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Earlier works on pure product Hardy spaces: Gundy-Stein, R. Fefferman,
Chang-R. Fefferman, Journe, Pipher, Lacey, ...,
our work is motivated by the work of Phong and Stein on weak type (1,1)
estimates on composition operators.
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@ The purpose of this work is to develop a new Hardy space theory and
prove that the composition of two Calderén-Zygmund singular
integrals associated with different homogeneities, respectively, is
bounded on these new Hardy spaces.
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@ The purpose of this work is to develop a new Hardy space theory and
prove that the composition of two Calderén-Zygmund singular
integrals associated with different homogeneities, respectively, is
bounded on these new Hardy spaces.

@ Let e(&) be a function on IR™ homogeneous of degree 0 in the
isotropic sense and smooth away from the origin. Similarly, suppose
that h(¢) is a function on R™ homogeneous of degree 0 in the
non-isotropic sense related to the heat equation, and also smooth
away from the origin. Then it is well-known that the Fourier

—

multipliers Ty defined by T1(f)(&) = e(&)f(&) and T, given by

To(F)(&) = h(&)f(E) are both bounded on LP for 1 < p < o0, and
satisfy various other regularity properties such as being of weak-type

(1, 1).
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@ It was well known that 77 and T, are bounded on the classical
isotropic and non-isotropic Hardy spaces, respectively. Rivieré asked
the question: Is the composition T o Ty still of weak-type (1,1)7
Phong and Stein answered this question and gave a necessary and
sufficient condition for which T; o Ty is of weak-type (1,1). The
operators Phong and Stein studied are in fact compositions with
different kind of homogeneities which arise naturally in the
d-Neumann problem.
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e We write R™ = R™ ! x R with x = (X', x,) where x’ € R™! and
Xm € R. We consider two kinds of homogeneities

5: (X' xm) = (06X, 6xm),6 >0

and
5: (X' xm) = (6x',8°xm), 8 > 0.

The first are the classical isotropic dilations occurring in the classical
Calderén-Zygmund singular integrals, while the second are
non-isotropic and related to the heat equations (also Heisenberg
groups.)
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o We write R™ = R™! x R with x = (x/, x,,) where x’ € R™"1 and
Xm € R. We consider two kinds of homogeneities

§: (X' xm) = (6X',6xm),6 >0

and
5: (X' xm) = (6x',8°Xm), 8 > 0.
The first are the classical isotropic dilations occurring in the classical
Calderén-Zygmund singular integrals, while the second are
non-isotropic and related to the heat equations (also Heisenberg
groups.)
e For x = (X, xm) € R™1 x R we denote |x|e = (|x'|2 + |xm|2)? and

x|n = (|X'|2 4 |xm|)2. We also use notations j A k = min{j, k} and
JV k =max{j, k}.
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@ Definition 1.1: A locally integrable function K; on R™\{0} is said to
be a Calderén-Zygmund kernel associated with the isotropic
homogeneity if

’Kl < Alx]e™* for all |a| > 0,

/ Ki(x) dx =0
n<|xle<r

forall 0 < rp < mn < oo.

We say that an operator T; is a Calderén-Zygmund singular integral
operator associated with the isotropic homogeneity if

T1(f)(x) = p.v.(K1 * f)(x), where Kj satisfies the above conditions.
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o It is well-known that any Calderén-Zygmund singular integral operator
associated with the isotropic homogeneity is bounded on LP(IR™) for
1 < p < o0 and is also bounded on the classical Hardy space HP(IR™)
with 0 < p < 1. Here the classical Hardy space HP(IR™) is associated
with the isotropic homogeneity. To see this, let () € S(R™) with

<[¢le <2}, (1.5)

N =

supp YD C {(¢',&m) e R™ 1 xR :

and

Y 19pM(279g, 2798m)[2 =1 for all (&,&m) € R™ T x R\{(0,0)}. (1

jez
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@ The Littlewood-Paley-Stein square function of f € S’(R™) then is
defined by

1
2

g(f)0) = { LI}« 0},

where w}l)(x/, Xm) = 2Mp(1) (2% 2ix,.). Note that the isotropic
homogeneity is involved in g(f).
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@ The Littlewood-Paley-Stein square function of f € S’(R™) then is
defined by

600 = { T 02}

where l[)J(-l)(X/, Xm) = 2Mp() (2%’ 2/x,,). Note that the isotropic
homogeneity is involved in g(f).

