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Areas of research:

Convex and discrete geometry
Fourier analysis

Functional analysis

Functions of a complex variable
Measure and integration
Number theory

Operator theory

Partial differential equations
Potential theory

Real functions

Several complex variables
Analytic spaces
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Let
—NA -V

be a Schrodinger operator with potential V.

Consider the first eigenvalue defined by its quadratic, called the Rayleigh quo-
tient

H
N = inf \H99)
9€Cs (9, 9)

By a formula due to of R. Kerman and E. Sawyer

—A1 = inf{A > 0: CA(V) < 1},

where C, (V) is the smallest constant satisfying

L, 9@?V@dy < (D2 [ (Vo) + X29(w)?) dy
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L P Vdy < ()2 [ lg@w)Pdy  A>0
where J, \, a,A > 0 is the Bessel potential defined by
Ja)\f = Ka)\*f.
This is a what is called a trace inequality.

In other words
CA(V) = 1Tl p2— 2 (v

The case )\ = O is specially interesting and we have

Co(V) = 1l g2 r2¢vy

where now I,, O < a < n, is the Riesz potential operator defined by

I f(z) = / f(y)

R" @ — y|? =
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The trace inequality Il

Then, is interesting to find conditions on the positive measure du such that

[ Tof@Pdu(@) <c [ ()P da

Kerman and Sawyer related these operators with their dual ones, namely

TH()(@) = [ ®(@—y)f ) duy)

and its associated maximal type fractional operators

ME(f) (@) = sup ZALD

SUP 0 . fQy) du(y).
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Kerman-Sawyer’s theorem for the trace inequality

& is a decreasing function and p a positive measure on R™,

theorem
T.FA.E.:
) The trace inequality holds:

([ Tor@rau)” <c ([ s@ra)” 2o

/ 1/ ‘ /
([, Th0@@" ) " <en@’  Qep
ii)

/ 1/p/ /
( M Q) (@) daz) <cu(@YP Qe
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Some comments about of the proof
Use of duality:

/

([, 5t da:)l/p/ <Cu ([, 1@ du(az))l/p f>0

Control by the maximal function:

HTg(f)HLp’ ~ HMc%(f)HLp’

Proof by good-\ as in the work of Muckenhoupt-Wheeden

Replace cubes by dyadic cubes:

~ Mg A

Finally step: prove a testing type condition “a la Sawyer”
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Solution to the Fefferman-Phong problem

After proving
Cy\(V) =~ Sup ( o I>(vxg) vdx

they proved,

Theorem (Kerman-Sawyer)
There are dimensional constans ¢, C' such that such that the least eigenvalue
A1 of satisfies

Esmall < —A1 < Elarge
where
Esmail = SUP {|Q‘_2/n : L/ IQ(UXQ) vdr > C}
Q v(Q) /Q
and

2o/, 1
Elarge — Slé?p {|Q| 2/m . @/Q IQ(UXQ) vdx > C}
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Related work by Chang-Wilson-Wolff
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R. Kerman and E. Sawyer:
”Weighted norm inequalities for potentials with applications to Schrodinger
operators, Fourier transforms and Carleson measures”, Bulletin of the

A.M.S (1985)

”The trace inequality and eigenvalue estimates for Schrodinger opera-
tors”, Annales de I'Institut Fourier, 36 (1986).
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In this connection, Eric considered the following functional:

v(Q)
w(Q)
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where
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Some theorems by E. Sawyer carlosperez@us.es

The main result

Theorem (Sawyer)
If

sup E(Q,v,w) < oo
Q@

and v and w satisfy some extra condition then

[ @R oy <0 [ (IVF@P + @+ NIF)P) dy



Some theorems by E. Sawyer carlosperez@us.es

The main result

Theorem (Sawyer)
If

sup E(Q,v,w) < oo
Q@

and v and w satisfy some extra condition then

/Rn FWIPv(y)dy < C /Rn (IVF@W)I? + (w+ NfW)I?) dy

The proof is really complicated!!!



Some theorems by E. Sawyer carlosperez@us.es

The main result

Theorem (Sawyer)
If

sup E(Q,v,w) < oo
Q

and v and w satisfy some extra condition then

/Rn FWIPv(y)dy < C /Rn (IVF@W)I? + (w+ NfW)I?) dy

The proof is really complicated!!!

