Higher integrability of the Harmonic Measure and Uniform Rectifiability

José María Martell

joint work with

S. Hofmann and with S. Hofmann, I. Uriarte-Tuero

Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM Spain

Conference in Harmonic Analysis and Partial Differential Equations in honour of Eric Sawyer Toronto, July 26–29, 2011

Section 1

Introduction

Theorem (F. & M. Riesz 1916)

 $\Omega \subset \mathbb{C}$ simply connected domain with rectifiable boundary

harmonic measure
$$\omega \ll \sigma = \mathcal{H}^1|_{\partial\Omega}$$

- [Lavrentiev 1936] Quantitative version
- [Bishop-Jones 1990]
 - $E \subset \partial \Omega$, E rectifiable $\implies \omega \ll \sigma$ on E
 - Counterexample F. & M. Riesz can fail without some topology

Theorem (F. & M. Riesz 1916)

 $\Omega \subset \mathbb{C}$ simply connected domain with rectifiable boundary

harmonic measure
$$\omega \ll \sigma = \mathcal{H}^1|_{\partial\Omega}$$

- [Lavrentiev 1936] Quantitative version
- [Bishop-Jones 1990]
 - $E \subset \partial \Omega$, E rectifiable $\implies \omega \ll \sigma$ on E
 - Counterexample F. & M. Riesz can fail without some topology

Theorem (F. & M. Riesz 1916)

 $\Omega \subset \mathbb{C}$ simply connected domain with rectifiable boundary

harmonic measure
$$\omega \ll \sigma = \mathcal{H}^1|_{\partial\Omega}$$

- [Lavrentiev 1936] Quantitative version
- [Bishop-Jones 1990]
 - $E \subset \partial \Omega$, E rectifiable $\implies \omega \ll \sigma$ on E
 - Counterexample F. & M. Riesz can fail without some topology

Theorem (F. & M. Riesz 1916)

 $\Omega \subset \mathbb{C}$ simply connected domain with rectifiable boundary

harmonic measure
$$\omega \ll \sigma = \mathcal{H}^1|_{\partial\Omega}$$

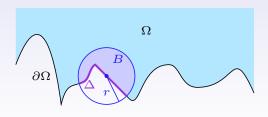
- [Lavrentiev 1936] Quantitative version
- [Bishop-Jones 1990]
 - $E \subset \partial \Omega$, E rectifiable $\implies \omega \ll \sigma$ on E
 - Counterexample F. & M. Riesz can fail without some topology

- $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 2$, connected and open $\leadsto \sigma = \mathcal{H}^n|_{\partial\Omega}$
- Surface ball $\Delta(x,r) = B(x,r) \cap \partial\Omega$ with $x \in \partial\Omega$
- Harmonic measure $\{\omega^X\}_{X\in\Omega}$ family of probabilities on $\partial\Omega$

$$u(X) = \int_{\partial\Omega} f(x) d\omega^X(x)$$
 solves (D)
$$\begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in C_c(\partial\Omega) \end{cases}$$

- $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 2$, connected and open $\leadsto \sigma = \mathcal{H}^n \big|_{\partial \Omega}$
- Surface ball $\Delta(x,r) = B(x,r) \cap \partial\Omega$ with $x \in \partial\Omega$
- Harmonic measure $\{\omega^X\}_{X\in\Omega}$ family of probabilities on $\partial\Omega$

$$u(X) = \int_{\partial\Omega} f(x) d\omega^X(x)$$
 solves (D)
$$\begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in C_c(\partial\Omega) \end{cases}$$



- $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 2$, connected and open $\leadsto \sigma = \mathcal{H}^n|_{\partial\Omega}$
- Surface ball $\Delta(x,r) = B(x,r) \cap \partial\Omega$ with $x \in \partial\Omega$
- Harmonic measure $\{\omega^X\}_{X\in\Omega}$ family of probabilities on $\partial\Omega$

$$u(X) = \int_{\partial\Omega} f(x) d\omega^X(x)$$
 solves (D)
$$\begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in C_c(\partial\Omega) \end{cases}$$

- $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 2$, connected and open $\leadsto \sigma = \mathcal{H}^n|_{\partial\Omega}$
- Surface ball $\Delta(x,r) = B(x,r) \cap \partial\Omega$ with $x \in \partial\Omega$
- Harmonic measure $\{\omega^X\}_{X\in\Omega}$ family of probabilities on $\partial\Omega$

$$u(X) = \int_{\partial\Omega} f(x) d\omega^X(x)$$
 solves (D)
$$\begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in C_c(\partial\Omega) \end{cases}$$

• $\omega \ll \sigma$

$$\omega \in A_{\infty}(\sigma)$$

$$\sigma(F) = 0 \ \Rightarrow \ \omega(F) = 0$$

$$\frac{\omega(F)}{\omega(\Delta)} \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta}, \ \ F \subset \Delta$$

Rectifiability \(\simeq \) Uniform rectifiability

- Openness → Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

•
$$\omega \ll \sigma$$

$$\omega \in A_{\infty}(\sigma)$$

$$\sigma(F) = 0 \ \Rightarrow \ \omega(F) = 0$$

$$\frac{\omega(F)}{\omega(\Delta)} \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta}, \ F \subset \Delta$$

Rectifiability \(\simeq \) Uniform rectifiability

- Openness \simple Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

• $\omega \ll \sigma$

$$\omega \in A_{\infty}(\sigma)$$

$$\sigma(F) = 0 \implies \omega(F) = 0$$

$$\frac{\omega(F)}{\omega(\Delta)} \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta}, \ F \subset \Delta$$

- Openness \simple Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

 $\bullet \qquad \qquad \omega \ll \sigma \qquad \qquad \leadsto \qquad \qquad \omega \in A_{\infty}(\sigma)$

$$\sigma(F) = 0 \implies \omega(F) = 0$$
 $\frac{\omega(F)}{\omega(\Delta)} \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta}, \ F \subset \Delta$

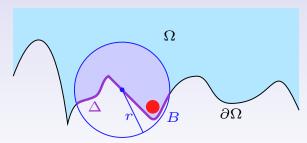
- Openness \simple Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

 $\omega \ll \sigma$

$$\omega \in A_{\infty}(\sigma)$$

$$\sigma(F) = 0 \implies \omega(F) = 0$$

$$\frac{\omega(F)}{\omega(\Delta)} \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta}, \ F \subset \Delta$$



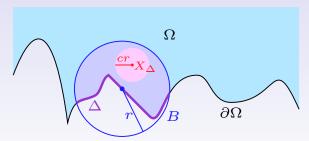
- Openness → Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

 $\omega \ll \sigma$

$$\omega \in A_{\infty}(\sigma)$$

$$\sigma(F) = 0 \implies \omega(F) = 0$$

$$\frac{\omega(F)}{\omega(\Delta)} \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta}, \ F \subset \Delta$$



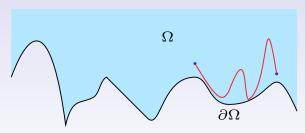
- Openness \leadsto Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

 $\omega \ll \sigma$

$$\omega \in A_{\infty}(\sigma)$$

$$\sigma(F) = 0 \implies \omega(F) = 0$$

$$\frac{\omega(F)}{\omega(\Delta)} \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta}, \ F \subset \Delta$$



- Openness \(\simes \) Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

 $\omega \ll \sigma$

$$\omega \in A_{\infty}(\sigma)$$

$$\sigma(F) = 0 \implies \omega(F) = 0$$

$$\frac{\omega(F)}{\omega(\Delta)} \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta}, \ F \subset \Delta$$

- Openness \(\simes \) Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

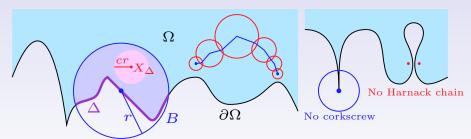
 $\omega \ll \sigma$

$$\omega \in A_{\infty}(\sigma)$$

$$\sigma(F) = 0 \implies \omega(F) = 0$$

$$\frac{\omega(F)}{\omega(\Delta)} \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta}, \ F \subset \Delta$$

• Rectifiability \rightsquigarrow Uniform rectifiability



- Openness \leadsto Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

NTA domains

Definition (Jerison-Kenig 1982)

 $\Omega \subset \mathbb{R}^{n+1}$ is NTA if

- Ω satisfies the Corkscrew condition
- $\Omega_{\mathrm{ext}} = \mathbb{R}^{n+1} \setminus \overline{\Omega}$ satisfies the Corkscrew condition
- Ω satisfies the Harnack chain condition

Theorem (David-Jerison 1990; Semmes 1989)

- $\Omega \subset \mathbb{R}^{n+1}$ is NTA
- $\partial \Omega$ is $ADR \rightsquigarrow r^n \approx \sigma(\Delta(x,r)), x \in \partial \Omega$

Then $\omega \in A_{\infty}(\sigma)$.