@ The classical Hardy space HP(IR™) then can be characterized by
HP(R™) = {f € S'/P(R™) : g(f) € LP(R™)},

where S’/ P denotes the space of distributions modulo polynomials. If
f € HP(R™), the HP norm of f is defined by ||f||ur = ||g(f)]| Le-
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o A Calderén-Zygmund singular integral operator associated with the
non-isotropic homogeneity is bounded on LP,1 < p < oo. It is not
bounded on the classical Hardy space but bounded on the
non-isotropic Hardy space. The non-isotropic Hardy space can also be
characterized by the non-isotropic Littlewood-Paley-Stein square
function. To be more precise, let (2 € S(R™) with

supp Y@ C {(&.Em) eR™ I x R: - < |2y <2}, (17)

N —

Y (9@ (2, 272E,) P =1 for all (&, Em) € R™F xR\ {(0,0)}.

keZ
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@ We then define g,(f), the non-isotropic Littlewood-Paley-Stein
square function of f € S’(R™), by

en()) = { L [« P},

keZ

where lp,(f) (X', xpm) = 2K(m+ Ly (2kx! 22kx, ). The non-isotropic
Hardy space H} (IR™) then can be characterized by

HE(R™) = {f € §'/P(R™) : gy(f) € LP(R™)}

and if f € HP(R™), the H norm of f is defined by
11l 1p = llgn(F) e
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@ Suppose that 1,0(1) and 1,0(2) are functions satisfying the above
conditions. Let 9j x(x) = gbjm * gb,(f) (x). Define a new
Littlewood-Paley-Stein square function by

geom(F)(x) = { ¥ [9in+ FOOP}.

JkeZ

N

We remark that a significant feature is that the multiparameter
structure is involved in the above Littlewood-Paley-Stein square
function.
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@ Suppose that (1) and ¢(?) are functions satisfying the above
conditions. Let ¢ x(x) = 1,0](1) * 1p,((2) (x). Define a new
Littlewood-Paley-Stein square function by

1
212
geom(F)(x) = { T [iax F()2}
j.keZ
We remark that a significant feature is that the multiparameter
structure is involved in the above Littlewood-Paley-Stein square
function.
@ As in the classical case, it is not difficult to check that for 1 < p < oo,

18eom (F)lle = [ F1]Lr-

The estimates above suggest us to define the HP norm of f in terms
of the LP norm of geom(f) when 0 < p < 1. However, this continuous
version of the Littlewood-Paley-Stein square function geom(f) is
convenient to deal with the case for 1 < p < co but not for the case
when 0 < p < 1. The crucial idea is to replace the continuous version
of gcom(f) by the discrete version.
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@ To define the discrete version of gcom(f), the key tool is discrete
Calderén’s identity. To be more precise, we first recall classical
continuous Calderdn’s identity on L2(IR™). Let l[J(l) be a function
satisfying the conditions of (1.5) and (1.6). By taking the Fourier
transform, we have the following classical continuous Calderén'’s

identity:
x) = Ly gV« £ (x),
je

where the series converges in Lz(lR’") and in
Seo(R™) :={f € S(R™) : [pm f(x)x*dx = 0 for any|a| > 0}.
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@ Note that the Fourier transforms of both 1,0}1) and 1,0}1) x f are
compactly supported. Using a similar idea as in the Shannon

sampling theorem, one can decompose %(_1) * 1/]}1) * f(x) by
Y (x— 2790 (g £)(270).
lezm