Eric Sawyer: A weighted inequality and eigenvalue estimates for Schrodinger
operators”, Indiana Journal of Mathematics, 35, (1986)
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The model example: Muckenhoupt A, class of weights

The Hardy-Littlewood maximal function:

M) = sup o |17l d.

Theorem
Let 1 < p < o0, then

M : LP(w) — LP(w)

if and only if w satisfies the A, condition:

sup <|é| / ) <|Q%| /le_p/ da:)p_l < 0
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/Rn(Mf)pudach/Rn|f|pvdzv

The natural A, condition

(Ap) Sgp (F; /Qudac> <ﬁ /Qvl_p/ dac)p_l < 00

is NECESSARY Dbut NOT SUFFICIENT

(known from the 70’s, Muckenhoupt and Wheeden.)
However:
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Two weight theory for the maximal function
Model example of Eric “testing philosphy”

/Rn(Mf)pudach/Rn|f|pvdw

The natural A, condition

(Ap) Sgp (F; /Qudac> <ﬁ /Qvl_p/ dac)p_l < 00

is NECESSARY Dbut NOT SUFFICIENT

(known from the 70’s, Muckenhoupt and Wheeden.)
However:

(u,v) € Ap <= M : LP(v) — LP°(u)
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Eric’s theorem and Eric’s condition

Theorem [Sawyer] (1981)
Let 1 <p< oo andlet (u,v) be a couple of weights, then

/an(:c)pud:c < C o | f(z)[Pvdx

if and only if (u,v) satisfies the S;, condition: there is a constant c s.t.
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Eric’s theorem and Eric’s condition

Theorem [Sawyer] (1981)
Let 1 <p< oo andlet (u,v) be a couple of weights, then

/an(:c)pud:B < C o | f(z)[Pvdx

if and only if (u,v) satisfies the S;, condition: there is a constant c s.t.
() |, M) ude < co(Q)

/
where o = v1—P

He tested this “philosophy” with many other operators.

For instance: One sided maximal Hardy-Littlewood maximal function

z+h
MY f(x) = sup / £ ()] dt
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|z — y|ne

I()@) = [ |
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First E. Sawyer’s theorem for fractional integrals

Recall the definition of the classical fractional integral: if 0 < a <n

f(y)

"o —y|mm

Ia(f)(@) = [
Theorem [Sawyer] (1985)

[Tl ooy < €lF 1o o)

if and only if (u,v) satisfies the following condition:

/Q Ia(uxQ)p/ odr < cu(Q)

/
where o = vl—P
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Second E. Sawyer’s theorem for fractional integrals

Theorem [Sawyer]| (1988)

[ Ma(DPuds <C [ |f1Pvda

if and only if (u,v) satisfies the S, condition:

[ faloxgW ude <co(@) & [ Ia(uxy)? odr < cu(@)

/
where o = vl—P
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Second E. Sawyer’s theorem for fractional integrals

Theorem [Sawyer] (1988)

[ Ma(DPuds <C [ |f1Pvda

if and only if (u,v) satisfies the S, condition:

[ faloxgW ude <co(@) & [ Ia(uxy)? odr < cu(@)

/
where o = vl—P

”A characterization of two weight norm inequalities for fractional and
Poisson integrals”, Trans. A.M.S. (1988)
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Sawyer-Wheeden two weight bump condition

The two weight Fefferman-Phong condition in 1992 by Sawyer and Wheeden
showed that the

Theorem [Sawyer-Wheeden] (1992)
Suppose that (u, v) be a couple of weights such that for some » > 1

K = Sggp Q) (ﬁ /Q u” daz) o (r;l /Q v d:v) o < 00

Then
[ Maf@Pu(@)dz < C [ |fPv(@)da.
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Sawyer-Wheeden two weight bump condition

The two weight Fefferman-Phong condition in 1992 by Sawyer and Wheeden
showed that the

Theorem [Sawyer-Wheeden] (1992)
Suppose that (u, v) be a couple of weights such that for some » > 1

K = Sgp Q) (ﬁ /Q u” da:) o (ﬁ /Q v da:) o < 00

Then
[ Maf@Pu(@)dz < C [ |fPv(@)da.