• Corkscrew for $\Omega_{\rm ext}$ can be relaxed: n-dim. disk in place of a ball

NTA domains

Definition (Jerison-Kenig 1982)

 $\Omega \subset \mathbb{R}^{n+1}$ is NTA if

- Ω satisfies the Corkscrew condition
- $\Omega_{\mathrm{ext}} = \mathbb{R}^{n+1} \setminus \overline{\Omega}$ satisfies the Corkscrew condition
- Ω satisfies the Harnack chain condition

Theorem (David-Jerison 1990; Semmes 1989)

- $\Omega \subset \mathbb{R}^{n+1}$ is NTA
- $\partial \Omega$ is $ADR \leadsto r^n \approx \sigma(\Delta(x,r)), x \in \partial \Omega$

Then $\omega \in A_{\infty}(\sigma)$.

• Corkscrew for $\Omega_{\rm ext}$ can be relaxed: n-dim. disk in place of a ball

NTA domains

Definition (Jerison-Kenig 1982)

 $\Omega \subset \mathbb{R}^{n+1}$ is NTA if

- Ω satisfies the Corkscrew condition
- $\Omega_{\mathrm{ext}} = \mathbb{R}^{n+1} \setminus \overline{\Omega}$ satisfies the Corkscrew condition
- Ω satisfies the Harnack chain condition

Theorem (David-Jerison 1990; Semmes 1989)

- $\Omega \subset \mathbb{R}^{n+1}$ is NTA
- $\partial \Omega$ is $ADR \leadsto r^n \approx \sigma(\Delta(x,r)), x \in \partial \Omega$

Then $\omega \in A_{\infty}(\sigma)$.

• Corkscrew for $\Omega_{\rm ext}$ can be relaxed: n-dim. disk in place of a ball

• BPBLSD: Big Pieces of Boundaries of Lipschitz Sub-Domains

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

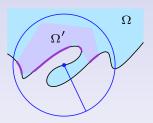
(*) self-improves to
$$\omega \in A_{\infty}(\sigma)$$

• BPBLSD: Big Pieces of Boundaries of Lipschitz Sub-Domains

For every $B(x,r), x \in \partial\Omega$,

- $\exists \Omega' \subset \Omega \text{ Lipschitz}$
- "Ample contact"

$$\sigma(\partial\Omega'\cap\partial\Omega\cap B(x,r))\gtrsim r^n$$



Maximum principle + [Dahlberg 77]: 0 < $\eta \ll 1$ ("Big pieces")

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

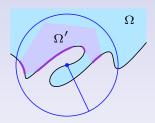
(*) self-improves to $\omega \in A_{\infty}(\sigma)$

• BPBLSD: Big Pieces of Boundaries of Lipschitz Sub-Domains

For every $B(x,r), x \in \partial \Omega$,

- $\exists \Omega' \subset \Omega \text{ Lipschitz}$
- "Ample contact"

$$\sigma(\partial\Omega'\cap\partial\Omega\cap B(x,r))\gtrsim r^n$$



2 Maximum principle + [Dahlberg 77]: $0 < \eta \ll 1$ ("Big pieces")

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

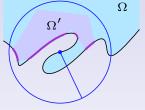
Exterior corkscrew + Harnack chain Comparison principle

(*) self-improves to $\omega \in A_{\infty}(\sigma)$

• BPBLSD: Big Pieces of Boundaries of Lipschitz Sub-Domains

For every B(x,r), $x \in \partial \Omega$,

- $\exists \Omega' \subset \Omega \text{ Lipschitz}$
- "Ample contact" $\sigma(\partial\Omega' \cap \partial\Omega \cap B(x,r)) \geq r^n$



2 Maximum principle + [Dahlberg 77]: $0 < \eta \ll 1$ ("Big pieces")

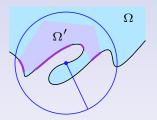
$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

 (\star) self-improves to $\omega \in A_{\infty}(\sigma)$

• BPBLSD: Big Pieces of Boundaries of Lipschitz Sub-Domains

For every B(x,r), $x \in \partial \Omega$,

- $\exists \Omega' \subset \Omega \text{ Lipschitz}$
- "Ample contact" $\sigma(\partial\Omega' \cap \partial\Omega \cap B(x,r)) \geq r^n$



2 Maximum principle + [Dahlberg 77]: $0 < \eta \ll 1$ ("Big pieces")

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

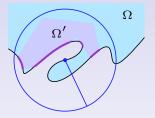
 \bullet Exterior corkscrew + Harnack chain \leadsto Comparison principle

(*) self-improves to $\omega \in A_{\infty}(\sigma)$

• BPBLSD: Big Pieces of Boundaries of Lipschitz Sub-Domains

For every B(x,r), $x \in \partial \Omega$,

- $\exists \Omega' \subset \Omega \text{ Lipschitz}$
- "Ample contact" $\sigma(\partial\Omega' \cap \partial\Omega \cap B(x,r)) \geq r^n$



2 Maximum principle + [Dahlberg 77]: $0 < \eta \ll 1$ ("Big pieces")

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

 \bullet Exterior corkscrew + Harnack chain \leadsto Comparison principle

$$(\star)$$
 self-improves to $\omega \in A_{\infty}(\sigma)$

- Bennewitz-Lewis 2004 Remove ext. corkscrew and Harnack chain

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

• (*) self-improves to "weak- A_{∞} " ("weak Reverse Hölder")

$$\omega(F) \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta} \omega(2\,\Delta)$$

Harmonic Measure and Uniform Rectifiability

- Sharp by counterexample

- [Badger 2011] Ω NTA $\partial\Omega$ lower ADR: $r^n \leq \sigma(\Delta(x,r))$
 - BPBLSD

- Bennewitz-Lewis 2004 Remove ext. corkscrew and Harnack chain
 - $\partial\Omega$ ADR
- Ω interior corkscrew
- BPBLSD

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

• (*) self-improves to "weak- A_{∞} " ("weak Reverse Hölder")

$$\omega(F) \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta} \omega(2\,\Delta)$$

- Sharp by counterexample

- [Badger 2011] Ω NTA $\partial\Omega$ lower ADR: $r^n \leq \sigma(\Delta(x,r))$
 - BPBLSD

- Bennewitz-Lewis 2004 Remove ext. corkscrew and Harnack chain
 - $\partial\Omega$ ADR
- Ω interior corkscrew

- BPBLSD
- Maximum principle + [Dahlberg 77]: $0 < \eta \ll 1$

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

• (*) self-improves to "weak- A_{∞} " ("weak Reverse Hölder")

$$\omega(F) \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta} \omega(2\Delta)$$

- Sharp by counterexample

- [Badger 2011] Ω NTA $\partial\Omega$ lower ADR: $r^n \leq \sigma(\Delta(x,r))$
 - BPBLSD

- Bennewitz-Lewis 2004 Remove ext. corkscrew and Harnack chain
 - $\partial\Omega$ ADR
- Ω interior corkscrew

- BPBLSD
- Maximum principle + [Dahlberg 77]: $0 < \eta \ll 1$

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

• (\star) self-improves to "weak- A_{∞} " ("weak Reverse Hölder") (even without comparison principle)

$$\omega(F) \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta} \omega(2\Delta)$$

- Sharp by counterexample

- [Badger 2011] Ω NTA $\partial \Omega$ lower ADR: $r^n \leq \sigma(\Delta(x,r))$
 - BPBLSD

- Bennewitz-Lewis 2004 Remove ext. corkscrew and Harnack chain
 - $\partial\Omega$ ADR
- Ω interior corkscrew

- BPBLSD
- Maximum principle + [Dahlberg 77]: $0 < \eta \ll 1$

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

• (\star) self-improves to "weak- A_{∞} " ("weak Reverse Hölder") (even without comparison principle)

$$\omega(F) \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta} \omega(2\Delta)$$

- Sharp by counterexample

- [Badger 2011] Ω NTA $\partial\Omega$ lower ADR: $r^n \leq \sigma(\Delta(x,r))$
 - BPBLSD

- Bennewitz-Lewis 2004 Remove ext. corkscrew and Harnack chain
 - $\partial\Omega$ ADR
- Ω interior corkscrew

- BPBLSD
- Maximum principle + [Dahlberg 77]: $0 < \eta \ll 1$

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

• (\star) self-improves to "weak- A_{∞} " ("weak Reverse Hölder") (even without comparison principle)

$$\omega(F) \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta} \omega(2\Delta)$$

