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Earlier works on pure product Hardy spaces: Gundy-Stein, R. Fefferman,
Chang-R. Fefferman, Journe, Pipher, Lacey, ...,

our work is motivated by the work of Phong and Stein on weak type (1, 1)
estimates on composition operators.
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The purpose of this work is to develop a new Hardy space theory and
prove that the composition of two Calderón-Zygmund singular
integrals associated with different homogeneities, respectively, is
bounded on these new Hardy spaces.

Let e(ξ) be a function on Rm homogeneous of degree 0 in the
isotropic sense and smooth away from the origin. Similarly, suppose
that h(ξ) is a function on Rm homogeneous of degree 0 in the
non-isotropic sense related to the heat equation, and also smooth
away from the origin. Then it is well-known that the Fourier

multipliers T1 defined by T̂1(f )(ξ) = e(ξ)f̂ (ξ) and T2 given by

T̂2(f )(ξ) = h(ξ)f̂ (ξ) are both bounded on Lp for 1 < p < ∞, and
satisfy various other regularity properties such as being of weak-type
(1, 1).
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It was well known that T1 and T2 are bounded on the classical
isotropic and non-isotropic Hardy spaces, respectively. Rivieré asked
the question: Is the composition T1 ◦ T2 still of weak-type (1,1)?
Phong and Stein answered this question and gave a necessary and
sufficient condition for which T1 ◦ T2 is of weak-type (1,1). The
operators Phong and Stein studied are in fact compositions with
different kind of homogeneities which arise naturally in the
∂̄-Neumann problem.
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We write Rm = Rm−1 ×R with x = (x ′, xm) where x ′ ∈ Rm−1 and
xm ∈ R. We consider two kinds of homogeneities

δ : (x ′, xm)→ (δx ′, δxm), δ > 0

and
δ : (x ′, xm)→ (δx ′, δ2xm), δ > 0.

The first are the classical isotropic dilations occurring in the classical
Calderón-Zygmund singular integrals, while the second are
non-isotropic and related to the heat equations (also Heisenberg
groups.)

For x = (x ′, xm) ∈ Rm−1 ×R we denote |x |e = (|x ′|2 + |xm|2)
1
2 and

|x |h = (|x ′|2 + |xm|)
1
2 . We also use notations j ∧ k = min{j , k} and

j ∨ k = max{j , k}.
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Definition 1.1: A locally integrable function K1 on Rm\{0} is said to
be a Calderón-Zygmund kernel associated with the isotropic
homogeneity if∣∣∣∣ ∂α

∂xα
K1(x)

∣∣∣∣ ≤ A|x |−m−|α|e for all |α| ≥ 0,

∫
r1<|x |e<r2

K1(x) dx = 0

for all 0 < r1 < r2 < ∞.
We say that an operator T1 is a Calderón-Zygmund singular integral
operator associated with the isotropic homogeneity if
T1(f )(x) = p.v .(K1 ∗ f )(x), where K1 satisfies the above conditions.
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It is well-known that any Calderón-Zygmund singular integral operator
associated with the isotropic homogeneity is bounded on Lp(Rm) for
1 < p < ∞ and is also bounded on the classical Hardy space Hp(Rm)
with 0 < p ≤ 1. Here the classical Hardy space Hp(Rm) is associated
with the isotropic homogeneity. To see this, let ψ(1) ∈ S(Rm) with

supp ψ̂(1) ⊆ {(ξ ′, ξm) ∈ Rm−1 ×R :
1

2
≤ |ξ|e ≤ 2}, (1.5)

and

∑
j∈Z

|ψ̂(1)(2−jξ ′, 2−jξm)|2 = 1 for all (ξ ′, ξm) ∈ Rm−1×R\{(0, 0)}. (1.6)
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The Littlewood-Paley-Stein square function of f ∈ S ′(Rm) then is
defined by

g(f )(x) =
{

∑
j∈Z

|ψ(1)
j ∗ f (x)|

2
} 1

2
,

where ψ
(1)
j (x ′, xm) = 2jmψ(1)(2jx ′, 2jxm). Note that the isotropic

homogeneity is involved in g(f ).