E. Sawyer and R.L. Wheeden, "Weighted inequalities for fractional in-
tegrals on Euclidean and homogeneous spaces, American Journal of
Mathematics, (1992)
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Tips of the proof

a/n
i@~ 3, 19

d x),
> a o 7 @) dy xq(@)
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Tips of the proof

a/n
i@~ 3, 19

d x),
~ Ta J, 7w dy xo(@)

and then after “averaging”

o la/n
T () ~ Y010k

d . :
D Jo, @ duxq; @)
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Tips of the proof

a/n
lof(@) ~ Y 19

d x),
> a J, 7w dy xo @)

and then after “averaging”

L la/n
of(2) = Y 100k

d . :
DR Jo, @ duxq; @)

where the family {Q; ;. } is formed by special dyadic Calderon-Zyygmund cubes.
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Some comments

e This and other similar results were extended to spaces of homogeneous
type.

e The case when a = 0 corresponds to the Hilbert transform is due to Neuge-
bauer.

e Improves: Chang-Wilson-Wolff and Fefferman-Phong

e The failure of the Besicovitch covering lemma for the Heisenberg group was
obtained (also independently by Koranyi and Reimann).

e A construction of a dyadic grid for spaces of homogeneous type was given
(also independently by Christ, see as well David)

e later with Cruz-Uribe and Martell, obtained nice results for singular integrals
in this vein.
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This result of E. Sawyer can be seen as a very sophisticated version of the
classical weak type (1, 1) estimate for the Hardy-Littlewood maximal function.

Theorem (E. Sawyer) Let u,v € A1 (R), then there is a constant ¢ such
that,
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E. Sawyer, “A weighted weak type inequality for the maximal function”,
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Mixed weak type inequalities and Eric’s conjecture

This result of E. Sawyer can be seen as a very sophisticated version of the
classical weak type (1, 1) estimate for the Hardy-Littlewood maximal function.

Theorem (E. Sawyer) Let u,v € A1 (R), then there is a constant ¢ such
that,

P ey < fo 7@

v

E. Sawyer, “A weighted weak type inequality for the maximal function”,
Proceedings of the A.M.S., 93(1985).

e Of course, the case v = u = 1 is the classical unweighted result.
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Mixed weak type inequalities and Eric’s conjecture

This result of E. Sawyer can be seen as a very sophisticated version of the
classical weak type (1, 1) estimate for the Hardy-Littlewood maximal function.

Theorem (E. Sawyer) Let u,v € A1 (R), then there is a constant ¢ such
that,

HM(f)HLLoo(m) s /R |f (@) udz.

v

E. Sawyer, “A weighted weak type inequality for the maximal function”,
Proceedings of the A.M.S., 93(1985).

e Of course, the case v = u = 1 is the classical unweighted result.

e The case v = 1 s the classical Fefferman-Stein’s inequality and the case
u = 1 Is also immediate:
M(f)

v
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Mixed weak type inequalities and Eric’s conjecture

This result of E. Sawyer can be seen as a very sophisticated version of the
classical weak type (1, 1) estimate for the Hardy-Littlewood maximal function.

Theorem (E. Sawyer) Let u,v € A1 (R), then there is a constant ¢ such
that,

HM(f)HLLoo(m) s /R |f (@) udz.

v

E. Sawyer, “A weighted weak type inequality for the maximal function”,
Proceedings of the A.M.S., 93(1985).

e Of course, the case v = u = 1 is the classical unweighted result.

e The case v = 1 s the classical Fefferman-Stein’s inequality and the case
u = 1 Is also immediate:
M(f)

(¥
e The problem in general is that the product v can be very singulatr...
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Mixed weak type inequalities and Eric’s conjecture

This result of E. Sawyer can be seen as a very sophisticated version of the
classical weak type (1, 1) estimate for the Hardy-Littlewood maximal function.

Theorem (E. Sawyer) Let u,v € A1 (R), then there is a constant ¢ such
that,

M(f)

||L100(uv)— /|f(96)|udx

E. Sawyer, “A weighted weak type inequality for the maximal function”,
Proceedings of the A.M.S., 93(1985).

e Of course, the case v = u = 1 is the classical unweighted result.

e The case v = 1 s the classical Fefferman-Stein’s inequality and the case
u = 1 Is also immediate:
M(f)

< o mp(h)

e The problem in general is that the product v can be very singulatr...
e To assume that u € A4 is natural because of the case v = 1.