- Sharp by counterexample
- [Badger 2011] Ω NTA
- $\partial\Omega$ lower ADR: $r^n \leq \sigma(\Delta(x,r))$

BPBLSD

- Bennewitz-Lewis 2004 Remove ext. corkscrew and Harnack chain
 - $\partial\Omega$ ADR
- Ω interior corkscrew

- BPBLSD
- Maximum principle + [Dahlberg 77]: $0 < \eta \ll 1$

$$F \subset \Delta, \quad \sigma(F) \ge (1 - \eta) \, \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{\Delta}}(F) \ge c_0 > 0 \qquad (\star)$$

• (\star) self-improves to "weak- A_{∞} " ("weak Reverse Hölder") (even without comparison principle)

$$\omega(F) \lesssim \left(\frac{\sigma(F)}{\sigma(\Delta)}\right)^{\theta} \omega(2\Delta)$$

- Sharp by counterexample
- [Badger 2011] Ω NTA
- $\partial\Omega$ lower ADR: $r^n \leq \sigma(\Delta(x,r))$

BPBLSD

Uniform rectifiability

Definition

 $E \subset \mathbb{R}^{n+1}$ closed ADR is UR if

$$\int_{\mathbb{R}^{n+1} \setminus E} |\nabla^2 \mathcal{S} f(X)|^2 \operatorname{dist}(X, E) \, dX \le C \, \int_E |f(y)|^2 \, d\mathcal{H}^n(y)$$

where Sf single layer potential

$$Sf(X) := c_n \int_E \frac{f(y)}{|X - y|^{n-1}} d\mathcal{H}^n(y), \qquad X \notin E$$

- [David-Semmes 1991]
 - E is UR \iff E is ADR + all "nice" SIO are bounded on $L^2(E)$
- ullet [Hrycak] UR \Longrightarrow Big Pieces of Lipschitz Graphs

Uniform rectifiability

Definition

 $E \subset \mathbb{R}^{n+1}$ closed ADR is UR if

$$\int_{\mathbb{R}^{n+1}\backslash E} |\nabla^2 \mathcal{S} f(X)|^2 \operatorname{dist}(X,E) \, dX \leq C \, \int_E |f(y)|^2 \, d\mathcal{H}^n(y)$$

where Sf single layer potential

$$Sf(X) := c_n \int_E \frac{f(y)}{|X - y|^{n-1}} d\mathcal{H}^n(y), \qquad X \notin E$$

- [David-Semmes 1991]
 - E is UR \iff E is ADR + all "nice" SIO are bounded on $L^2(E)$
- [Hrycak] UR

 ⇒ Big Pieces of Lipschitz Graphs

Uniform rectifiability

Definition

 $E \subset \mathbb{R}^{n+1}$ closed ADR is UR if

$$\int_{\mathbb{R}^{n+1}\backslash E} |\nabla^2 \mathcal{S} f(X)|^2 \operatorname{dist}(X,E) \, dX \leq C \, \int_E |f(y)|^2 \, d\mathcal{H}^n(y)$$

where Sf single layer potential

$$Sf(X) := c_n \int_E \frac{f(y)}{|X - y|^{n-1}} d\mathcal{H}^n(y), \qquad X \notin E$$

- [David-Semmes 1991]
 - E is UR \iff E is ADR + all "nice" SIO are bounded on $L^2(E)$
- [Hrycak] UR

 → Big Pieces of Lipschitz Graphs

Rectifiability

$$\beta_2(x,t) = \inf_{P} \left(\frac{1}{t^n} \int_{B(x,t) \cap E} \left(\frac{\operatorname{dist}(y,P)}{t} \right)^2 d\mathcal{H}^n(y) \right)^{1/2}, \quad x \in E, \ t > 0$$

- [David-Semmes 1991] E ADR is UR if and only if
- E ADR is UR if and only if

Rectifiability Uniform Rectifiablity

Existence approx. tangent planes

P. Jones's β -functionals

$$\beta_2(x,t) = \inf_{P} \left(\frac{1}{t^n} \int_{B(x,t) \cap E} \left(\frac{\operatorname{dist}(y,P)}{t} \right)^2 d\mathcal{H}^n(y) \right)^{1/2}, \quad x \in E, \ t > 0$$

- [David-Semmes 1991] E ADR is UR if and only if
- E ADR is UR if and only if

 \bullet Rectifiability \leadsto Uniform Rectifiability

$$\beta_2(x,t) = \inf_{P} \left(\frac{1}{t^n} \int_{B(x,t) \cap E} \left(\frac{\operatorname{dist}(y,P)}{t} \right)^2 d\mathcal{H}^n(y) \right)^{1/2}, \quad x \in E, \ t > 0$$

- [David-Semmes 1991] E ADR is UR if and only if $\beta_2(x,t)^2 d\mathcal{H}^n(x) \frac{dt}{t}$ is a Carleson measure on $E \times \mathbb{R}^{n+1}$
- E ADR is UR if and only if $|\nabla^2 S1(X)|^2 \operatorname{dist}(X, E) dX$ is a Carleson measure on $E \times \mathbb{R}^{n+1}$

• Rectifiability \longrightarrow Uniform Rectifiablity

$$\beta_2(x,t) = \inf_P \left(\frac{1}{t^n} \int_{B(x,t)\cap E} \left(\frac{\operatorname{dist}(y,P)}{t} \right)^2 d\mathcal{H}^n(y) \right)^{1/2}, \quad x \in E, \ t > 0$$

- [David-Semmes 1991] E ADR is UR if and only if $\beta_2(x,t)^2 d\mathcal{H}^n(x) \frac{dt}{t}$ is a Carleson measure on $E \times \mathbb{R}^{n+1}$
- E ADR is UR if and only if $|\nabla^2 S1(X)|^2 \operatorname{dist}(X, E) dX$ is a Carleson measure on $E \times \mathbb{R}^{n+1}$

 \bullet Rectifiability \longrightarrow Uniform Rectifiability

$$\beta_2(x,t) = \inf_{P} \left(\frac{1}{t^n} \int_{B(x,t) \cap E} \left(\frac{\operatorname{dist}(y,P)}{t} \right)^2 d\mathcal{H}^n(y) \right)^{1/2}, \quad x \in E, \ t > 0$$

- [David-Semmes 1991] E ADR is UR if and only if $\beta_2(x,t)^2 d\mathcal{H}^n(x) \frac{dt}{t}$ is a Carleson measure on $E \times \mathbb{R}^{n+1}$
- E ADR is UR if and only if $|\nabla^2 S1(X)|^2 \operatorname{dist}(X, E) dX$ is a Carleson measure on $E \times \mathbb{R}^{n+1}$

Section 2

Main results

Theorem

• $\partial \Omega \ ADR$

• Ω interior Corkscrew and Harnack chain

Hofmann, M.] $\partial \Omega$ $UR \Longrightarrow \omega \in A_{\infty}^{\text{weak}}$ (weak-Reverse Hölder)

$$\int_{\Delta} (k^{X_{\Delta}})^q \, d\sigma \lesssim \sigma(\Delta)^{1-q} \qquad (RH_q^{\text{weak}})$$

- No exterior assumptions. No assumption BPBLSD.
- ADR + interior Corkscrew + Harnack chain:

$$\partial \Omega \text{ UR } \iff \omega \in A_{\infty}^{\text{weak}} \iff \omega \ll \sigma \& k \in RH_q^{\text{weak}}$$

Theorem

• $\partial\Omega$ ADR

• Ω interior Corkscrew and Harnack chain

[Hofmann, M.] $\partial \Omega$ $UR \Longrightarrow \omega \in A_{\infty}^{\text{weak}}$ (weak-Reverse Hölder)

$$\int_{\Delta} (k^{X_{\Delta}})^q \, d\sigma \lesssim \sigma(\Delta)^{1-q} \tag{RH_q^{\text{weak}}}$$

- No exterior assumptions. No assumption BPBLSD.
- ADR + interior Corkscrew + Harnack chain

$$\partial \Omega \text{ UR } \iff \omega \in A_{\infty}^{\text{weak}} \iff \omega \ll \sigma \& k \in RH_a^{\text{weak}}$$

Theorem

• $\partial\Omega$ ADR

• Ω interior Corkscrew and Harnack chain

[Hofmann, M.] $\partial \Omega$ $UR \Longrightarrow \omega \in A_{\infty}^{\text{weak}}$ (weak-Reverse Hölder)

$$\int_{\Delta} (k^{X_{\Delta}})^q \, d\sigma \lesssim \sigma(\Delta)^{1-q} \qquad (RH_q^{\text{weak}})$$

