Multiparameter Hardy spaces associated to compositions of operators and Littlewood-Paley theory

In honor of Eric Sawyer on his 60th Birthday (joint work with Han, Lin, Ruan and Sawyer)

Guozhen Lu

Wayne State University

July 26-29, 2011 at the Fields Institute

Earlier works on pure product Hardy spaces: Gundy-Stein, R. Fefferman, Chang-R. Fefferman, Journe, Pipher, Lacey, ..., our work is motivated by the work of Phong and Stein on weak type (1,1) estimates on composition operators.

 The purpose of this work is to develop a new Hardy space theory and prove that the composition of two Calderón-Zygmund singular integrals associated with different homogeneities, respectively, is bounded on these new Hardy spaces.

- The purpose of this work is to develop a new Hardy space theory and prove that the composition of two Calderón-Zygmund singular integrals associated with different homogeneities, respectively, is bounded on these new Hardy spaces.
- Let $e(\xi)$ be a function on \mathbb{R}^m homogeneous of degree 0 in the isotropic sense and smooth away from the origin. Similarly, suppose that $h(\xi)$ is a function on \mathbb{R}^m homogeneous of degree 0 in the non-isotropic sense related to the heat equation, and also smooth away from the origin. Then it is well-known that the Fourier multipliers T_1 defined by $\widehat{T_1(f)}(\xi) = e(\xi)\widehat{f}(\xi)$ and T_2 given by $\widehat{T_2(f)}(\xi) = h(\xi)\widehat{f}(\xi)$ are both bounded on L^p for 1 , and satisfy various other regularity properties such as being of weak-type <math>(1, 1).

• It was well known that T_1 and T_2 are bounded on the classical isotropic and non-isotropic Hardy spaces, respectively. Rivieré asked the question: Is the composition $T_1 \circ T_2$ still of weak-type (1,1)? Phong and Stein answered this question and gave a necessary and sufficient condition for which $T_1 \circ T_2$ is of weak-type (1,1). The operators Phong and Stein studied are in fact compositions with different kind of homogeneities which arise naturally in the $\bar{\partial}$ -Neumann problem.

• We write $\mathbb{R}^m = \mathbb{R}^{m-1} \times \mathbb{R}$ with $x = (x', x_m)$ where $x' \in \mathbb{R}^{m-1}$ and $x_m \in \mathbb{R}$. We consider two kinds of homogeneities

$$\delta: (x', x_m) \to (\delta x', \delta x_m), \delta > 0$$

and

$$\delta: (x', x_m) \to (\delta x', \delta^2 x_m), \delta > 0.$$

The first are the classical isotropic dilations occurring in the classical Calderón-Zygmund singular integrals, while the second are non-isotropic and related to the heat equations (also Heisenberg groups.)

• We write $\mathbb{R}^m = \mathbb{R}^{m-1} \times \mathbb{R}$ with $x = (x', x_m)$ where $x' \in \mathbb{R}^{m-1}$ and $x_m \in \mathbb{R}$. We consider two kinds of homogeneities

$$\delta: (x', x_m) \to (\delta x', \delta x_m), \delta > 0$$

and

$$\delta: (x', x_m) \to (\delta x', \delta^2 x_m), \delta > 0.$$

The first are the classical isotropic dilations occurring in the classical Calderón-Zygmund singular integrals, while the second are non-isotropic and related to the heat equations (also Heisenberg groups.)

• For $x=(x',x_m)\in\mathbb{R}^{m-1}\times\mathbb{R}$ we denote $|x|_e=(|x'|^2+|x_m|^2)^{\frac{1}{2}}$ and $|x|_h=(|x'|^2+|x_m|)^{\frac{1}{2}}$. We also use notations $j\wedge k=\min\{j,k\}$ and $j\vee k=\max\{j,k\}$.

• Definition 1.1: A locally integrable function K_1 on $\mathbb{R}^m \setminus \{0\}$ is said to be a Calderón-Zygmund kernel associated with the isotropic homogeneity if

$$\left|\frac{\partial^{\alpha}}{\partial x^{\alpha}}K_{1}(x)\right| \leq A|x|_{e}^{-m-|\alpha|} \quad \text{for all } |\alpha| \geq 0,$$

$$\int_{r_{1}<|x|_{e}< r_{2}} K_{1}(x) \ dx = 0$$

for all $0 < r_1 < r_2 < \infty$.