The classical Hardy space Hp(Rm) then can be characterized by

Hp(Rm) = {f ∈ S ′/P(Rm) : g(f ) ∈ Lp(Rm)},

where S ′/P denotes the space of distributions modulo polynomials. If
f ∈ Hp(Rm), the Hp norm of f is defined by ‖f ‖Hp = ‖g(f )‖Lp .
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A Calderón-Zygmund singular integral operator associated with the
non-isotropic homogeneity is bounded on Lp, 1 < p < ∞. It is not
bounded on the classical Hardy space but bounded on the
non-isotropic Hardy space. The non-isotropic Hardy space can also be
characterized by the non-isotropic Littlewood-Paley-Stein square
function. To be more precise, let ψ(2) ∈ S(Rm) with

supp ψ̂(2) ⊆ {(ξ ′, ξm) ∈ Rm−1 ×R :
1

2
≤ |ξ|h ≤ 2}, (1.7)

∑
k∈Z

|ψ̂(2)(2−kξ ′, 2−2kξm)|2 = 1 for all (ξ ′, ξm) ∈ Rm−1×R\ {(0, 0)}. (1.8)
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We then define gh(f ), the non-isotropic Littlewood-Paley-Stein
square function of f ∈ S ′(Rm), by

gh(f )(x) =
{

∑
k∈Z

|ψ(2)
k ∗ f (x)|

2
} 1

2
,

where ψ
(2)
k (x ′, xm) = 2k(m+1)ψ(2kx ′, 22kxm). The non-isotropic

Hardy space Hp
h (R

m) then can be characterized by

Hp
h (R

m) = {f ∈ S ′/P(Rm) : gh(f ) ∈ Lp(Rm)}

and if f ∈ Hp
h (R

m), the Hp
h norm of f is defined by

‖f ‖Hp
h
= ‖gh(f )‖Lp .

Guozhen Lu (Wayne State University) Multiparameter Hardy spaces
July 26-29, 2011 at the Fields Institute 10

/ 25



Suppose that ψ(1) and ψ(2) are functions satisfying the above

conditions. Let ψj ,k(x) = ψ
(1)
j ∗ ψ

(2)
k (x). Define a new

Littlewood-Paley-Stein square function by

gcom(f )(x) =
{

∑
j ,k∈Z

|ψj ,k ∗ f (x)|2
} 1

2
.

We remark that a significant feature is that the multiparameter
structure is involved in the above Littlewood-Paley-Stein square
function.

As in the classical case, it is not difficult to check that for 1 < p < ∞,

‖gcom(f )‖Lp ≈ ‖f ‖Lp .

The estimates above suggest us to define the Hp norm of f in terms
of the Lp norm of gcom(f ) when 0 < p ≤ 1. However, this continuous
version of the Littlewood-Paley-Stein square function gcom(f ) is
convenient to deal with the case for 1 < p < ∞ but not for the case
when 0 < p ≤ 1. The crucial idea is to replace the continuous version
of gcom(f ) by the discrete version.
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To define the discrete version of gcom(f ), the key tool is discrete
Calderón’s identity. To be more precise, we first recall classical
continuous Calderón’s identity on L2(Rm). Let ψ(1) be a function
satisfying the conditions of (1.5) and (1.6). By taking the Fourier
transform, we have the following classical continuous Calderón’s
identity:

f (x) = ∑
j∈

ψ
(1)
j ∗ ψ

(1)
j ∗ f (x),

where the series converges in L2(Rm) and in
S∞(Rm) := {f ∈ S(Rm) :

∫
Rm f (x)xαdx = 0 for any|α| ≥ 0}.
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Note that the Fourier transforms of both ψ
(1)
j and ψ

(1)
j ∗ f are

compactly supported. Using a similar idea as in the Shannon

sampling theorem, one can decompose ψ
(1)
j ∗ ψ

(1)
j ∗ f (x) by

∑
`∈Zm

ψ
(1)
j (x − 2−j`)(ψ

(1)
j ∗ f )(2

−j`).

