximal function”,
Proceedings of the A.M.S., 93(1985).
• Of course, the case v = u = 1 is the classical unweighted result.
• The case v = 1 is the classical Fefferman-Stein’s inequality and the case
u = 1 is also immediate:

M(f)

v
≤ CMv(

f

v
)

• The problem in general is that the product uv can be very singular...
• To assume that u ∈ A1 is natural because of the case v = 1.
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L1,∞(uv)

≤ c
∫
Rn
|f(x)|uv dx

and also

Theorem If u ∈ A1(Rn), and v ∈ A∞(u), then the same conclusion holds.

Example: u = 1 and v ∈ A∞
Some special cases were considered in the 70’s by Muckenhoupt-Wheeden
for the Hilbert Transform.
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∥∥∥
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∫
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|f(x)|uv dx

We were very lucky because the proof is basically the same as in the
Eric’s paper, we have reduced everything to the dyadic and is a bit sim-
pler but
We DON’T UNDERSTAND IT
We are not happy neither with the proof nor with the result.

Sawyer’s conjecture: The result should hold in the following case

u ∈ A1(Rn) & v ∈ A∞(Rn)

which corresponds to the most singular case.
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M(fv)(x)
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(|E|
|Q|
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R
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Theorem (Eric)
Let 1 < p <∞ . If the weight w satisfies

∫
Rn
|Rjf |pw dx ≤ C

∫
Rn

(Mf)pw dx, 1 ≤ j ≤ n, f ∈ L∞c

Then w satifies the Cp condition:

ω(E) ≤ C
(|E|
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The Cp condition: sufficiency

Theorem (Eric)
Let 1 < p <∞ and let ε > 0. Let T be a Singular Integral, then if weight w
satisfies the Cp+δ condition:

ω(E) ≤ C
(|E|
|Q|

)ε ∫
Rn

(M(χQ))p+δ w dx

for any cube Q and for any set E ⊂ Q.
Then ∫

Rn
|Tf |pw dx ≤ C

∫
Rn

(Mf)pw dx.
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Then under minimal assumption on k and a minimal initial assumption on u
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This theorem is due to P. Guan.
Improved in joint work with Eric (TAMS)

Theorem [Rios, Sawyer and Wheeden] (2008)
Let n ≥ 3 and suppose k ≈ |x|2m can be written as a sum of squares of
smooth functions in Ω ⊂ Rn . If u is a C2 convex solution u to the subelliptic
Monge-Ampére equation

detD2u(x) = k(x, u,Du) x ∈ Ω,

then u is smooth if the elementary (n − 1)st symmetric curvature kn−1 of u
is positive (the case m ≥ 2 uses an additional nondegeneracy condition on
the sum of squares).

Advances in Math 2008
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Comments

As a conseqence they obtain the following geometric result: a C2 convex func-
tion u whose graph has smooth Gaussian curvature k ≈ |x|2 is itself smooth
if and only if the subGaussian curvature kn−1 of u is positive in Ω.
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