- No exterior assumptions. No assumption BPBLSD.
- ADR + interior Corkscrew + Harnack chain:

$$\partial \Omega \text{ UR} \iff \omega \in A_{\infty}^{\text{weak}} \iff \omega \ll \sigma \& k \in RH_q^{\text{weak}}$$

Theorem

• $\partial \Omega \ ADR$

• Ω interior Corkscrew and Harnack chain

[Hofmann, M.] $\partial \Omega$ $UR \Longrightarrow \omega \in A_{\infty}^{\text{weak}}$ (weak-Reverse Hölder)

$$\int_{\Delta} (k^{X_{\Delta}})^q \, d\sigma \lesssim \sigma(\Delta)^{1-q} \qquad (RH_q^{\text{weak}})$$

- No exterior assumptions. No assumption BPBLSD.
- ADR + interior Corkscrew + Harnack chain:

$$\partial \Omega \text{ UR} \iff \omega \in A_{\infty}^{\text{weak}} \iff \omega \ll \sigma \& k \in RH_q^{\text{weak}}$$

Theorem

• $\partial \Omega \ ADR$

• Ω interior Corkscrew and Harnack chain

[Hofmann, M.] $\partial \Omega$ $UR \Longrightarrow \omega \in A_{\infty}^{\text{weak}}$ (weak-Reverse Hölder)

$$\int_{\Delta} (k^{X_{\Delta}})^q \, d\sigma \lesssim \sigma(\Delta)^{1-q} \tag{RH_q^{\text{weak}}}$$

- No exterior assumptions. No assumption BPBLSD.
- ADR + interior Corkscrew + Harnack chain:

$$\partial\Omega \text{ UR }\iff \omega\in A_{\infty}^{\text{weak}}\iff \omega\ll\sigma\ \&\ k\in RH_q^{\text{weak}}$$

Theorem

• $\partial\Omega$ ADR

• Ω interior Corkscrew and Harnack chain

[Hofmann, M.] $\partial \Omega$ $UR \Longrightarrow \omega \in A_{\infty}^{\text{weak}}$ (weak-Reverse Hölder)

$$\int_{\Delta} (k^{X_{\Delta}})^q \, d\sigma \lesssim \sigma(\Delta)^{1-q} \tag{RH_q^{\text{weak}}}$$

- No exterior assumptions. No assumption BPBLSD.
- ADR + interior Corkscrew + Harnack chain:

$$\partial\Omega$$
 UR $\iff \omega \in A_{\infty}^{\text{weak}} \iff \omega \ll \sigma \& k \in RH_{g}^{\text{weak}}$

- [Kenig-Toro] $\partial \Omega$ ADR Reifenberg flatness
 - Ω "vanishing chord-arc" \iff $\log k \in VMO$
- [Hofmann-Lewis-Nyström] + [Hofmann-Mitrea-Taylor]
 - "vanishing chord-arc" \iff 2-sided NTA + "Vanishing UR"
- [Kenig-Toro] "Vanishing UR" \iff $\log k \in VMO$
- [Hofmann, M], [Hofmann, Uriarte-Tuero, M.]
 - UR " \iff " $\omega \in A_{\infty}$ " \iff " $\log k \in BMO$

- [Kenig-Toro] $\partial\Omega$ ADR
- Reifenberg flatness

 Ω "vanishing chord-arc" \iff $\log k \in VMO$

- [Hofmann-Lewis-Nyström] + [Hofmann-Mitrea-Taylor]
 - "vanishing chord-arc" \iff 2-sided NTA + "Vanishing UR"
- [Kenig-Toro] "Vanishing UR" \iff $\log k \in VMO$
- [Hofmann, M], [Hofmann, Uriarte-Tuero, M.]
 - UR " \iff " $\omega \in A_{\infty}$ " \iff " $\log k \in BMO$

- [Kenig-Toro] $\partial\Omega$ ADR Reifenberg flatness Ω "vanishing chord-arc" $\iff \log k \in VMO$
- [Hofmann-Lewis-Nyström] + [Hofmann-Mitrea-Taylor]

 "vanishing chord-arc" \iff 2-sided NTA + "Vanishing UR"
- [Kenig-Toro] "Vanishing UR" \iff $\log k \in VMO$
- [Hofmann, M], [Hofmann, Uriarte-Tuero, M.]

UR "
$$\iff$$
" $\omega \in A_{\infty}$ " \iff " $\log k \in BMO$

- [Kenig-Toro] $\partial\Omega$ ADR Reifenberg flatness Ω "vanishing chord-arc" $\iff \log k \in VMO$
- [Hofmann-Lewis-Nyström] + [Hofmann-Mitrea-Taylor]

 "vanishing chord-arc" ←⇒ 2-sided NTA + "Vanishing UR"
- [Kenig-Toro] "Vanishing UR" \iff $\log k \in VMO$
- [Hofmann, M], [Hofmann, Uriarte-Tuero, M.]

UR "
$$\iff$$
" $\omega \in A_{\infty}$ " \iff " $\log k \in BMO$

Section 3

Strategy of the Proof

Hypotheses

• $\partial\Omega$ ADR

$$\int_{\Delta} (k^{X_{\Delta}})^q \, d\sigma \lesssim \sigma(\Delta)^{1-q} \tag{RH_q^{\text{weak}}}$$

- **1** Approximating domains: Ω_N
 - (RH_q^{weak}) passes uniformly to Ω_N
- ② UR for approximating domains Ω_N (uniformly in N)
 - Local Tb theorem for square functions
- \odot UR for Ω
 - All "nice" SIO are bounded on are bounded on $L^2(\partial\Omega)$

Hypotheses

• $\partial\Omega$ ADR

$$\int_{\Delta} (k^{X_{\Delta}})^q \, d\sigma \lesssim \sigma(\Delta)^{1-q} \tag{RH_q^{\text{weak}}}$$

- **1** Approximating domains: Ω_N
 - (RH_q^{weak}) passes uniformly to Ω_N
- ② UR for approximating domains Ω_N (uniformly in N)
 - Local Tb theorem for square functions
- \bigcirc UR for Ω
 - All "nice" SIO are bounded on are bounded on $L^2(\partial\Omega)$

Hypotheses

• $\partial\Omega$ ADR

$$\int_{\Delta} (k^{X_{\Delta}})^q \, d\sigma \lesssim \sigma(\Delta)^{1-q} \qquad (RH_q^{\text{weak}})$$

- **1** Approximating domains: Ω_N
 - (RH_q^{weak}) passes uniformly to Ω_N
- **2** UR for approximating domains Ω_N (uniformly in N)
 - Local Tb theorem for square functions
- \odot UR for Ω
 - All "nice" SIO are bounded on are bounded on $L^2(\partial\Omega)$

Hypotheses

• $\partial\Omega$ ADR

$$\int_{\Delta} (k^{X_{\Delta}})^q \, d\sigma \lesssim \sigma(\Delta)^{1-q} \tag{RH_q^{\text{weak}}}$$

- **1** Approximating domains: Ω_N
 - (RH_q^{weak}) passes uniformly to Ω_N
- **2** UR for approximating domains Ω_N (uniformly in N)
 - Local Tb theorem for square functions
- **6** UR for Ω
 - All "nice" SIO are bounded on are bounded on $L^2(\partial\Omega)$

- Approximating domains
 - $\Omega_N \nearrow \Omega$ approximating domains
 - Ω_N inherits ADR, Int. corkscrew, Harnack chain uniformly
 - $\partial \Omega_N \rightsquigarrow$ "faces" of Whitney cubes of size approx. 2^{-N}
 - Ω_N satisfies "qualitative assumptions":
 - Wiener test holds at all boundary points
 - CFMS(Caffarelli-Fabes-Mortola-Salsa) holds qualitatively

$$\frac{1}{C_N} \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \le \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})} \le C \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)}, \quad X \in \Omega_N \setminus 2B$$

Not always true

- Approximating domains
 - $\Omega_N \nearrow \Omega$ approximating domains
 - \bullet Ω_N inherits ADR, Int. corkscrew, Harnack chain uniformly
 - $\partial \Omega_N \rightsquigarrow$ "faces" of Whitney cubes of size approx. 2^{-N}
 - Ω_N satisfies "qualitative assumptions"
 - Wiener test holds at all boundary points
 - CFMS(Caffarelli-Fabes-Mortola-Salsa) holds qualitatively

$$\frac{1}{C_N} \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \leq \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})} \leq C \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)}, \quad X \in \Omega_N \setminus 2B$$

