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Q) C C simply connected domain with rectifiable boundary

harmonic measure w K o = Hl ’89

o [Lavrentiev 1936] Quantitative version

e [Bishop-Jones 1990]
o F C 09, E rectifiable — w<Koonk
@ Counterexample F. & M. Riesz can fail without some topology

Goal: Obtain higher dimensional, scale-invariant (quantitative)
version of F. & M. Riesz
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Definition (Jerison-Kenig 1982)
Q c R is NTA if
o () satisfies the Corkscrew condition

0 Nyt = R \ Q satisfies the Corkscrew condition

o () satisfies the Harnack chain condition

Theorem (David-Jerison 1990; Semmes 1989)

o Q CR™! s NTA
o I is ADR ~ 1" = o(A(z, 7)), © € 00
Then w € Ax(0).

o Corkscrew for Qeyt can be relaxed: n-dim. disk in place of a ball
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E c R™! closed ADR is UR if

/ V25 £(X)[? dist(X, B) dX < C / F@) dH ()
Rn+1\E E

where S f single layer potential

f(y)

SIX) = [ A i), X ¢ E

e [David-Semmes 1991]
Eis UR <= E is ADR + all “nice” SIO are bounded on L?(E)
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[Hofmann, M], [Hofmann, Uriarte-Tuero, M.]
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o Oy 7 approximating domains
o Qy inherits ADR, Int. corkscrew, Harnack chain uniformly
o Iy ~> “faces” of Whitney cubes of size approx. 27V

o )y satisfies “qualitative assumptions”:
© Wiener test holds at all boundary points
o CFMS(Caffarelli-Fabes-Mortola-Salsa) holds qualitatively

1 w])\g(AN) GN(XANvX) wj)\g(AN)
L < <CUNON) v con\2B
Cny on(ANn) = On(Xay) = on(An) A

Always holds by Harnack Chain
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Strategy of the Proof: w € A™*(¢) = UR

© Approximating domains

o Oy 7 approximating domains
o Qy inherits ADR, Int. corkscrew, Harnack chain uniformly
o Iy ~> “faces” of Whitney cubes of size approx. 27V

o )y satisfies “qualitative assumptions”:
© Wiener test holds at all boundary points
o CFMS(Caffarelli-Fabes-Mortola-Salsa) holds qualitatively

1 wN(AN) GN(XANvX) wj)\g(AN)
<C—+——F—"=, XeQn\2B
Cn UN(AN> N(Xay) —  on(An) A
Not always true Always holds by Harnack Chain
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© Approximating domains

Proposition (Hofmann, M.)

o Qn satisfies CFMS “quantitatively” (i.e., uniformly in N )
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© Approximating domains
Proposition (Hofmann, M.)

o Qn satisfies CFMS “quantitatively” (i.e., uniformly in N )

Wi (AN)  GN(Xay, X)

~ , XeQy\2B
on(AN) ON(Xay) A

As a consequence,
° wy is doubling (uniformly in N)

o Comparison principle holds for Gy (uniformly in N)
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o Qn satisfies CFMS “quantitatively” (i.e., uniformly in N )

Wi (AN)  GN(Xay, X)

~ , XeQy\2B
on(AN) ON(Xay) A

As a consequence,
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o Comparison principle holds for Gy (uniformly in N)
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Strategy of the Proof: w € A™*(¢) = UR

© Approximating domains
Proposition (Hofmann, M.)

o Qn satisfies CFMS “quantitatively” (i.e., uniformly in N )

wi(AN) _ Gn(Xay,X)

~ , XeQy\2B
on(AN) ON(Xay) A

As a consequence,
° wy is doubling (uniformly in N)

o Comparison principle holds for Gy (uniformly in N)

° (RH, ;Veak) passes uniformly to Qx (with smaller g)
o Reduce to scales < 27V

@ Use full comparison principle in some NTA sub-domain
J.M. Martell (CSIC)
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@ UR for approximating domains Qy (uniformly in N)
o 0 =0y
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Strategy of the Proof: w € A™*(¢) = UR

@ UR for approximating domains Qy (uniformly in N)
o 0 =0y
o 00 is UR iff

| IPSH)RE0) @Y S flz2on

1
o Conical square function Sf(z) = <//Fi( | |V2Sf(Y)|? %) ’
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Strategy of the Proof: w € A™*(¢) = UR

@ UR for approximating domains Qy (uniformly in N)
o 0 =0y
o 00 is UR iff

/ Sf(z)*do(z) ~ / IVESFY)I?6(Y)dY < [1£ 2200
20 Rn+1
dY )5

o Conical square function Sf(z) = <// VESF(Y)F s(Y)1
I£(z)
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@ UR for approximating domains Qy (uniformly in N)
o 0 =0y
09 is UR iff
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o2 Rn+1