Then classical discrete Calderdn’s identity is given by

F) =Y Y wP (x—270)(yY « £)(270), (1.10)

je ltezm

where the series converges in L2(IR™) and Seo(R™).
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@ Note that the Fourier transforms of both gbj(l) and gbj(l) x [ are
compactly supported. Using a similar idea as in the Shannon

sampling theorem, one can decompose 1p1(1) * 1/]}1) * f(x) by
1 —j 1 —j
Y i (x— 2790 (g £)(270).
lezm
Then classical discrete Calderdn’s identity is given by

F) =Y Y o (x—2790) (M « £)(2790), (1.10)

JjE tezm

where the series converges in L2(IR™) and Seo(R™).
@ Now by considering ¥; , = l/)J(-1> * 1/11((2) and taking the Fourier
transform, we obtain the following continuous Calderén’s identity:

F(x) = ) Pin*Piuxf(x),

j keZ

where the series converges in L?(R™) and in Se(IR™). Furthermore,
we will prove the following discrete Calderén’s identity.
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@ Theorem 1.3: Suppose that l[J(l) and 1[1(2) are functions satisfying
conditions in (1.5) - (1.6) and (1.7) - (1.8), respectively. Let

Pri(x) = 9+ 9 (x). Then
f(XI,Xm) _ Z E 2—(m—1)(j/\k) 2—(]/\2/()

JKEZ (0 0, eZm-1xZ

(lpjk*f)(zf(j/\k)glyzf(j/\Zk ) % lpj ( (_j/\k)ﬁ YXm_2f(j/\2k)£m),
where the series converges in L2(R™), Seo(IR™) and S’/ P(R™).
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@ This discrete Calderdn’s identity leads to the following discrete
Littlewood-Paley-Stein square function.
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@ This discrete Calderdn’s identity leads to the following discrete
Littlewood-Paley-Stein square function.

o Definition 1.4: For f € S'/P(R™), GJ/(f), the discrete
Littlewood-Paley-Stein square function of f, is defined by

G (X xm) =

[0 e D@20 )R (s m)

JKEZ (0 0)EZM1XZ

where [ are dyadic cubes in R™~! and J are dyadic intervals in IR
with the side length £(/) = 2-UMK) and £(J) = 2-0"2K) and the left
lower corners of | and the left end points of J are 2~ U k)¢ and
2*(“2")5,,,, respectively.
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@ Now we can formally define the Hardy spaces associated with two
different homogeneities by the following
Definition 1.5: Let 0 < p < 1.
Hem(R™) = {f € S'/P(R™) : Glg(f) € LP(R™)}. If f € HEm(R™)
the norm of f is defined by ||f|| s (rm) = ||Gll‘f(f)]|Lp(1Rm).

com
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@ Now we can formally define the Hardy spaces associated with two
different homogeneities by the following
Definition 1.5: Let 0 < p < 1.
Hem(R™) = {f € S'/P(R™) : Gll‘f(f) € LP(R™)}. If f € HEm(R™)
the norm of f is defined by |||, rm) = ||Gl/‘f(f)||Lp(Rm).

@ To see that these Hardy spaces are well defined, we need to show that
Hfom(lRm) is independent of the choice of the functions l/)(l) and
¥?). This will directly follow from the following
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@ Theorem 1.6: If ¢; , satisfies the same conditions as 1; x, then for
0O<p<landfeS/P(R"),

1G5 ()l owm) 2 1| Gy (F) o (rem)-
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@ Theorem 1.6: If ¢; , satisfies the same conditions as 1; x, then for
0<p<landfeS/PIRM),

1G5 ()l owm) 2 1| Gy ()l o (rem)-

@ We now state the main results of this paper.
Theorem 1.7: Let T1 and T, be Calderén-Zygmund singular integral
operators with the isotropic and non-isotropic homogeneity,
respectively. Then for 0 < p < 1, the composition operator
T = Ty o T, is bounded on HE,,(R™).