Not always true

- Approximating domains
 - $\Omega_N \nearrow \Omega$ approximating domains
 - Ω_N inherits ADR, Int. corkscrew, Harnack chain uniformly
 - $\partial \Omega_N \rightsquigarrow$ "faces" of Whitney cubes of size approx. 2^{-N}
 - Ω_N satisfies "qualitative assumptions"
 - Wiener test holds at all boundary points
 - CFMS(Caffarelli-Fabes-Mortola-Salsa) holds qualitatively

$$\frac{1}{C_N} \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \le \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})} \le C \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)}, \quad X \in \Omega_N \setminus 2B$$

Not always true

- **1** Approximating domains
 - $\Omega_N \nearrow \Omega$ approximating domains
 - Ω_N inherits ADR, Int. corkscrew, Harnack chain uniformly
 - $\partial\Omega_N \rightsquigarrow$ "faces" of Whitney cubes of size approx. 2^{-N}

$$\frac{1}{C_N} \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \le \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})} \le C \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)}, \quad X \in \Omega_N \setminus 2B$$
Not always true

- **1** Approximating domains
 - $\Omega_N \nearrow \Omega$ approximating domains
 - \bullet Ω_N inherits ADR, Int. corkscrew, Harnack chain uniformly
 - $\partial\Omega_N \rightsquigarrow$ "faces" of Whitney cubes of size approx. 2^{-N}
 - Ω_N satisfies "qualitative assumptions":
 - Wiener test holds at all boundary points
 - CFMS(Caffarelli-Fabes-Mortola-Salsa) holds qualitatively

$$\frac{1}{C_N} \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \le \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})} \le C \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)}, \quad X \in \Omega_N \setminus 2B$$
Not always true. Always holds by Harnack Chain

- **1** Approximating domains
 - $\Omega_N \nearrow \Omega$ approximating domains
 - \bullet Ω_N inherits ADR, Int. corkscrew, Harnack chain uniformly
 - $\partial\Omega_N \rightsquigarrow$ "faces" of Whitney cubes of size approx. 2^{-N}
 - Ω_N satisfies "qualitative assumptions":
 - Wiener test holds at all boundary points
 - CFMS(Caffarelli-Fabes-Mortola-Salsa) holds qualitatively

$$\frac{1}{C_N} \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \le \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})} \le C \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)}, \quad X \in \Omega_N \setminus 2B$$
Not always true

Always holds by Harnack Chain

J.M. Martell (CSIC)

- Approximating domains
 - $\Omega_N \nearrow \Omega$ approximating domains
 - Ω_N inherits ADR, Int. corkscrew, Harnack chain uniformly
 - $\partial\Omega_N \rightsquigarrow$ "faces" of Whitney cubes of size approx. 2^{-N}
 - Ω_N satisfies "qualitative assumptions":
 - Wiener test holds at all boundary points
 - CFMS(Caffarelli-Fabes-Mortola-Salsa) holds qualitatively

$$\frac{1}{C_N} \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \leq \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})} \leq C \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)}, \quad X \in \Omega_N \setminus 2B$$
Not always true Always holds by Harnack Chain

- Approximating domains
 - $\Omega_N \nearrow \Omega$ approximating domains
 - Ω_N inherits ADR, Int. corkscrew, Harnack chain uniformly
 - $\partial\Omega_N \rightsquigarrow$ "faces" of Whitney cubes of size approx. 2^{-N}
 - Ω_N satisfies "qualitative assumptions":
 - Wiener test holds at all boundary points
 - CFMS(Caffarelli-Fabes-Mortola-Salsa) holds qualitatively

$$\frac{1}{C_N} \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \leq \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})} \leq \frac{C}{\sigma_N(\Delta_N)} \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)}, \quad X \in \Omega_N \setminus 2B$$

Not always true

- **1** Approximating domains
 - $\Omega_N \nearrow \Omega$ approximating domains
 - \bullet Ω_N inherits ADR, Int. corkscrew, Harnack chain uniformly
 - $\partial\Omega_N \rightsquigarrow$ "faces" of Whitney cubes of size approx. 2^{-N}
 - Ω_N satisfies "qualitative assumptions":
 - Wiener test holds at all boundary points
 - CFMS(Caffarelli-Fabes-Mortola-Salsa) holds qualitatively

$$\frac{1}{C_N} \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \leq \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})} \leq C \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)}, \quad X \in \Omega_N \setminus 2B$$

Not always true Always holds by Harnack Chain

- **1** Approximating domains
 - $\Omega_N \nearrow \Omega$ approximating domains
 - \bullet Ω_N inherits ADR, Int. corkscrew, Harnack chain uniformly
 - $\partial\Omega_N \rightsquigarrow$ "faces" of Whitney cubes of size approx. 2^{-N}
 - Ω_N satisfies "qualitative assumptions":
 - Wiener test holds at all boundary points
 - CFMS(Caffarelli-Fabes-Mortola-Salsa) holds qualitatively

$$\frac{1}{C_N} \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \le \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})} \le C \frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)}, \quad X \in \Omega_N \setminus 2B$$

Not always true Always holds by Harnack Chain

Approximating domains

Proposition (Hofmann, M.)

• Ω_N satisfies CFMS "quantitatively" (i.e., uniformly in N)

$$\frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \approx \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})}, \qquad X \in \Omega_N \setminus 2B$$

As a consequence,

- \bullet ω_N is doubling (uniformly in N)
- ullet Comparison principle holds for G_N (uniformly in N)
- (RH_q^{weak}) passes uniformly to Ω_N (with smaller q)
 - Reduce to scales $\leq 2^{-N}$
 - Use full comparison principle in some NTA sub-domain

• Approximating domains

Proposition (Hofmann, M.)

• Ω_N satisfies CFMS "quantitatively" (i.e., uniformly in N)

$$\frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \approx \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})}, \qquad X \in \Omega_N \setminus 2B$$

As a consequence,

- ω_N is doubling (uniformly in N)
- Comparison principle holds for G_N (uniformly in N)
- (RH_q^{weak}) passes uniformly to Ω_N (with smaller q)
 - Reduce to scales $\leq 2^{-N}$
 - Use full comparison principle in some NTA sub-domain

• Approximating domains

Proposition (Hofmann, M.)

• Ω_N satisfies CFMS "quantitatively" (i.e., uniformly in N)

$$\frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \approx \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})}, \qquad X \in \Omega_N \setminus 2B$$

As a consequence,

- ω_N is doubling (uniformly in N)
- Comparison principle holds for G_N (uniformly in N)
- (RH_q^{weak}) passes uniformly to Ω_N (with smaller q)
 - Reduce to scales $\leq 2^{-N}$
 - Use full comparison principle in some NTA sub-domain

Approximating domains

Proposition (Hofmann, M.)

• Ω_N satisfies CFMS "quantitatively" (i.e., uniformly in N)

$$\frac{\omega_N^X(\Delta_N)}{\sigma_N(\Delta_N)} \approx \frac{G_N(X_{\Delta_N}, X)}{\delta_N(X_{\Delta_N})}, \qquad X \in \Omega_N \setminus 2B$$

As a consequence,

- ω_N is doubling (uniformly in N)
- Comparison principle holds for G_N (uniformly in N)
- (RH_q^{weak}) passes uniformly to Ω_N (with smaller q)
 - Reduce to scales $\lesssim 2^{-N}$
 - Use full comparison principle in some NTA sub-domain

- **2** UR for approximating domains Ω_N (uniformly in N)
- $\Omega \equiv \Omega_N$
- $\partial\Omega$ is UR iff

$$\int_{\mathbb{R}^{n+1}} |\nabla^2 \mathcal{S}f(Y)|^2 \, \delta(Y) \, dY \lesssim \|f\|_{L^2(\partial\Omega)}$$

- Conical square function $Sf(x) = \left(\iint_{\Gamma^{\pm}(x)} |\nabla^2 \mathcal{S}f(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}$
- Need to show that S is bounded on $L^2(\partial\Omega)$

 - "Local Tb" for square functions: $b \rightsquigarrow \{b_Q\}_{Q \in \mathbb{D}(\partial\Omega)}$ (Kato conjecture: Auscher-Hofmann-Lacey-McIntosh-Tchamitchian

- **2** UR for approximating domains Ω_N (uniformly in N)
- $\Omega \equiv \Omega_N$
- $\partial\Omega$ is UR iff

$$\int_{\mathbb{R}^{n+1}} |\nabla^2 \mathcal{S}f(Y)|^2 \, \delta(Y) \, dY \lesssim ||f||_{L^2(\partial\Omega)}$$

- Conical square function $Sf(x) = \left(\iint_{\Gamma^{\pm}(x)} |\nabla^2 \mathcal{S}f(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}$
- Need to show that S is bounded on $L^2(\partial\Omega)$
 - Tb theory (Painlevé problem: Chirst, Mattila-Melnikov-Verdera, David, Nazarov-Treil-Volberg, Tolsa)
 - "Local Tb" for square functions: $b \rightsquigarrow \{b_Q\}_{Q \in \mathbb{D}(\partial\Omega)}$ (Kato conjecture: Auscher-Hofmann-Lacey-McIntosh-Tchamitchian