We say that an operator T_1 is a Calderón-Zygmund singular integral operator associated with the isotropic homogeneity if

 $T_1(f)(x) = p.v.(K_1 * f)(x)$, where K_1 satisfies the above conditions.

• It is well-known that any Calderón-Zygmund singular integral operator associated with the isotropic homogeneity is bounded on $L^p(\mathbb{R}^m)$ for $1 and is also bounded on the classical Hardy space <math>H^p(\mathbb{R}^m)$ with $0 . Here the classical Hardy space <math>H^p(\mathbb{R}^m)$ is associated with the isotropic homogeneity. To see this, let $\psi^{(1)} \in S(\mathbb{R}^m)$ with

supp
$$\widehat{\psi^{(1)}} \subseteq \{(\xi', \xi_m) \in \mathbb{R}^{m-1} \times \mathbb{R} : \frac{1}{2} \leq |\xi|_e \leq 2\}, (1.5)$$

and

$$\sum_{j \in \mathbb{Z}} |\widehat{\psi^{(1)}}(2^{-j}\xi', 2^{-j}\xi_m)|^2 = 1 \text{ for all } (\xi', \xi_m) \in \mathbb{R}^{m-1} \times \mathbb{R} \setminus \{(0, 0)\}.$$
 (1)

ullet The Littlewood-Paley-Stein square function of $f\in S'(\mathbb{R}^m)$ then is defined by

$$g(f)(x) = \left\{ \sum_{j \in \mathbb{Z}} |\psi_j^{(1)} * f(x)|^2 \right\}^{\frac{1}{2}},$$

where $\psi_j^{(1)}(x',x_m)=2^{jm}\psi^{(1)}(2^jx',2^jx_m)$. Note that the isotropic homogeneity is involved in g(f).

ullet The Littlewood-Paley-Stein square function of $f\in S'(\mathbb{R}^m)$ then is defined by

$$g(f)(x) = \left\{ \sum_{j \in \mathbb{Z}} |\psi_j^{(1)} * f(x)|^2 \right\}^{\frac{1}{2}},$$

where $\psi_j^{(1)}(x',x_m)=2^{jm}\psi^{(1)}(2^jx',2^jx_m)$. Note that the isotropic homogeneity is involved in g(f).

ullet The classical Hardy space $H^p(\mathbb{R}^m)$ then can be characterized by

$$H^p(\mathbb{R}^m) = \{ f \in S' / P(\mathbb{R}^m) : g(f) \in L^p(\mathbb{R}^m) \},$$

where S'/P denotes the space of distributions modulo polynomials. If $f \in H^p(\mathbb{R}^m)$, the H^p norm of f is defined by $||f||_{H^p} = ||g(f)||_{L^p}$.

• A Calderón-Zygmund singular integral operator associated with the non-isotropic homogeneity is bounded on $L^p, 1 . It is not bounded on the classical Hardy space but bounded on the non-isotropic Hardy space. The non-isotropic Hardy space can also be characterized by the non-isotropic Littlewood-Paley-Stein square function. To be more precise, let <math>\psi^{(2)} \in \mathcal{S}(\mathbb{R}^m)$ with

supp
$$\widehat{\psi^{(2)}} \subseteq \{ (\xi', \xi_m) \in \mathbb{R}^{m-1} \times \mathbb{R} : \frac{1}{2} \le |\xi|_h \le 2 \}, (1.7)$$

$$\sum_{k \in \mathbb{Z}} |\widehat{\psi^{(2)}}(2^{-k}\xi', 2^{-2k}\xi_m)|^2 = 1 \text{ for all } (\xi', \xi_m) \in \mathbb{R}^{m-1} \times \mathbb{R} \setminus \{(0, 0)\}.$$

• We then define $g_h(f)$, the non-isotropic Littlewood-Paley-Stein square function of $f \in S'(\mathbb{R}^m)$, by

$$g_h(f)(x) = \left\{ \sum_{k \in \mathbb{Z}} |\psi_k^{(2)} * f(x)|^2 \right\}^{\frac{1}{2}},$$

where $\psi_k^{(2)}(x',x_m)=2^{k(m+1)}\psi(2^kx',2^{2k}x_m)$. The non-isotropic Hardy space $H_h^p(\mathbb{R}^m)$ then can be characterized by

$$H_h^p(\mathbb{R}^m) = \{ f \in S'/P(\mathbb{R}^m) : g_h(f) \in L^p(\mathbb{R}^m) \}$$

and if $f \in H_h^p(\mathbb{R}^m)$, the H_h^p norm of f is defined by $||f||_{H_h^p} = ||g_h(f)||_{L^p}$.