Then classical discrete Calderón’s identity is given by

f (x) = ∑
j∈

∑
`∈Zm

ψ
(1)
j (x − 2−j`)(ψ

(1)
j ∗ f )(2

−j`), (1.10)

where the series converges in L2(Rm) and S∞(Rm).

Now by considering ψj ,k = ψ
(1)
j ∗ ψ

(2)
k and taking the Fourier

transform, we obtain the following continuous Calderón’s identity:

f (x) = ∑
j ,k∈Z

ψj ,k ∗ ψj ,k ∗ f (x),

where the series converges in L2(Rm) and in S∞(Rm). Furthermore,
we will prove the following discrete Calderón’s identity.
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Theorem 1.3: Suppose that ψ(1) and ψ(2) are functions satisfying
conditions in (1.5) - (1.6) and (1.7) - (1.8), respectively. Let

ψj ,k(x) = ψ
(1)
j ∗ ψ

(2)
k (x). Then

f (x ′, xm) = ∑
j ,k∈Z

∑
(`′,`m)∈Zm−1×Z

2−(m−1)(j∧k) 2−(j∧2k)

(ψj ,k ∗ f )(2−(j∧k)`′, 2−(j∧2k)`m)×ψj ,k(x
′− 2−(j∧k)`′, xm− 2−(j∧2k)`m),

where the series converges in L2(Rm),S∞(Rm) and S ′/P(Rm).
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This discrete Calderón’s identity leads to the following discrete
Littlewood-Paley-Stein square function.

Definition 1.4: For f ∈ S ′/P(Rm), Gd
ψ (f ), the discrete

Littlewood-Paley-Stein square function of f , is defined by

Gd
ψ (f )(x

′, xm) ={
∑

j ,k∈Z

∑
(`′,`m)∈Zm−1×Z

|(ψj ,k ∗ f )(2−(j∧k)`′, 2−(j∧2k)`m)|2χI (x
′)χJ(xm)

} 1
2
,

where I are dyadic cubes in Rm−1 and J are dyadic intervals in R

with the side length `(I ) = 2−(j∧k) and `(J) = 2−(j∧2k), and the left
lower corners of I and the left end points of J are 2−(j∧k)`′ and
2−(j∧2k)`m, respectively.
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Now we can formally define the Hardy spaces associated with two
different homogeneities by the following
Definition 1.5: Let 0 < p ≤ 1.
Hp
com(Rm) = {f ∈ S ′/P(Rm) : Gd

ψ (f ) ∈ Lp(Rm)}. If f ∈ Hp
com(Rm)

the norm of f is defined by ‖f ‖Hp
com(Rm) = ‖Gd

ψ (f )‖Lp(Rm).

To see that these Hardy spaces are well defined, we need to show that
Hp
com(Rm) is independent of the choice of the functions ψ(1) and

ψ(2). This will directly follow from the following
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Theorem 1.6: If ϕj ,k satisfies the same conditions as ψj ,k , then for
0 < p ≤ 1 and f ∈ S ′/P(Rm),

‖Gd
ψ (f )‖Lp(Rm) ≈ ‖Gd

ϕ (f )‖Lp(Rm).

We now state the main results of this paper.
Theorem 1.7: Let T1 and T2 be Calderón-Zygmund singular integral
operators with the isotropic and non-isotropic homogeneity,
respectively. Then for 0 < p ≤ 1, the composition operator
T = T1 ◦ T2 is bounded on Hp

com(Rm).
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Theorem 1.8: Let 0 < p ≤ 1. If f ∈ L2(Rm) ∩Hp
com(Rm), then there

is a constant C = C (p) such that

‖f ‖Lp(Rm) ≤ C‖f ‖Hp
com(Rm),

where the constant C is independent of the L2 norm of f .

We remark that the proof of the above theorem does not use atomic
decomposition and hence Journé’s covering lemma is not required. As
a consequence, we obtain

Theorem 1.9: Let 0 < p ≤ 1. Suppose that T is a composition of T1

and T2 as given in Theorem 1.7. Then T extends to a bounded
operator from Hp

com(Rm) to Lp(Rm).
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Theorem 1.10: (Calderón-Zygmund decomposition for Hp
com) Let

0 < p2 ≤ 1, p2 < p < p1 < ∞ and let α > 0 be given and f ∈ Hp
com.