- **2** UR for approximating domains Ω_N (uniformly in N)
 - $\Omega \equiv \Omega_N$
- $\partial\Omega$ is UR iff

$$\int_{\mathbb{R}^{n+1}} |\nabla^2 \mathcal{S}f(Y)|^2 \, \delta(Y) \, dY \lesssim ||f||_{L^2(\partial\Omega)}$$

- Conical square function $Sf(x) = \left(\iint_{\Gamma^{\pm}(x)} |\nabla^2 \mathcal{S}f(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}$
- Need to show that S is bounded on $L^2(\partial\Omega)$
 - Tb theory (Painlevé problem: Chirst, Mattila-Melnikov-Verdera, David, Nazarov-Treil-Volberg, Tolsa)
 - "Local Tb" for square functions: $b \rightsquigarrow \{b_Q\}_{Q \in \mathbb{D}(\partial\Omega)}$ (Kato conjecture: Auscher-Hofmann-Lacey-McIntosh-Tchamitchian

- **2** UR for approximating domains Ω_N (uniformly in N)
 - $\Omega \equiv \Omega_N$
 - $\partial\Omega$ is UR iff

$$\int_{\partial\Omega} Sf(x)^2 \, d\sigma(x) \approx \int_{\mathbb{R}^{n+1}} |\nabla^2 Sf(Y)|^2 \, \delta(Y) \, dY \lesssim \|f\|_{L^2(\partial\Omega)}$$

- Conical square function $Sf(x) = \left(\iint_{\Gamma^{\pm}(x)} |\nabla^2 \mathcal{S}f(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}$
- Need to show that S is bounded on $L^2(\partial\Omega)$
 - Tb theory (Painlevé problem: Chirst, Mattila-Melnikov-Verdera, David, Nazarov-Treil-Volberg, Tolsa)
 - "Local Tb" for square functions: $b \rightsquigarrow \{b_Q\}_{Q \in \mathbb{D}(\partial\Omega)}$ (Kato conjecture: Auscher-Hofmann-Lacey-McIntosh-Tchamitchian

- **2** UR for approximating domains Ω_N (uniformly in N)
 - $\Omega \equiv \Omega_N$
 - $\partial\Omega$ is UR iff

$$\int_{\partial\Omega} Sf(x)^2 d\sigma(x) \approx \int_{\mathbb{R}^{n+1}} |\nabla^2 Sf(Y)|^2 \delta(Y) dY \lesssim ||f||_{L^2(\partial\Omega)}$$

- Conical square function $Sf(x) = \left(\iint_{\Gamma^{\pm}(x)} |\nabla^2 \mathcal{S}f(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}$
- Need to show that S is bounded on $L^2(\partial\Omega)$

 - "Local Tb" for square functions: $b \rightsquigarrow \{b_Q\}_{Q \in \mathbb{D}(\partial\Omega)}$ (Kato conjecture: Auscher-Hofmann-Lacey-McIntosh-Tchamitchian

- **2** UR for approximating domains Ω_N (uniformly in N)
 - $\Omega \equiv \Omega_N$
- $\partial\Omega$ is UR iff

$$\int_{\partial\Omega} Sf(x)^2 d\sigma(x) \approx \int_{\mathbb{R}^{n+1}} |\nabla^2 Sf(Y)|^2 \delta(Y) dY \lesssim ||f||_{L^2(\partial\Omega)}$$

- Conical square function $Sf(x) = \left(\iint_{\Gamma^{\pm}(x)} |\nabla^2 \mathcal{S}f(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}$
- Need to show that S is bounded on $L^2(\partial\Omega)$
 - Tb theory (Painlevé problem: Chirst, Mattila-Melnikov-Verdera, David, Nazarov-Treil-Volberg, Tolsa)
 - "Local Tb" for square functions: $b \rightsquigarrow \{b_Q\}_{Q \in \mathbb{D}(\partial\Omega)}$ (Kato conjecture: Auscher-Hofmann-Lacey-McIntosh-Tchamitchian

- **2** UR for approximating domains Ω_N (uniformly in N)
 - $\Omega \equiv \Omega_N$
- $\partial\Omega$ is UR iff

$$\int_{\partial\Omega} Sf(x)^2 d\sigma(x) \approx \int_{\mathbb{R}^{n+1}} |\nabla^2 Sf(Y)|^2 \delta(Y) dY \lesssim ||f||_{L^2(\partial\Omega)}$$

- Conical square function $Sf(x) = \left(\iint_{\Gamma^{\pm}(x)} |\nabla^2 \mathcal{S}f(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}$
- Need to show that S is bounded on $L^2(\partial\Omega)$
 - Tb theory (Painlevé problem: Chirst, Mattila-Melnikov-Verdera, David, Nazarov-Treil-Volberg, Tolsa)
 - "Local Tb" for square functions: $b \rightsquigarrow \{b_Q\}_{Q \in \mathbb{D}(\partial\Omega)}$ (Kato conjecture: Auscher-Hofmann-Lacey-McIntosh-Tchamitchian)

Theorem (Grau de la Herran-Mourgoglou)

- $\Omega \subset \mathbb{R}^{n+1}$ connected and open
- $\partial\Omega$ ADR
- $1 < q \le 2$

•
$$\{b_Q\}_{Q\in\mathbb{D}(\partial\Omega)}$$
 verify

Theorem (Grau de la Herran-Mourgoglou)

- $\Omega \subset \mathbb{R}^{n+1}$ connected and open
- $\partial\Omega$ ADR
- $1 < q \le 2$

• $\{b_Q\}_{Q\in\mathbb{D}(\partial\Omega)}$ verify

Theorem (Grau de la Herran-Mourgoglou)

- $\Omega \subset \mathbb{R}^{n+1}$ connected and open
- $\partial\Omega$ ADR
- 1 < q ≤ 2</p>

• $\{b_Q\}_{Q\in\mathbb{D}(\partial\Omega)}$ verify

Theorem (Grau de la Herran-Mourgoglou)

- $\Omega \subset \mathbb{R}^{n+1}$ connected and open
- $\partial\Omega$ ADR
- $1 < q \le 2$

• $\{b_Q\}_{Q\in\mathbb{D}(\partial\Omega)}$ verify

Theorem (Grau de la Herran-Mourgoglou)

- $\Omega \subset \mathbb{R}^{n+1}$ connected and open
- $\partial\Omega$ ADR
- 1 < q ≤ 2</p>

• $\{b_Q\}_{Q\in\mathbb{D}(\partial\Omega)}$ verify

Theorem (Grau de la Herran-Mourgoglou)

- $\Omega \subset \mathbb{R}^{n+1}$ connected and open
- $\partial\Omega$ ADR
- 1 < q ≤ 2</p>

• $\{b_Q\}_{Q\in\mathbb{D}(\partial\Omega)}$ verify

Then $S: L^2(\partial\Omega) \longrightarrow L^2(\partial\Omega) \iff \partial\Omega \text{ is } UR$

Theorem (Grau de la Herran-Mourgoglou)

- $\Omega \subset \mathbb{R}^{n+1}$ connected and open
- $\partial\Omega$ ADR
- 1 < q ≤ 2</p>

• $\{b_Q\}_{Q\in\mathbb{D}(\partial\Omega)}$ verify

• $b_Q = \sigma(Q) \eta_Q k^{X_Q}$ (normalized and localized Poisson kernel)

$$S_Q b_Q(x) = \left(\iint_{\Gamma^{\pm}(x) \cap B_Q} |\nabla^2 \mathcal{S} b_Q(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}$$

- $b_Q = \sigma(Q) \eta_Q k^{X_Q}$ (normalized and localized Poisson kernel)
- $\mathbf{0} \int_{\partial\Omega} |b_Q|^q d\sigma \lesssim \sigma(Q)^q \int_Q (k^{X_Q})^q d\sigma \lesssim^{(RH_q^{\text{weak}})} \sigma(Q)$
- $\left| \int_{Q} b_{Q} d\sigma \right| \gtrsim \sigma(Q) \, \omega^{X_{Q}}(Q) \, \stackrel{[\text{Bourgain}]}{\gtrsim} \, \sigma(Q)$

$$S_Q b_Q(x) = \Big(\iint_{\Gamma^\pm(x) \cap B_Q} |\nabla^2 \mathcal{S} b_Q(Y)|^2 \, \frac{dY}{\delta(Y)^{n-1}} \Big)^{\frac{1}{2}}$$