• Suppose that $\psi^{(1)}$ and $\psi^{(2)}$ are functions satisfying the above conditions. Let $\psi_{j,k}(x)=\psi_j^{(1)}*\psi_k^{(2)}(x)$. Define a new Littlewood-Paley-Stein square function by

$$g_{com}(f)(x) = \left\{ \sum_{j,k \in \mathbb{Z}} |\psi_{j,k} * f(x)|^2 \right\}^{\frac{1}{2}}.$$

We remark that a significant feature is that the multiparameter structure is involved in the above Littlewood-Paley-Stein square function. • Suppose that $\psi^{(1)}$ and $\psi^{(2)}$ are functions satisfying the above conditions. Let $\psi_{j,k}(x)=\psi_j^{(1)}*\psi_k^{(2)}(x)$. Define a new Littlewood-Paley-Stein square function by

$$g_{com}(f)(x) = \left\{ \sum_{j,k \in \mathbb{Z}} |\psi_{j,k} * f(x)|^2 \right\}^{\frac{1}{2}}.$$

structure is involved in the above Littlewood-Paley-Stein square function.

We remark that a significant feature is that the multiparameter

• As in the classical case, it is not difficult to check that for 1 ,

$$\|g_{com}(f)\|_{L^p}\approx \|f\|_{L^p}.$$

The estimates above suggest us to define the H^p norm of f in terms of the L^p norm of $g_{com}(f)$ when $0 . However, this continuous version of the Littlewood-Paley-Stein square function <math>g_{com}(f)$ is convenient to deal with the case for $1 but not for the case when <math>0 . The crucial idea is to replace the continuous version of <math>g_{com}(f)$ by the discrete version.

• To define the discrete version of $g_{com}(f)$, the key tool is discrete Calderón's identity. To be more precise, we first recall classical continuous Calderón's identity on $L^2(\mathbb{R}^m)$. Let $\psi^{(1)}$ be a function satisfying the conditions of (1.5) and (1.6). By taking the Fourier transform, we have the following classical continuous Calderón's identity:

$$f(x) = \sum_{j \in} \psi_j^{(1)} * \psi_j^{(1)} * f(x),$$

where the series converges in $L^2(\mathbb{R}^m)$ and in $S_{\infty}(\mathbb{R}^m):=\{f\in S(\mathbb{R}^m):\int_{\mathbb{R}^m}f(x)x^{\alpha}dx=0 \text{ for any}|\alpha|\geq 0\}.$

• Note that the Fourier transforms of both $\psi_j^{(1)}$ and $\psi_j^{(1)} * f$ are compactly supported. Using a similar idea as in the Shannon sampling theorem, one can decompose $\psi_j^{(1)} * \psi_j^{(1)} * f(x)$ by

$$\sum_{\ell \in \mathbb{Z}^m} \psi_j^{(1)}(x - 2^{-j}\ell)(\psi_j^{(1)} * f)(2^{-j}\ell).$$

Then classical discrete Calderón's identity is given by

$$f(x) = \sum_{j \in \ell} \sum_{\ell \in \mathbb{Z}^m} \psi_j^{(1)}(x - 2^{-j}\ell) (\psi_j^{(1)} * f) (2^{-j}\ell), (1.10)$$

where the series converges in $L^2(\mathbb{R}^m)$ and $S_{\infty}(\mathbb{R}^m)$.