Some theorems by E. Sawyer carlosperez@us.es

Why Eric look for such a sophisticated a result?



Some theorems by E. Sawyer carlosperez@us.es

Why Eric look for such a sophisticated a result?

To give a different proof of Muckenhoupt’s A, theorem assuming that the
weights are already factored:

w = upt P u,v € Aj.



Some theorems by E. Sawyer carlosperez@us.es

Why Eric look for such a sophisticated a result?

To give a different proof of Muckenhoupt’s A, theorem assuming that the
weights are already factored:

w = upt P u,v € Aj.

Indeed, let



Some theorems by E. Sawyer carlosperez@us.es

Why Eric look for such a sophisticated a result?

To give a different proof of Muckenhoupt’s A, theorem assuming that the
weights are already factored:

w = upt P u,v € Aj.

Indeed, let

Su(f) = M(j v)



Some theorems by E. Sawyer carlosperez@us.es

Why Eric look for such a sophisticated a result?

To give a different proof of Muckenhoupt’s A, theorem assuming that the
weights are already factored:

w = upt P u,v € Aj.

Indeed, let

Su(f) = M(j v)

Then, Eric’s result says that S, is of weak type (1,1) w. r. to the measure

Uv.

Sy 1 LY (uwv) — LY (uw)



Some theorems by E. Sawyer carlosperez@us.es

Why Eric look for such a sophisticated a result?

To give a different proof of Muckenhoupt’s A, theorem assuming that the
weights are already factored:

w = upt P u,v € Aj.

Indeed, let

Su(f) = M(j v)

Then, Eric’s result says that S, is of weak type (1,1) w. r. to the measure

Uv.

Sy 1 LY (uwv) — LY (uw)

But observe that S, is also boundedon L°°, (v € A7) and hence on L°°(uv).



Some theorems by E. Sawyer carlosperez@us.es

Why Eric look for such a sophisticated a result?

To give a different proof of Muckenhoupt’s A, theorem assuming that the
weights are already factored:

w = upt P u,v € Aj.

Indeed, let

Su(f) = M(j v)

Then, Eric’s result says that S, is of weak type (1,1) w. r. to the measure

Uv.

Sy 1 LY (uwv) — LY (uw)

But observe that S, is also boundedon L°°, (v € A7) and hence on L°°(uv).

Then by the Marcinkiewicz interpolation theorem:



Some theorems by E. Sawyer carlosperez@us.es

Why Eric look for such a sophisticated a result?

To give a different proof of Muckenhoupt’s A, theorem assuming that the
weights are already factored:

w = upt P u,v € Aj.

Indeed, let

Su(f) = M(j v)

Then, Eric’s result says that S, is of weak type (1,1) w. r. to the measure

Uv.

Sy 1 LY (uwv) — LY (uw)

But observe that S, is also boundedon L°°, (v € A7) and hence on L°°(uv).

Then by the Marcinkiewicz interpolation theorem:

M : LP(uv!™P) — LP(uvl™P)
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Two conjectures by Eric

e First conjecture: to replace M by the Hilbert transform H , namely

H(fv)
H ||Lloo( )_ /|f(33)|uvd:v

e Second conjecture: to replace M in one dimension by M in R™, namely

HM(fv)HLl o) <c o |f(£v)]uv dr
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Results

Joint work with J. M. Martell and D. Cruz-Uribe
T is any Calderon-Zygmund .

Theorem Ifu e A1(R"™),and v € A;1(R™), then there is a constant ¢ such

that
HM(UfU) HLLOO(WJ) = /R” bl e
and
HT(?{U) HLLOO(uU) = /]R” |f(x)|uv dz
and also

Theorem If uw € A1 (R"™), and v € Ax(u), then the same conclusion holds.

Example: =1 and v € Ax
Some special cases were considered in the 70’s by Muckenhoupt-Wheeden
for the Hilbert Transform.
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Key Lemma
Our approach is completely different

We found a sort of “mechanism” (a very general extrapolation type theorem) to
reduce everything to prove the corresponding estimate for the dyadic maximal
operator.