- $b_Q = \sigma(Q) \eta_Q k^{X_Q}$ (normalized and localized Poisson kernel)

$$S_Q b_Q(x) = \left(\iint_{\Gamma^{\pm}(x) \cap B_Q} |\nabla^2 \mathcal{S} b_Q(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}$$

- $b_Q = \sigma(Q) \eta_Q k^{X_Q}$ (normalized and localized Poisson kernel)

$$S_Q b_Q(x) = \left(\iint_{\Gamma^{\pm}(x) \cap B_Q} |\nabla^2 \mathcal{S} b_Q(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}$$

- $b_Q = \sigma(Q) \eta_Q k^{X_Q}$ (normalized and localized Poisson kernel)

$$S_Q b_Q(x) = \left(\iint_{\Gamma^{\pm}(x) \cap B_Q} |\nabla^2 \mathcal{S} b_Q(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}$$

$$\nabla^2 \mathcal{S}b_Q(Y) = \sigma(Q) \int_{\partial \Omega} \nabla_Y^2 \mathcal{E}(Y - x) \, d\omega^{X_Q}(x), \quad Y \in \Gamma^{\pm}(x) \cap B_Q$$

$$|\nabla^2 \mathcal{S} b_Q(Y)|$$

$$|\nabla^{2} \mathcal{S} b_{Q}(Y)| = \sigma(Q) |\nabla^{2}_{Y} (\mathcal{E}(Y - X_{Q}) - G(Y, X_{Q}))|$$

$$\leq \ell(Q)^{-1} + \sigma(Q) |\nabla^{2}_{Y} (\mathcal{E}(Y - X_{Q}) - G(Y, X_{Q}))|$$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x)$$

$$\widehat{S}_Q u(x) = \Big(\iint_{\Gamma^+(T) \cap B_Q} |\nabla u(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \Big)^{\frac{1}{2}}, \qquad u(Y) = \nabla_Y G(Y, X_Q)$$

$$\nabla^2 \mathcal{S}b_Q(Y) = \sigma(Q) \int_{\partial \Omega} \nabla_Y^2 \mathcal{E}(Y - x) \, d\omega^{X_Q}(x), \quad Y \in \Gamma^{\pm}(x) \cap B_Q$$

• $Y \in B_Q \cap \Omega_{\text{ext}}$

$$|\nabla^2 \mathcal{S}b_Q(Y)| \text{``="}\sigma(Q) \, |\nabla^2_Y \mathcal{E}(Y-X_Q)| \lesssim \sigma(Q) \, |Y-X_Q|^{-(n+1)} \lesssim \ell(Q)^{-1}$$

$$|\nabla^2 \mathcal{S}b_Q(Y)| = \sigma(Q) |\nabla_Y^2 (\mathcal{E}(Y - X_Q) - G(Y, X_Q))|$$

$$\lesssim \ell(Q)^{-1} + \sigma(Q) |\nabla_Y^2 G(Y, X_Q)|$$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x)$$

$$\widehat{S}_Q u(x) = \left(\iint_{\Gamma^+(x) \cap B_Q} |\nabla u(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}, \qquad u(Y) = \nabla_Y G(Y, X_Q)$$

$$\nabla^2 \mathcal{S}b_Q(Y) = \sigma(Q) \int_{\partial \Omega} \nabla_Y^2 \mathcal{E}(Y - x) \, d\omega^{X_Q}(x), \quad Y \in \Gamma^{\pm}(x) \cap B_Q$$

• $Y \in B_Q \cap \Omega_{\text{ext}}$

$$|\nabla^2 \mathcal{S} b_Q(Y)| \text{``="} \sigma(Q) \, |\nabla_Y^2 \mathcal{E}(Y - X_Q)| \lesssim \sigma(Q) \, |Y - X_Q|^{-(n+1)} \lesssim \ell(Q)^{-1}$$

$$|\nabla^2 \mathcal{S}b_Q(Y)| = \sigma(Q) |\nabla_Y^2 (\mathcal{E}(Y - X_Q) - G(Y, X_Q))|$$

$$\lesssim \ell(Q)^{-1} + \sigma(Q) |\nabla_Y^2 G(Y, X_Q)|$$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x)$$

$$\widehat{S}_Q u(x) = \left(\iint_{\Gamma^+(x) \cap B_Q} |\nabla u(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}, \qquad u(Y) = \nabla_Y G(Y, X_Q)$$

$$\nabla^2 \mathcal{S}b_Q(Y) = \sigma(Q) \int_{\partial\Omega} \nabla_Y^2 \mathcal{E}(Y - x) \, d\omega^{X_Q}(x), \quad Y \in \Gamma^{\pm}(x) \cap B_Q$$

• $Y \in B_Q \cap \Omega_{\text{ext}}$

$$|\nabla^2 \mathcal{S}b_Q(Y)| \text{``=''} \sigma(Q) \, |\nabla^2_Y \mathcal{E}(Y-X_Q)| \lesssim \sigma(Q) \, |Y-X_Q|^{-(n+1)} \lesssim \ell(Q)^{-1}$$

$$|\nabla^2 \mathcal{S}b_Q(Y)| = \sigma(Q) |\nabla_Y^2 (\mathcal{E}(Y - X_Q) - G(Y, X_Q))|$$

$$\lesssim \ell(Q)^{-1} + \sigma(Q) |\nabla_Y^2 G(Y, X_Q)|$$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x)$$

$$\widehat{S}_Q u(x) = \left(\iint_{\Gamma^+(x) \cap B_Q} |\nabla u(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}, \qquad u(Y) = \nabla_Y G(Y, X_Q)$$

$$\nabla^2 \mathcal{S}b_Q(Y) = \sigma(Q) \int_{\partial \Omega} \nabla_Y^2 \mathcal{E}(Y - x) \, d\omega^{X_Q}(x), \quad Y \in \Gamma^{\pm}(x) \cap B_Q$$

• $Y \in B_Q \cap \Omega_{\text{ext}}$

$$|\nabla^2 \mathcal{S}b_Q(Y)| = \sigma(Q) |\nabla_Y^2 \mathcal{E}(Y - X_Q)| \leq \sigma(Q) |Y - X_Q|^{-(n+1)} \lesssim \ell(Q)^{-1}$$

• $Y \in B_O \cap \Omega$

$$|\nabla^2 \mathcal{S}b_Q(Y)|$$
 "=" $\sigma(Q) \left|\nabla_Y^2 \left(\mathcal{E}(Y - X_Q) - G(Y, X_Q)\right)\right|$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x)$$

$$\widehat{S}_Q u(x) = \left(\iint_{\Gamma^+(T) \cap B_Q} |\nabla u(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}, \qquad u(Y) = \nabla_Y G(Y, X_Q)$$

$$\nabla^2 \mathcal{S}b_Q(Y) = \sigma(Q) \int_{\partial \Omega} \nabla_Y^2 \mathcal{E}(Y - x) \, d\omega^{X_Q}(x), \quad Y \in \Gamma^{\pm}(x) \cap B_Q$$

• $Y \in B_Q \cap \Omega_{\text{ext}}$

$$|\nabla^2 \mathcal{S}b_Q(Y)| = \sigma(Q) |\nabla_Y^2 \mathcal{E}(Y - X_Q)| \lesssim \sigma(Q) |Y - X_Q|^{-(n+1)} \lesssim \ell(Q)^{-1}$$

• $Y \in B_O \cap \Omega$

$$\begin{aligned} |\nabla^2 \mathcal{S}b_Q(Y)| \text{``=''} \sigma(Q) \left| \nabla_Y^2 \left(\mathcal{E}(Y - X_Q) - G(Y, X_Q) \right) \right| \\ &\lesssim \ell(Q)^{-1} + \sigma(Q) \left| \nabla_Y^2 G(Y, X_Q) \right| \end{aligned}$$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x)$$

$$\widehat{S}_Q u(x) = \left(\iint_{\Gamma^+(x) \cap B_0} |\nabla u(Y)|^2 \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}, \qquad u(Y) = \nabla_Y G(Y, X_Q)$$

$$\nabla^2 \mathcal{S}b_Q(Y) = \sigma(Q) \int_{\partial \Omega} \nabla_Y^2 \mathcal{E}(Y - x) \, d\omega^{X_Q}(x), \quad Y \in \Gamma^{\pm}(x) \cap B_Q$$

• $Y \in B_Q \cap \Omega_{\text{ext}}$

$$|\nabla^2 \mathcal{S}b_Q(Y)| = \sigma(Q) |\nabla_Y^2 \mathcal{E}(Y - X_Q)| \leq \sigma(Q) |Y - X_Q|^{-(n+1)} \lesssim \ell(Q)^{-1}$$