• Note that the Fourier transforms of both $\psi_j^{(1)}$ and $\psi_j^{(1)} * f$ are compactly supported. Using a similar idea as in the Shannon sampling theorem, one can decompose $\psi_i^{(1)} * \psi_j^{(1)} * f(x)$ by

$$\sum_{\ell \in \mathbb{Z}^m} \psi_j^{(1)}(x - 2^{-j}\ell)(\psi_j^{(1)} * f)(2^{-j}\ell).$$

Then classical discrete Calderón's identity is given by

$$f(x) = \sum_{j \in \ell} \sum_{\ell \in \mathbb{Z}^m} \psi_j^{(1)}(x - 2^{-j}\ell) (\psi_j^{(1)} * f) (2^{-j}\ell), (1.10)$$

where the series converges in $L^2(\mathbb{R}^m)$ and $S_{\infty}(\mathbb{R}^m)$.

• Now by considering $\psi_{j,k} = \psi_j^{(1)} * \psi_k^{(2)}$ and taking the Fourier transform, we obtain the following continuous Calderón's identity:

$$f(x) = \sum_{j,k \in \mathbb{Z}} \psi_{j,k} * \psi_{j,k} * f(x),$$

where the series converges in $L^2(\mathbb{R}^m)$ and in $S_\infty(\mathbb{R}^m)$. Furthermore, we will prove the following discrete Calderón's identity.

• Theorem 1.3: Suppose that $\psi^{(1)}$ and $\psi^{(2)}$ are functions satisfying conditions in (1.5) - (1.6) and (1.7) - (1.8), respectively. Let $\psi_{j,k}(x) = \psi_j^{(1)} * \psi_k^{(2)}(x)$. Then

$$f(x', x_m) = \sum_{j,k \in \mathbb{Z}} \sum_{(\ell', \ell_m) \in \mathbb{Z}^{m-1} \times \mathbb{Z}} 2^{-(m-1)(j \wedge k)} 2^{-(j \wedge 2k)}$$

$$(\psi_{j,k}*f)(2^{-(j\wedge k)}\ell',2^{-(j\wedge 2k)}\ell_m)\times\psi_{j,k}(x'-2^{-(j\wedge k)}\ell',x_m-2^{-(j\wedge 2k)}\ell_m),$$
 where the series converges in $L^2(\mathbb{R}^m)$, $S_{\infty}(\mathbb{R}^m)$ and $S'/P(\mathbb{R}^m)$.

4 D > 4 D > 4 E > 4 E > E 9 Q C

• This discrete Calderón's identity leads to the following discrete Littlewood-Paley-Stein square function.

- This discrete Calderón's identity leads to the following discrete Littlewood-Paley-Stein square function.
- Definition 1.4: For $f \in S'/P(\mathbb{R}^m)$, $G_{\psi}^d(f)$, the discrete Littlewood-Paley-Stein square function of f, is defined by

$$G_{\psi}^{d}(f)(x',x_{m}) =$$

$$\left\{\sum_{j,k\in\mathbb{Z}}\sum_{(\ell',\ell_m)\in\mathbb{Z}^{m-1}\times\mathbb{Z}}|(\psi_{j,k}*f)(2^{-(j\wedge k)}\ell',2^{-(j\wedge 2k)}\ell_m)|^2\chi_I(x')\chi_J(x_m)\right\}^{\frac{1}{2}}$$

where I are dyadic cubes in \mathbb{R}^{m-1} and J are dyadic intervals in \mathbb{R} with the side length $\ell(I)=2^{-(j\wedge k)}$ and $\ell(J)=2^{-(j\wedge 2k)}$, and the left lower corners of I and the left end points of J are $2^{-(j\wedge k)}\ell'$ and $2^{-(j\wedge 2k)}\ell_m$, respectively.

 Now we can formally define the Hardy spaces associated with two different homogeneities by the following

Definition 1.5: Let 0 .

$$H^p_{com}(\mathbb{R}^m) = \{ f \in S'/P(\mathbb{R}^m) : G^d_{\psi}(f) \in L^p(\mathbb{R}^m) \}.$$
 If $f \in H^p_{com}(\mathbb{R}^m)$ the norm of f is defined by $\|f\|_{H^p_{com}(\mathbb{R}^m)} = \|G^d_{\psi}(f)\|_{L^p(\mathbb{R}^m)}.$