Then we may write f = g + b where g ∈ Hp1
com and b ∈ Hp2

com such
that ‖g‖p1

H
p1
com
≤ Cαp1−p‖f ‖p

Hp
com

and ‖b‖p2
H

p2
com
≤ Cαp2−p‖f ‖p

Hp
com

,

where C is an absolute constant.

Theorem 1.11: (Interpolation theorem on Hp
com) Let

0 < p2 < p1 < ∞ and T be a linear operator which is bounded from
Hp2
com to Lp2 and bounded from Hp1

com to Lp1 , then T is bounded from
Hp
com to Lp for all p2 < p < p1. Similarly, if T is bounded on Hp2

com

and Hp1
com, then T is bounded on Hp

com for all p2 < p < p1.
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Proof of Theorem 1.3:

Using ideas from Frazier-Jawerth-Weiss in one parameter case.
Taking the Fourier transform, we obtain the following continuous
Calderón’s identity:

f (x) = ∑
j ,k∈Z

ψj ,k ∗ ψj ,k ∗ f (x), (2.1)

where the convergence of series in L2(Rm), S∞(Rm) and S ′/P(Rm)
follows from the results in the classical case.

To get a discrete version of Calderon’s identity, we need to
decompose ψj ,k ∗ ψj ,k ∗ f in (2.1). Set g = ψj ,k ∗ f and h = ψj ,k .
The Fourier transforms of g and h are given by

ĝ(ξ ′, ξm) = ψ̂(1)(2−jξ ′, 2−jξm)ψ̂(2)(2−kξ ′, 2−2kξm)f̂ (ξ ′, ξm) and

ĥ(ξ ′, ξm) = ψ̂(1)(2−jξ ′, 2−jξm)ψ̂(2)(2−kξ ′, 2−2kξm).
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Proof of Theorem 1.3:

Using ideas from Frazier-Jawerth-Weiss in one parameter case.
Taking the Fourier transform, we obtain the following continuous
Calderón’s identity:

f (x) = ∑
j ,k∈Z

ψj ,k ∗ ψj ,k ∗ f (x), (2.1)

where the convergence of series in L2(Rm), S∞(Rm) and S ′/P(Rm)
follows from the results in the classical case.

To get a discrete version of Calderon’s identity, we need to
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Note that the Fourier transforms of g and h are both compactly
supported. More precisely, supp ĝ , supp ĥ is

⊆ {(ξ ′, ξm) ∈ Rm−1 ×R : |ξ ′| ≤ 2j∧kπ, |ξm| ≤ 2j∧2kπ}.

Thus, we first expand ĝ in a Fourier series on the rectangle
Rj ,k = {ξ ′ ∈ Rm−1, ξm ∈ R : |ξ ′| ≤ 2j∧kπ, |ξm| ≤ 2j∧2kπ}:

ĝ(ξ ′, ξm) = ∑
(`′,`m)∈Zm−1×Z

2−(m−1)(j∧k) 2−(j∧2k)(2π)−m

×
∫
Rj ,k

ĝ(η′, ηm)e
i(2−(j∧k)`′·η′+2−(j∧2k)`mηm)dη′dηm

×e−i(2−(j∧k)`′·ξ ′+2−(j∧2k)`mξm)

and then replace Rj ,k by Rm since ĝ is supported in Rj ,k .
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ĝ(η′, ηm)e
i(2−(j∧k)`′·η′+2−(j∧2k)`mηm)dη′dηm

×e−i(2−(j∧k)`′·ξ ′+2−(j∧2k)`mξm)

and then replace Rj ,k by Rm since ĝ is supported in Rj ,k .
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Finally, we obtain

ĝ(ξ ′, ξm) = ∑
(`′,`m)∈Zm−1×Z

2−(m−1)(j∧k) 2−(j∧2k)

×g(2−(j∧k)`′, 2−(j∧2k)`m) e
−i(2−(j∧k)`′·ξ ′+2−(j∧2k)`mξm).