• $Y \in B_Q \cap \Omega$

$$|\nabla^2 \mathcal{S}b_Q(Y)| = \sigma(Q) |\nabla_Y^2 \left(\mathcal{E}(Y - X_Q) - G(Y, X_Q) \right)|$$

$$\lesssim \ell(Q)^{-1} + \sigma(Q) |\nabla_Y^2 G(Y, X_Q)|$$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x)$$

$$\widehat{S}_{Q}u(x) = \left(\iint_{\Gamma^{+}(x) \cap B_{Q}} |\nabla u(Y)|^{2} \frac{dY}{\delta(Y)^{n-1}} \right)^{\frac{1}{2}}, \qquad u(Y) = \nabla_{Y}G(Y, X_{Q})$$

 \bullet Good- λ inequality á la [Dahlberg-Jerison-Kenig 1984]

$$\int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \int_{Q} N_{Q,*} u(x)^{q} d\sigma(x), \qquad u \text{ harmonic } \widehat{B}_{Q} \cap \Omega$$

•
$$u(Y) = \nabla_Y G(Y, X_Q), Y \in \Gamma^+(x) \cap B_Q \text{ (harmonic in } \widehat{B_Q} \cap \Omega)$$

$$|u(Y)| \stackrel{\text{Cacciopoli}}{\lesssim} \frac{G(Y, X_Q)}{\delta(Y)} \stackrel{\text{CFMS}}{\approx} \frac{\omega^{X_Q}(\Delta_Y)}{\sigma(\Delta_Y)} \lesssim M(k^{X_Q} \chi_{\widehat{Q}})(x)$$

•
$$\int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \int_{\widehat{Q}} (k^{X_{Q}})^{q} d\sigma \lesssim^{(RH_{q}^{\text{weak}})} \sigma(Q)^{1-q}$$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \sigma(Q)$$

 \bullet Good- λ inequality á la [Dahlberg-Jerison-Kenig 1984]

$$\int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \int_{Q} N_{Q,*} u(x)^{q} d\sigma(x), \qquad u \text{ harmonic } \widehat{B}_{Q} \cap \Omega$$

$$|u(Y)| \stackrel{\text{Cacciopoli}}{\lesssim} \frac{G(Y, X_Q)}{\delta(Y)} \stackrel{\text{CFMS}}{\approx} \frac{\omega^{X_Q}(\Delta_Y)}{\sigma(\Delta_Y)} \lesssim M(k^{X_Q} \chi_{\widehat{Q}})(x)$$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \sigma(Q)$$

 \bullet Good- λ inequality á la [Dahlberg-Jerison-Kenig 1984]

$$\int_Q \widehat{S}_Q u(x)^q \, d\sigma(x) \lesssim \int_Q N_{Q,*} u(x)^q \, d\sigma(x), \qquad u \text{ harmonic } \widehat{B}_Q \cap \Omega$$

$$|u(Y)| \overset{ ext{Cacciopoli}}{\lesssim} \frac{G(Y, X_Q)}{\delta(Y)} \overset{ ext{CFMS}}{pprox} \frac{\omega^{X_Q}(\Delta_Y)}{\sigma(\Delta_Y)} \lesssim M(k^{X_Q} \chi_{\widehat{Q}})(x)$$

•
$$\int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \int_{\widehat{Q}} (k^{X_{Q}})^{q} d\sigma \lesssim^{(RH_{q}^{\text{weak}})} \sigma(Q)^{1-q}$$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \sigma(Q)$$

• Good- λ inequality á la [Dahlberg-Jerison-Kenig 1984]

$$\int_Q \widehat{S}_Q u(x)^q \, d\sigma(x) \lesssim \int_Q N_{Q,*} u(x)^q \, d\sigma(x), \qquad u \text{ harmonic } \widehat{B}_Q \cap \Omega$$

$$|u(Y)| \overset{\text{Cacciopoli}}{\lesssim} \frac{G(Y, X_Q)}{\delta(Y)} \overset{\text{CFMS}}{\approx} \frac{\omega^{X_Q}(\Delta_Y)}{\sigma(\Delta_Y)} \lesssim M(k^{X_Q} \chi_{\widehat{Q}})(x)$$

•
$$\int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \int_{\widehat{Q}} (k^{X_{Q}})^{q} d\sigma \lesssim^{(RH_{q}^{\text{weak}})} \sigma(Q)^{1-q}$$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \sigma(Q)$$

• Good- λ inequality á la [Dahlberg-Jerison-Kenig 1984]

$$\int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \int_{Q} N_{Q,*} u(x)^{q} d\sigma(x), \qquad u \text{ harmonic } \widehat{B}_{Q} \cap \Omega$$

$$|u(Y)| \stackrel{\text{Cacciopoli}}{\lesssim} \frac{G(Y, X_Q)}{\delta(Y)} \stackrel{\text{CFMS}}{\approx} \frac{\omega^{X_Q}(\Delta_Y)}{\sigma(\Delta_Y)} \lesssim M(k^{X_Q} \chi_{\widehat{Q}})(x)$$

•
$$\int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \int_{\widehat{Q}} (k^{X_{Q}})^{q} d\sigma \lesssim^{(RH_{q}^{\text{weak}})} \sigma(Q)^{1-q}$$

•
$$\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \sigma(Q)$$

 \bullet Good- λ inequality á la [Dahlberg-Jerison-Kenig 1984]

$$\int_Q \widehat{S}_Q u(x)^q \, d\sigma(x) \lesssim \int_Q N_{Q,*} u(x)^q \, d\sigma(x), \qquad u \text{ harmonic } \widehat{B}_Q \cap \Omega$$

$$|u(Y)| \stackrel{\text{Cacciopoli}}{\lesssim} \frac{G(Y, X_Q)}{\delta(Y)} \stackrel{\text{CFMS}}{\approx} \frac{\omega^{X_Q}(\Delta_Y)}{\sigma(\Delta_Y)} \lesssim M(k^{X_Q} \chi_{\widehat{Q}})(x)$$

- $\int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \int_{\widehat{Q}} (k^{X_{Q}})^{q} d\sigma \lesssim^{(RH_{q}^{\text{weak}})} \sigma(Q)^{1-q}$
- $\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \sigma(Q)$

 \bullet Good- λ inequality á la [Dahlberg-Jerison-Kenig 1984]

$$\int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \int_{Q} N_{Q,*} u(x)^{q} d\sigma(x), \qquad u \text{ harmonic } \widehat{B}_{Q} \cap \Omega$$

$$|u(Y)| \stackrel{\text{Cacciopoli}}{\lesssim} \frac{G(Y, X_Q)}{\delta(Y)} \stackrel{\text{CFMS}}{\approx} \frac{\omega^{X_Q}(\Delta_Y)}{\sigma(\Delta_Y)} \lesssim M(k^{X_Q} \chi_{\widehat{Q}})(x)$$

- $\int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \int_{\widehat{Q}} (k^{X_{Q}})^{q} d\sigma \lesssim \sigma(Q)^{1-q}$
- $\int_{Q} S_{Q} b_{Q}(x)^{q} d\sigma(x) \lesssim \sigma(Q) + \sigma(Q)^{q} \int_{Q} \widehat{S}_{Q} u(x)^{q} d\sigma(x) \lesssim \sigma(Q)$

 $\partial\Omega_N$ are UR (uniformly in N)

 \downarrow

All "nice" SIO are bounded on $L^2(\partial\Omega_N)$ (uniformly in N)

↓ David's ideas

All "nice" SIO are bounded on $L^2(\partial\Omega)$

$\partial\Omega_N$ are UR (uniformly in N)

 \downarrow

All "nice" SIO are bounded on $L^2(\partial\Omega_N)$ (uniformly in N)

↓ David's ideas

All "nice" SIO are bounded on $L^2(\partial\Omega)$

3 UR for Ω

 $\partial\Omega_N$ are UR (uniformly in N)

 \Downarrow

All "nice" SIO are bounded on $L^2(\partial\Omega_N)$ (uniformly in N)

↓ David's ideas

All "nice" SIO are bounded on $L^2(\partial\Omega)$

6 UR for Ω

 $\partial\Omega_N$ are UR (uniformly in N)

 \Downarrow

All "nice" SIO are bounded on $L^2(\partial\Omega_N)$ (uniformly in N)

↓ David's ideas

All "nice" SIO are bounded on $L^2(\partial\Omega)$

6 UR for Ω

$$\partial\Omega_N$$
 are UR (uniformly in N)

 \Downarrow

All "nice" SIO are bounded on $L^2(\partial\Omega_N)$ (uniformly in N)

↓ David's ideas

All "nice" SIO are bounded on $L^2(\partial\Omega)$