- Now we can formally define the Hardy spaces associated with two different homogeneities by the following Definition 1.5: Let $0 . <math>H^p_{com}(\mathbb{R}^m) = \{f \in S'/P(\mathbb{R}^m) : G^d_{\psi}(f) \in L^p(\mathbb{R}^m)\}$. If $f \in H^p_{com}(\mathbb{R}^m)$ the norm of f is defined by $\|f\|_{H^p_{com}(\mathbb{R}^m)} = \|G^d_{\psi}(f)\|_{L^p(\mathbb{R}^m)}$.
- To see that these Hardy spaces are well defined, we need to show that $H^p_{com}(\mathbb{R}^m)$ is independent of the choice of the functions $\psi^{(1)}$ and $\psi^{(2)}$. This will directly follow from the following

• Theorem 1.6: If $\varphi_{j,k}$ satisfies the same conditions as $\psi_{j,k}$, then for $0 and <math>f \in S'/P(\mathbb{R}^m)$,

$$\|G_{\psi}^{d}(f)\|_{L^{p}(\mathbb{R}^{m})} \approx \|G_{\varphi}^{d}(f)\|_{L^{p}(\mathbb{R}^{m})}.$$

• Theorem 1.6: If $\varphi_{j,k}$ satisfies the same conditions as $\psi_{j,k}$, then for $0 and <math>f \in S'/P(\mathbb{R}^m)$,

$$\|G_{\psi}^d(f)\|_{L^p(\mathbb{R}^m)} pprox \|G_{\varphi}^d(f)\|_{L^p(\mathbb{R}^m)}.$$

We now state the main results of this paper.
 Theorem 1.7: Let T₁ and T₂ be Calderón-Zygmund singular integral operators with the isotropic and non-isotropic homogeneity, respectively. Then for 0 p</sup>_{com}(ℝ^m).

• Theorem 1.8: Let $0 . If <math>f \in L^2(\mathbb{R}^m) \cap H^p_{com}(\mathbb{R}^m)$, then there is a constant C = C(p) such that

$$||f||_{L^p(\mathbb{R}^m)} \leq C||f||_{H^p_{com}(\mathbb{R}^m)},$$

where the constant C is independent of the L^2 norm of f.

• Theorem 1.8: Let $0 . If <math>f \in L^2(\mathbb{R}^m) \cap H^p_{com}(\mathbb{R}^m)$, then there is a constant C = C(p) such that

$$||f||_{L^p(\mathbb{R}^m)} \leq C||f||_{H^p_{com}(\mathbb{R}^m)},$$

where the constant C is independent of the L^2 norm of f.

 We remark that the proof of the above theorem does not use atomic decomposition and hence Journé's covering lemma is not required. As a consequence, we obtain • Theorem 1.8: Let $0 . If <math>f \in L^2(\mathbb{R}^m) \cap H^p_{com}(\mathbb{R}^m)$, then there is a constant C = C(p) such that

$$||f||_{L^p(\mathbb{R}^m)} \leq C||f||_{H^p_{com}(\mathbb{R}^m)},$$

where the constant C is independent of the L^2 norm of f.

- We remark that the proof of the above theorem does not use atomic decomposition and hence Journé's covering lemma is not required. As a consequence, we obtain
- Theorem 1.9: Let 0 . Suppose that <math>T is a composition of T_1 and T_2 as given in Theorem 1.7. Then T extends to a bounded operator from $H^p_{com}(\mathbb{R}^m)$ to $L^p(\mathbb{R}^m)$.

• Theorem 1.10: (Calderón-Zygmund decomposition for H^p_{com}) Let $0 < p_2 \le 1, p_2 < p < p_1 < \infty$ and let $\alpha > 0$ be given and $f \in H^p_{com}$. Then we may write f = g + b where $g \in H^{p_1}_{com}$ and $b \in H^{p_2}_{com}$ such that $\|g\|^{p_1}_{H^{p_1}_{com}} \le C\alpha^{p_1-p}\|f\|^p_{H^p_{com}}$ and $\|b\|^{p_2}_{H^{p_2}_{com}} \le C\alpha^{p_2-p}\|f\|^p_{H^p_{com}}$, where C is an absolute constant.