Guozhen Lu (Wayne State University) Multiparameter Hardy spaces

/ 25



@ Theorem 1.8: Let 0 < p < 1. If f € L2(R™) N HEm(IR™), then there
is a constant C = C(p) such that

11l ormy < ClIf | e, (mm)s

where the constant C is independent of the L? norm of f.
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o Theorem 1.8: Let 0 < p < 1. If f € L2(R™) N HE,m(IR™), then there
is a constant C = C(p) such that

||f”LP(1Rm) < C||f”Hé’om(]Rm)v
where the constant C is independent of the L? norm of f.

@ We remark that the proof of the above theorem does not use atomic
decomposition and hence Journé’s covering lemma is not required. As
a consequence, we obtain
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o Theorem 1.8: Let 0 < p < 1. If f € L2(R™) N HE,m(IR™), then there
is a constant C = C(p) such that

||f”LP(1Rm) < C||f”Hé’om(]Rm)v
where the constant C is independent of the L? norm of f.

@ We remark that the proof of the above theorem does not use atomic
decomposition and hence Journé's covering lemma is not required. As
a consequence, we obtain

@ Theorem 1.9: Let 0 < p < 1. Suppose that T is a composition of Ty
and Ty as given in Theorem 1.7. Then T extends to a bounded
operator from Ho%,(IR™) to LP(R™).
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@ Theorem 1.10: (Calderén-Zygmund decomposition for Ho,,) Let
0<pp<1p<p<p <o andleta >0 begiven and f € HE,,,.
Then we may write f = g + b where g € HE,,, and b € HEZ,, such
that g7, < CaPPIFl7y, and [l < Carlfl

where C is an absolute constant. o
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@ Theorem 1.10: (Calderén-Zygmund decomposition for HE,m) Let
0<pp<1l,p<p<ps <o andleta >0 be given and feHE,,.
Then we may write f = g + b where g € HE,,, and b € H?,, such
that g%, < Can~P|[£]2, and [[b]Z, < Car||f]2, |
where C is an absolute constant.

@ Theorem 1.11: (Interpolation theorem on HE,,) Let
0 < pp < p1 <ooand T be a linear operator which is bounded from
HE2,, to LP2 and bounded from HE,, to LP!, then T is bounded from
HE, . to LP for all po < p < py. Similarly, if T is bounded on H22,
and HEL,, then T is bounded on HE,, for all p» < p < p1.
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@ Proof of Theorem 1.3:
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@ Proof of Theorem 1.3:

@ Using ideas from Frazier-Jawerth-Weiss in one parameter case.
Taking the Fourier transform, we obtain the following continuous
Calderén’s identity:

F(x)= ), Pin*Piu*f(x), (21)

J keZ

where the convergence of series in L?(IR™), S(R™) and S’/ P(R™)
follows from the results in the classical case.
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@ Proof of Theorem 1.3:

@ Using ideas from Frazier-Jawerth-Weiss in one parameter case.
Taking the Fourier transform, we obtain the following continuous
Calderén’s identity:

F(x)= ), Pin*Piu*f(x), (21)

JkeZ

where the convergence of series in L2(R™), S(R™) and S’/ P(R™)
follows from the results in the classical case.

@ To get a discrete version of Calderon’s identity, we need to
decompose 1) i * P * f in (2.1). Set g = P, * f and h = ¢} x.
The Fourier transforms of g and h are given by

A(€/v€m> —IIJ (2 e 2, )lP ( kg2 2k‘:m) (¢',¢m) and
A&, Em) = 9029, 27992 (27K, 272KE ).
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@ Note that the Fourier transforms of g and h are both compactly
supported. More precisely, supp g, supp his

C{(&Em) R X R: |¢] < 27, || < 2%},
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@ Note that the Fourier transforms of g and h are both compactly
supported. More precisely, supp g, supp his

CH{(&&m) € R™ I X R: [ < 27, || < 2727}

@ Thus, we first expand g in a Fourier series on the rectangle
Rik =18 €R™ 1 ¢pm € R: '] < 20k, |8m| < 22K}