1
Conical square function Sf(x) = <//Fi( | |VESF(Y))? %) ’

Need to show that S is bounded on L*(9Q)
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@ UR for approximating domains Qy (uniformly in N)
o 0 =0y
09 is UR iff

/Sf(l‘)zda(:v)%/ IVESFY)P (Y)Y S [ fll2(00)
o2 Rn+1

1
Conical square function Sf(x / / |V25f )| 1) ’
I (z oY )”

Need to show that S is bounded on LQ(GQ)

@ Tb theory (Painlevé problem: Chirst, Mattila-Melnikov-Verdera,
David, Nazarov-Treil-Volberg, Tolsa)
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Strategy of the Proof
@0000

Strategy of the Proof: w € A™*(¢) = UR

@ UR for approximating domains Qy (uniformly in N)
o 0 =0y
09 is UR iff

/Sf(l‘)zda(:ﬁ)%/ IVESFY)P (Y)Y S [ fll2(00)
o2 Rn+1

1
Conical square function Sf(x / / |V25f )’ 1) ’
I+ (z oY )”

Need to show that S is bounded on LQ(GQ)

@ Tb theory (Painlevé problem: Chirst, Mattila-Melnikov-Verdera,
David, Nazarov-Treil-Volberg, Tolsa)
® “Local Tb” for square functions: b ~> {bg}gen ()

(Kato conjecture: Auscher-Hofmann-Lacey-McIntosh-Tchamitchian)
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o O c R"™ connected and open o 02 ADR 0 1<qg<?2
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o O c R"™ connected and open o 02 ADR 0 1<qg<?2
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Strategy of the Proof: Local Tb for square functions

Theorem (Grau de la Herran-Mourgoglou)

o O c R"™ connected and open o 02 ADR 0 1<qg<?2
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o /a lbal* 7 S (@)

J.M. Martell (CSIC) Harmonic Measure and Uniform Rectifiability Toronto, July 2011 19 / 23



Strategy of the Proof
0®000

Strategy of the Proof: Local Tb for square functions

Theorem (Grau de la Herran-Mourgoglou)

o O c R"™ connected and open o 02 ADR 0 1<qg<?2

o {bq}qen(an) verify

O [ lrdorso@ @ rdoze@)

J.M. Martell (CSIC) Harmonic Measure and Uniform Rectifiability Toronto, July 2011 19 / 23



Strategy of the Proof
0®000

Strategy of the Proof: Local Tb for square functions

Theorem (Grau de la Herran-Mourgoglou)

o O c R"™ connected and open o 02 ADR 0 1<qg<?2

o {bq}qen(an) verify

O [ lrdorso@ @ rdoze@)

o /Q (Sabe)? do < 0(Q)

J.M. Martell (CSIC) Harmonic Measure and Uniform Rectifiability Toronto, July 2011 19 / 23



Strategy of the Proof
0®000

Strategy of the Proof: Local Tb for square functions

Theorem (Grau de la Herran-Mourgoglou)

o O c R"™ connected and open o 02 ADR 0 1<qg<?2

o {bq}qen(an) verify
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o /Q (Sabe)? do < 0(Q)
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Strategy of the Proof
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Strategy of the Proof: Local Tb for square functions

Theorem (Grau de la Herran-Mourgoglou)

o O c R"™ connected and open o 02 ADR 0 1<qg<?2

o {bq}qen(an) verify

O [ lrdorso@ @ rdoze@)

o /Q (Sabe)? do < 0(Q)

Then S : L?(09)) — L?(09)) ~> 0Q is UR
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Strategy of the Proof: Local Tb for square functions

° by = d(Q) 1o k*? (normalized and localized Poisson kernel)
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Strategy of the Proof
00e00

Strategy of the Proof: Local Tb for square functions

° by = d(Q) 1o k*? (normalized and localized Poisson kernel)
(RHZINeak)

° /ag bo|?do S o(Q)? /Q<kXQ>qda (%)

[Bourgain]

0| [ tdr|20@u%@ 2 0@
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Strategy of the Proof: Local Tb for square functions

° by = d(Q) 1o k*? (normalized and localized Poisson kernel)

( R H(\]Neak)

° /ag bo|?do S o(Q)? /Q<kXQ>qda (%)

[Bourgain]

0| [ tdr|20@u%@ 2 0@

o / (Sqb)?do < 0(Q)?
Q
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Strategy of the Proof
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Strategy of the Proof: Local Tb for square functions

° by = d(Q) 1o k*? (normalized and localized Poisson kernel)

( R H(\]Neak)

° /ag bo|?do S o(Q)? /Q<kXQ>qda (%)

[Bourgain]

0| [ tdr|20@u%@ 2 0@

o / (Sqb)?do < 0(Q)?
Q

dY 1
Sob // V2Sh L
Qbg(z . mBQI (Y)] Ve )n_l)
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V2iSbo(Y)“="0(Q) | VZE(Y —x)dw (z), Y €TE(x)N By
o0
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Strategy of the Proof: Local Tb for square functions