- Theorem 1.10: (Calderón-Zygmund decomposition for H^p_{com}) Let $0 < p_2 \le 1, p_2 < p < p_1 < \infty$ and let $\alpha > 0$ be given and $f \in H^p_{com}$. Then we may write f = g + b where $g \in H^{p_1}_{com}$ and $b \in H^{p_2}_{com}$ such that $\|g\|^{p_1}_{H^{p_1}_{com}} \le C\alpha^{p_1-p}\|f\|^p_{H^p_{com}}$ and $\|b\|^{p_2}_{H^{p_2}_{com}} \le C\alpha^{p_2-p}\|f\|^p_{H^p_{com}}$, where C is an absolute constant.
- Theorem 1.11: (Interpolation theorem on H^p_{com}) Let $0 < p_2 < p_1 < \infty$ and T be a linear operator which is bounded from $H^{p_2}_{com}$ to L^{p_2} and bounded from $H^{p_1}_{com}$ to L^{p_1} , then T is bounded from H^p_{com} to L^p for all $p_2 . Similarly, if <math>T$ is bounded on $H^{p_2}_{com}$ and $H^{p_1}_{com}$, then T is bounded on H^p_{com} for all $p_2 .$

• Proof of Theorem 1.3:

• Proof of Theorem 1.3:

Using ideas from Frazier-Jawerth-Weiss in one parameter case.
 Taking the Fourier transform, we obtain the following continuous
 Calderón's identity:

$$f(x) = \sum_{j,k \in \mathbb{Z}} \psi_{j,k} * \psi_{j,k} * f(x), \quad (2.1)$$

where the convergence of series in $L^2(\mathbb{R}^m)$, $S_{\infty}(\mathbb{R}^m)$ and $S'/P(\mathbb{R}^m)$ follows from the results in the classical case.

- Proof of Theorem 1.3:
- Using ideas from Frazier-Jawerth-Weiss in one parameter case.
 Taking the Fourier transform, we obtain the following continuous
 Calderón's identity:

$$f(x) = \sum_{j,k \in \mathbb{Z}} \psi_{j,k} * \psi_{j,k} * f(x), \quad (2.1)$$

where the convergence of series in $L^2(\mathbb{R}^m)$, $S_{\infty}(\mathbb{R}^m)$ and $S'/P(\mathbb{R}^m)$ follows from the results in the classical case.

• To get a discrete version of Calderon's identity, we need to decompose $\psi_{j,k} * \psi_{j,k} * f$ in (2.1). Set $g = \psi_{j,k} * f$ and $h = \psi_{j,k}$. The Fourier transforms of g and h are given by $\widehat{g}(\xi',\xi_m) = \widehat{\psi^{(1)}}(2^{-j}\xi',2^{-j}\xi_m)\widehat{\psi^{(2)}}(2^{-k}\xi',2^{-2k}\xi_m)\widehat{f}(\xi',\xi_m) \text{ and } \widehat{h}(\xi',\xi_m) = \widehat{\psi^{(1)}}(2^{-j}\xi',2^{-j}\xi_m)\widehat{\psi^{(2)}}(2^{-k}\xi',2^{-2k}\xi_m).$

• Note that the Fourier transforms of g and h are both compactly supported. More precisely, $supp \ \widehat{g}$, $supp \ \widehat{h}$ is

$$\subseteq \{(\xi',\xi_m)\in\mathbb{R}^{m-1}\times\mathbb{R}: |\xi'|\leq 2^{j\wedge k}\pi, |\xi_m|\leq 2^{j\wedge 2k}\pi\}.$$

• Note that the Fourier transforms of g and h are both compactly supported. More precisely, $supp \ \widehat{g}$, $supp \ \widehat{h}$ is

$$\subseteq \{(\xi',\xi_m)\in\mathbb{R}^{m-1}\times\mathbb{R}: |\xi'|\leq 2^{j\wedge k}\pi, |\xi_m|\leq 2^{j\wedge 2k}\pi\}.$$