Multiplying ĥ(ξ ′, ξm) from both sides yields

ĝ(ξ ′, ξm)ĥ(ξ
′, ξm)

= ∑
(`′,`m)∈Zm−1×Z

2−(m−1)(j∧k) 2−(j∧2k) g(2−(j∧k)`′, 2−(j∧2k)`m)

×ĥ(ξ ′, ξm) e
−i(2−(j∧k)`′·ξ ′+2−(j∧2k)`mξm).
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Note that ĥ(ξ ′, ξm) e−i(2
−(j∧k)`′·ξ ′+2−(j∧2k)`mξm) =

ĥ(−̇2−(j∧k)`′, −̇2−(j∧2k)`m))(ξ ′, ξm). Therefore, applying the identity
g ∗ h = (ĝ ĥ)∨ implies that

(g ∗ h)(x ′, xm)

= ∑
(`′,`m)∈Zm−1×Z

2−(m−1)(j∧k) 2−(j∧2k)g(2−(j∧k)`′, 2−(j∧2k)`m)

×h(x ′ − 2−(j∧k)`′, xm − 2−(j∧2k)`m). (2.2)

Substituting g by ψj ,k ∗ f and h by ψj ,k into Calderón’s identity in
(2.1) gives the discrete Calderón’s identity in (1.12) and the
convergence of the series in the L2(Rm).

Guozhen Lu (Wayne State University) Multiparameter Hardy spaces
July 26-29, 2011 at the Fields Institute 23

/ 25
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Lemma 3.1 (Almost orthogonality estimates)
Suppose that ψj ,k and ϕj ′,k ′ satisfy the same conditions in
(1.5)-(1.8). Then for any given integers L and M, there exists a
constant C = C (L,M) > 0 such that

|ψj ,k ∗ ϕj ′,k ′(x
′, xm)|

≤ C2−|j−j
′|L2−|k−k

′|L 2(j∧j
′∧k∧k ′)(m−1)

(1 + 2j∧j ′∧k∧k ′ |x ′|)(M+m−1)
2j∧j

′∧2(k∧k ′)

(1 + 2j∧j ′∧2(k∧k ′)|xm|)(M+1)
.
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Now we prove the following estimate of the discrete version of the
maximal function.

Lemma 3.2: Let I , I ′ be dyadic cubes in Rm−1 and J, J ′ be dyadic
intervals in R with the side lengths `(I ) = 2−(j∧k), `(I ′) = 2−(j

′∧k ′)

and `(J) = 2−(j∧2k), `(J ′) = 2−(j
′∧2k ′), and the left lower corners of

I , I ′ and the left end points of J, J ′ are
2−(j∧k)`′, 2−(j

′∧k ′)`′′, 2−(j∧2k)`m and 2−(j
′∧2k ′)`′m, respectively. Then

for any u′, v ′ ∈ I , um, vm ∈ J, and any m−1
M+m−1 < δ ≤ 1,

∑
(`′′,`′m)∈Zm−1×Z

2(m−1)(j∧j
′∧k∧k ′) 2j∧j

′∧2k∧2k ′ 2−(m−1)(j
′∧k ′) 2−(j

′∧2k ′)

(1 + 2j∧j ′∧k∧k ′ |u′ − 2−(j ′∧k ′)`′′|)(M+m−1)

×
|(ϕj ′,k ′ ∗ f )(2−(j

′∧k ′)`′′, 2−(j
′∧2k ′)`′m)|

(1 + 2j∧j ′∧2k∧2k ′ |um − 2−(j ′∧2k ′)`′m|)(M+1)

≤ C1

{
Ms

[(
∑

(`′′,`′m)∈Zm−1×Z

|(ϕj ′,k ′ ∗ f )(2−(j
′∧k ′)`′′, 2−(j

′∧2k ′)`′m)|2χI ′χJ ′

)δ/2]}1/δ

(v ′, vm

where C1 = C2(m−1)(
1
δ−1)(j ′∧k ′−j∧k)+ 2(

1
δ−1)(j ′∧2k ′−j∧2k)+ , here

(a− b)+ = max{a− b, 0}, and Ms is the strong maximal function.
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