Lemma Letu € A{(R"™) and v € Axc(R™), then
B

fv) M(fv)
vv HLlaOO(uv) < CH v - HLLOO(uv)

In fact this results holds for non A~ weights on w.
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The final key inequality and Sawyer’s conjecture
Then the proof of the Theorem is reduced to prove a Sawyer’s type esti-
mate for the dyadic maximal operator but in R":

Theorem Ifu e A1(R"™),and v € A;(R™), then there is a constant ¢ such
that

HMdifv)HLl,oo(uv) < ¢ /Rn £ (2) v da

We were very lucky because the proof is basically the same as in the
Eric’s paper, we have reduced everything to the dyadic and is a bit sim-
pler but

We DON’T UNDERSTAND IT

We are not happy neither with the proof nor with the resulit.
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The final key inequality and Sawyer’s conjecture
Then the proof of the Theorem is reduced to prove a Sawyer’s type esti-
mate for the dyadic maximal operator but in R":

Theorem Ifu e A1(R"™),and v € A;(R™), then there is a constant ¢ such
that

HMdifv)HLl,oo(uv) < ¢ /Rn £ (2) v da

We were very lucky because the proof is basically the same as in the
Eric’s paper, we have reduced everything to the dyadic and is a bit sim-

pler but
We DON'T UNDERSTAND IT
We are not happy neither with the proof nor with the resulit.

Sawyer’s conjecture: The result should hold in the following case
u e A1 (R™) & v € Aso(R™)

which corresponds to the most singular case.
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Proof: the two basic Ingredients

e The Coifman-Fefferman’s estimate: if 0 < p < cc and w € A~

Let T" be any Calderon-Zygmund Operator and let 0 < p < co and w € Axc.
Then

IT 1y < 1My

e and the use of the so called Rubio de Francia’s algorithm for a non standard
operator, namely Eric’s operator:

X Skh(x)
Rh(x) = :
()= 2 5"
where

v(z)
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Singular Integrals and the C), class of weights

Motivation: to understand the following version of the theorem of Coifman-
Fefferman.

Let H be the Hilbert transformlet 1 <p < occand w € Ax.
Then

/R|Hf|p’Wd2U <C /R(Mf)pwda:

This question was raised by Muckenhoupt in the 70’s. He showed that if the
weight satisfies this estimate then:

By <05 [ (MG wis

for any cube Q and for any set E C Q.
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The C), condition: necessity

R; will denote the Riesz transforms.

Theorem (Eric)
Let 1 < p < oco. If the weight w satisfies

[ RifPwdz<C [ (MfPwds, 1<j<n, feL¥

Then w satifies the C, condition:

w(E)<C< )/ (M (x0))P w da

for any cube Q and for any set E C Q.
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The C), condition: sufficiency

Theorem (Eric)
Let 1 <p < oo andlete > 0. Let T be a Singular Integral, then if weight w
satisfies the ', s condition:

sy <c(in) [ (M6 w

for any cube @Q and for any set £ C Q.
Then

TfPwde <C M f)Pwdz.
| TfPwde<C [ (MfPwde
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The Monge-Ampere Equation

UrxUyy — U%y = k(z,y)

near the origin with 0 < k(z,y) € C®(R?).

Then under minimal assumption on k£ and a minimal initial assumption on u
then u € C°° near the origin.

This theorem is due to P. Guan.

Improved in joint work with Eric (TAMS)

Theorem [Rios, Sawyer and Wheeden] (2008)

Let n > 3 and suppose k = |z|?™ can be written as a sum of squares of
smooth functions in Q C R™ . If u is a C2 convex solution v to the subelliptic
Monge-Ampére equation

detD?u(z) = k(z,u, Du) x € €2,

then u is smooth if the elementary (n — 1)5¢ symmetric curvature k,,_1 of u
IS positive (the case m > 2 uses an additional nondegeneracy condition on
the sum of squares).

Advances in Math 2008



Some theorems by E. Sawyer carlosperez@us.es

Comments



Some theorems by E. Sawyer carlosperez@us.es

Comments

As a consegence they obtain the following geometric result: a C2 convex func-
tion w whose graph has smooth Gaussian curvature k ~ |z|? is itself smooth
if and only if the subGaussian curvature k,,_1 of u is positive in <2.
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| am sure that Eric is going to produce more mathematics for us!!!

THANK YOU VERY
MUCH