• Thus, we first expand \widehat{g} in a Fourier series on the rectangle $R_{i,k} = \{ \xi' \in \mathbb{R}^{m-1}, \xi_m \in \mathbb{R} : |\xi'| \le 2^{j \wedge k} \pi, |\xi_m| \le 2^{j \wedge 2k} \pi \}$:

$$\widehat{g}(\xi',\xi_m) = \sum_{(\ell',\ell_m) \in \mathbb{Z}^{m-1} \times \mathbb{Z}} 2^{-(m-1)(j \wedge k)} 2^{-(j \wedge 2k)} (2\pi)^{-m}$$

$$\times \int_{R_{j,k}} \widehat{g}(\eta', \eta_m) e^{i(2^{-(j\wedge k)}\ell' \cdot \eta' + 2^{-(j\wedge 2k)}\ell_m \eta_m)} d\eta' d\eta_m$$

$$\times e^{-i(2^{-(j\wedge k)}\ell' \cdot \xi' + 2^{-(j\wedge 2k)}\ell_m \xi_m)}$$

and then replace $R_{j,k}$ by \mathbb{R}^m since \widehat{g} is supported in $R_{j,k}$.

• Finally, we obtain

$$\widehat{g}(\xi',\xi_m) = \sum_{(\ell',\ell_m) \in \mathbb{Z}^{m-1} \times \mathbb{Z}} 2^{-(m-1)(j \wedge k)} \ 2^{-(j \wedge 2k)}$$

$$\times g(2^{-(j\wedge k)}\ell',2^{-(j\wedge 2k)}\ell_m)\ e^{-i(2^{-(j\wedge k)}\ell'\cdot \zeta'+2^{-(j\wedge 2k)}\ell_m\zeta_m)}.$$

Finally, we obtain

$$\widehat{g}(\xi',\xi_m) = \sum_{(\ell',\ell_m) \in \mathbb{Z}^{m-1} \times \mathbb{Z}} 2^{-(m-1)(j \wedge k)} 2^{-(j \wedge 2k)}$$

$$\times g(2^{-(j\wedge k)}\ell', 2^{-(j\wedge 2k)}\ell_m) e^{-i(2^{-(j\wedge k)}\ell' \cdot \xi' + 2^{-(j\wedge 2k)}\ell_m \xi_m)}.$$

• Multiplying $\hat{h}(\xi', \xi_m)$ from both sides yields

$$\widehat{g}(\xi',\xi_m)\widehat{h}(\xi',\xi_m)$$

$$\begin{split} = \sum_{(\ell',\ell_m) \in \mathbb{Z}^{m-1} \times \mathbb{Z}} 2^{-(m-1)(j \wedge k)} \ 2^{-(j \wedge 2k)} \ g(2^{-(j \wedge k)} \ell', 2^{-(j \wedge 2k)} \ell_m) \\ \times \widehat{h}(\xi',\xi_m) \ e^{-i(2^{-(j \wedge k)} \ell' \cdot \xi' + 2^{-(j \wedge 2k)} \ell_m \xi_m)}. \end{split}$$

• Note that $\widehat{h}(\xi', \xi_m) e^{-i(2^{-(j \wedge k)} \ell' \cdot \xi' + 2^{-(j \wedge 2k)} \ell_m \xi_m)} = \widehat{h}(\dot{-}2^{-(j \wedge k)} \ell', \dot{-}2^{-(j \wedge 2k)} \ell_m))(\xi', \xi_m)$. Therefore, applying the identity $g * h = (\widehat{g} \widehat{h})^{\vee}$ implies that

$$(g * h)(x', x_m)$$

$$= \sum_{(\ell', \ell_m) \in \mathbb{Z}^{m-1} \times \mathbb{Z}} 2^{-(m-1)(j \wedge k)} 2^{-(j \wedge 2k)} g(2^{-(j \wedge k)} \ell', 2^{-(j \wedge 2k)} \ell_m)$$

$$\times h(x' - 2^{-(j \wedge k)} \ell', x_m - 2^{-(j \wedge 2k)} \ell_m). (2.2)$$

• Note that $\widehat{h}(\xi', \xi_m) e^{-i(2^{-(j \wedge k)} \ell', \xi' + 2^{-(j \wedge 2k)} \ell_m \xi_m)} = \widehat{h}(\dot{-}2^{-(j \wedge k)} \ell', \dot{-}2^{-(j \wedge 2k)} \ell_m))(\xi', \xi_m)$. Therefore, applying the identity $g * h = (\widehat{g} \ \widehat{h})^{\vee}$ implies that

$$(g * h)(x', x_m)$$

$$= \sum_{(\ell', \ell_m) \in \mathbb{Z}^{m-1} \times \mathbb{Z}} 2^{-(m-1)(j \wedge k)} 2^{-(j \wedge 2k)} g(2^{-(j \wedge k)} \ell', 2^{-(j \wedge 2k)} \ell_m)$$

$$\times h(x' - 2^{-(j \wedge k)} \ell', x_m - 2^{-(j \wedge 2k)} \ell_m). (2.2)$$

• Substituting g by $\psi_{j,k} * f$ and h by $\psi_{j,k}$ into Calderón's identity in (2.1) gives the discrete Calderón's identity in (1.12) and the convergence of the series in the $L^2(\mathbb{R}^m)$.