E(g/’gm) _ Z 27(m71)(j/\k) 27(1'/\2/() (27.[>7m
(O tm)EZM-1 < Z

R k

x e_i(2—(j/\kjé/.é/+27(jA2k)fm§m)

and then replace R; x by R since g is supported in R; .
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e Finally, we obtain

E(C/, gm) = Z 2_(’77_1)(]/\/() 2—(j/\2k)
(0 m)EZM1XZ

xg(2_(f/\k)€/’ 2—(j/\2k)£m) e—,‘(2*(j/\k)(‘/.gl_,’_z—(jAZk)émém)-
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o Finally, we obtain

g(‘f/, Cm) = Z o= (m=1)(jrk) o—(iA2k)
(elvém)ezm71 XZ.

R e
e Multiplying h(&, &) from both sides yields
g(& Em)h(&" Cm)
_ y 0~ (m=1)(GAK) p=(in2k) g(p=UiNK) gt p=(in2k) g
(0 ) eZm—1XZ

(g §m> 2 (jAk) 6/ §/+2 (//\Qk[ g )
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o Note that A(&, &) e /(2 V042702 0ntn) —
F(észk% —2-UN2K)p V) (&, &m). Therefore, applying the identity
g+xh= (g h)" implies that
(g h)(X', xm)

— Z o—(m=1)(jAk) 2—(1/\2k)g(2—(j/\k)g/, 2—(1'/\2k)gm)

(0 bm)EZM1XZ

X h(x' — 270N — 2= UA2K)g Y (2.2)
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o Note that h(&', &) e /(2 0E+27 02 ngm) —
3(42_0“){/: —2-UN2K) g V)(&, ). Therefore, applying the identity
gxh= (g h)" implies that
(g * h) (X/, Xm)
_ E 2—(m—1)(j/\k) 2—(j/\2k)g(2—(j/\k)€/’2—(j/\2k)£m)

(0 ) EZM-1XZ
X h(x' — 2 UMK . — 27 UKy (2.2)

@ Substituting g by ¥; x * f and h by ¢ into Calderén’s identity in
(2.1) gives the discrete Calderén's identity in (1.12) and the
convergence of the series in the L2(IR™).
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e Lemma 3.1 (Almost orthogonality estimates)
Suppose that 9; x and @/ s satisfy the same conditions in
(1.5)-(1.8). Then for any given integers L and M, there exists a
constant C = C(L, M) > 0 such that

W)k * @i (X', Xim) |

(N NkAK') (m—1) 2JNN2(kAK')

< —li=i"ILy—lk=K'|L
< c2 b1 (15 AR [ [y Mem 1) (1 A2k [
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@ Now we prove the following estimate of the discrete version of the
maximal function.
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@ Now we prove the following estimate of the discrete version of the
maximal function.

@ Lemma 3.2: Let /, !’ be dyadic cubes in R™! and J, J/ be dyadic
intervals in lR with the side lengths £(/) = 2=U"K) ¢(') = 2-U'"K)
and £(J) = 27UN2K) ¢(J') = 2-U'"2K) "and the left lower corners of
I, I and the Ieft end points of J, J' are
2= UAK) pr o=U'AK) g1 0—=(iA2K) p  and 2—U A2k)£m, respectively. Then
forany o', v € I, um, vim € J, and any Mamo1 <0 <1,

2 (m=1) (NS NKAK") jAJ N2kA2K" o—(m=1)(j'/AK") o—(j"A2k")

(o )GZZmle (1 + 2j/\j’/\k/\k’|u/ _ 27(j’/\k’)€//|)(l\/l+m71)

(s x F) (27U AR 2= T2k g )
(1 + 2NA2KA2K |y — 0= (TA2K ) g1 1Y (M+1)

< cl{MsK Y (s QUM 20K g2
(", 0,)EZm1xZ

where C; = C2(m— D(3-1)('AK =jAK) 1 9(5-1) (' N2k —jA2K) here
(a— b); = max{a— b,0}, and M is the strong maX|ma| function.
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