V2iSbo(Y)“="0(Q) | VZE(Y —x)dw (z), Y €TE(x)N By
o0

O e BQ N Qext
|V2Sbo (V)|“="0(Q) [VFE(Y -Xg)| S o(Q) |y_XQ|—(n+1)
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Strategy of the Proof
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Strategy of the Proof: Local Tb for square functions

V2iSbo(Y)“="0(Q) | VZE(Y —x)dw (z), Y €TE(x)N By
o0

e Ye BQ N Qext
[V2Sbo (V)] <o)t

° Y eBypNN
IV2Sbo(Y)|“="0(Q) | V5 (E(Y — Xq) — G(Y, Xq))|
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Strategy of the Proof: Local Tb for square functions

V2iSbo(Y)“="0(Q) | VZE(Y —x)dw (z), Y €TE(x)N By
o0

e Ye BQ N Qext
[V2Sbo (V)] <o)t

° Y eBypNN
IV2Sbo(Y)|“="0(Q) | V5 (E(Y — Xq) — G(Y, Xq))|

SUQ) +0(Q) IVFG(Y, Xq)|
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000e0

Strategy of the Proof: Local Tb for square functions

V2Sbo(Y)“="0(Q) ViE(Y — x)dw®Q(x), Y €T*(x)Nn Bg
o0

e Ye BQ N Qext
[V2Sbo (V)] <)

° Y eBypNN
[V2Sbg (V)]
SUQ) T +0(Q) VY G(Y, Xg)|

/SQbQ 2)1do(z) < o(Q) + o(Q /SQU ) do ()

, dY 3 B
01(0) = ([ g U Foper) s o) = T GOYKe)
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Strategy of the Proof: Local Tb for square functions

@ Good-\ inequality 4 la [Dahlberg-Jerison-Kenig 1984]

/SQu )9 do(x /NQ*u (x)¥do(z), uharmonicé&ﬂﬂ
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Strategy of the Proof: Local Tb for square functions

@ Good-\ inequality 4 la [Dahlberg-Jerison-Kenig 1984]

/SQu )9 do(x /NQ*u (x)¥do(z), uharmonicé&ﬂﬂ

o u(Y)=VyG(Y,Xg), Y € I'"(z) N Bg (harmonic in EZQ nQ)
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Strategy of the Proof: Local Tb for square functions

@ Good-\ inequality 4 la [Dahlberg-Jerison-Kenig 1984]

/SQu )9 do(x /NQ*u (x)¥do(z), uharmonicé&ﬂﬂ

o u(Y)=VyG(Y,Xg), Y € I'"(z) N Bg (harmonic in BZQ nQ)
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@ Good-\ inequality 4 la [Dahlberg-Jerison-Kenig 1984]
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@ Good-\ inequality 4 la [Dahlberg-Jerison-Kenig 1984]

/SQu )9 do(x /NQ*u (x)¥do(z), uharmonicé&ﬂﬂ

o u(Y)=VyG(Y,Xg), Y € I'"(z) N Bg (harmonic in BZQ nQ)
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Strategy of the Proof
0000e

Strategy of the Proof: Local Tb for square functions

@ Good-\ inequality 4 la [Dahlberg-Jerison-Kenig 1984]

/SQu )9 do(x /NQ*u (x)¥do(z), uharmonicé&ﬂﬂ

o u(Y)=VyG(Y,Xg), Y € I'"(z) N Bg (harmonic in BZQ nQ)

Cacciopoli G, Xg) OFMS w¥9(Ay)

S

< M(F x5)(2)

( R H;veak)

/ Squ(a)do(a) S / (Fe)yido 5 o(@)'
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Strategy of the Proof: Local Tb for square functions

( R H;veak)

/ Squ(a)do(a) S / (Fe)yido 5 o(@)'

° / Sobg(x)?do(z) S o(Q) + a(Q)! / §Qu(x)q do(z) < 0(Q)
Q Q
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00y are UR (uniformly in N)
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Strategy of the Proof: w € A™*(¢) = UR

© UR for ©

00y are UR (uniformly in N)

4

All “nice” SIO are bounded on L?*(9Qy) (uniformly in N)
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Strategy of the Proof: w € A™*(¢) = UR

© UR for ©

00y are UR (uniformly in N)
All “nice” SIO are bounded on L?*(9Qy) (uniformly in N)
| David’s ideas
All “nice” SIO are bounded on L*(9Q)
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y of the Proof
[ ]

Strategy of the Proof: w € A™*(¢) = UR

© UR for ©

00y are UR (uniformly in N)
All “nice” SIO are bounded on L?*(9Qy) (uniformly in N)
| David’s ideas
All “nice” SIO are bounded on L*(9Q)

4

00 is UR
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