• Lemma 3.1 (Almost orthogonality estimates) Suppose that $\psi_{j,k}$ and $\varphi_{j',k'}$ satisfy the same conditions in (1.5)-(1.8). Then for any given integers L and M, there exists a constant C = C(L, M) > 0 such that

$$\begin{aligned} |\psi_{j,k} * \varphi_{j',k'}(x',x_m)| \\ &\leq C 2^{-|j-j'|L} 2^{-|k-k'|L} \frac{2^{(j \wedge j' \wedge k \wedge k')(m-1)}}{(1+2^{j \wedge j' \wedge k \wedge k'}|x'|)^{(M+m-1)}} \frac{2^{j \wedge j' \wedge 2(k \wedge k')}}{(1+2^{j \wedge j' \wedge 2(k \wedge k')}|x_m|)} \end{aligned}$$

• Now we prove the following estimate of the discrete version of the maximal function.

- Now we prove the following estimate of the discrete version of the maximal function.
- Lemma 3.2: Let I,I' be dyadic cubes in \mathbb{R}^{m-1} and J,J' be dyadic intervals in \mathbb{R} with the side lengths $\ell(I)=2^{-(j\wedge k)},\ell(I')=2^{-(j'\wedge k')}$ and $\ell(J)=2^{-(j\wedge 2k)},\ell(J')=2^{-(j'\wedge 2k')}$, and the left lower corners of I,I' and the left end points of J,J' are $2^{-(j\wedge k)}\ell',2^{-(j'\wedge k')}\ell'',2^{-(j\wedge 2k)}\ell_m$ and $2^{-(j'\wedge 2k')}\ell'_m$, respectively. Then for any $u',v'\in I,\ u_m,v_m\in J,$ and any $\frac{m-1}{M+m-1}<\delta\leq 1$, $2^{(m-1)(j\wedge j'\wedge k\wedge k')}2^{j\wedge j'\wedge 2k\wedge 2k'}2^{-(m-1)(j'\wedge k')}2^{-(j'\wedge 2k')}$

$$\sum_{(\ell'',\ell'_m)\in\mathbb{Z}^{m-1}\times\mathbb{Z}} \frac{2^{(m-1)(j,'j'\wedge k\wedge k')} 2^{j,'j'\wedge k\wedge k'} |u'-2^{-(j'\wedge k')}\ell''|)^{(M+m-1)}}{(1+2^{j\wedge j'\wedge k\wedge k'}|u'-2^{-(j'\wedge k')}\ell''|)^{(M+m-1)}} \\ \times \frac{|(\varphi_{j',k'}*f)(2^{-(j'\wedge k')}\ell'',2^{-(j'\wedge 2k')}\ell'_m)|}{(1+2^{j\wedge j'\wedge 2k\wedge 2k'}|u_m-2^{-(j'\wedge 2k')}\ell'_m|)^{(M+1)}} \\ \leq C_1 \bigg\{ M_s \bigg[\bigg(\sum_{(\ell'',\ell')\in\mathbb{Z}^{m-1}\times\mathbb{Z}} |(\varphi_{j',k'}*f)(2^{-(j'\wedge k')}\ell'',2^{-(j'\wedge 2k')}\ell'_m)|^2 \chi_{l'} \chi_{J'} \bigg\} \bigg\} \bigg\} \bigg\}$$

 $(a-b)_{+}=\max\{a-b,0\}$, and M_s is the strong maximal function.

where $C_1 = C2^{(m-1)(\frac{1}{\delta}-1)(j'\wedge k'-j\wedge k)_+} 2^{(\frac{1}{\delta}-1)(j'\wedge 2k'-j\wedge 2k)_+}$, here