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Quasilinear elliptic equations

Original motivation

Quasilinear equation

Lu = divA(x , u)∇u + b(x , u,∇u) = f

Monge-Ampère equation

detD2u = k(x , u,Du), x ∈ Ω

where k is smooth and nonnegative in Ω× IR× IRn,
Ω is a convex domain in IRn.
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Quasilinear elliptic equations

Partial Legendre transform

Change of variables 
s = x1

t2 = ux2(x)

...

tn = uxn(x)

Quasilinear system

Lvp ≡
{
∂2

∂s2
+

∂

∂t′
k

(
co

[
∂v

∂t′

])′ ∂
∂t

}
vp = 0, 2 ≤ p ≤ n

where v = (vp)np=2 = (xp(s, t))np=2.
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Quasilinear elliptic equations

Regularity of solutions

Monge − Ampère equation ↔

detD2u = k

u ∈ C 1+α

Quasilinear equation

div

(
1 0
0 kM

)
∇v = 0

v ∈ Cα
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Quasilinear elliptic equations

Ellipticity

Lu = divA(x , u)∇u + b(x , u,∇u)

Ellipticity

0 < λ(x , z)|ξ|2 ≤ ξ′A(x , z)ξ ≤ Λ(x , z)|ξ|2

Subellipticity

||u||Cα ≤ C (||u||L2 , ||Lu||L∞)

Hypoellipticity
Lu ∈ C∞ ⇒ u ∈ C∞
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Quasilinear elliptic equations

Two main difficulties

Non-linearity A(x , u), Ã(x) := A(x , u(x))
Ã(x) is as rough as u(x) is
Degeneracy detA(x0) = 0
Graphs of the functions x6 and exp(−1/x2)
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Quasilinear elliptic equations

Finitely degenerate case

Hörmander’s theorem [Hörmander, 1967]

Fefferman-Phong characterization of subellipticity
[Fefferman, 1981]

Extension to rough vector fields [Sawyer, 2006]
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Subunit metrics of Fefferman and Phong

Subunit balls

Subunit curve
Lipschitz curve γ : [0, r ]→ Ω such that

(γ′(t)ξ)2 ≤ ξ′A(γ(t))ξ, a.e. t ∈ [0, r ], ξ ∈ IRn

Subunit metric

d(x , y) = inf{r > 0 : γ(0) = x , γ(r) = y , γ is subunit in Ω}

Subunit ball

B(x , r) = {y ∈ Ω : d(x , y) < r}

Doubling condition

|B(x , r)| ≤ C
( r
t

)D
|B(y , t)|, B(x , r) ⊃ B(y , t)

Containment condition

E (x , r) ⊆ B(x ,Cr ε)
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Subunit metrics of Fefferman and Phong

Fefferman-Phong characterization of subellipticity

Operator L is subelliptic

||u||Hε ≤ C (||u||L2 + ||Lu||L2)

if and only if
the following containment condition holds

E (x ,R) ⊆ B(x ,CRε)
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Generalization to rough vector fields

Extension of Fefferman-Phong result to rough vector
fields

1 Lu = f ∈ L∞, L has bounded measurable coefficients

2 doubling condition holds

3 containment condition holds

4 B(x , r) ⊆ E (x , cr)

5 Sobolev and Poincaré inequalities hold

6 there is an “accumulating system of cutoff functions”

Then the operator L is subelliptic.
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Generalization to rough vector fields

Subunit balls and non-doubling measures

Infinite degeneracy ⇒ no doubling

Containment condition E (x , α(R)) ⊆ B(x ,R), α(R) > 0
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Generalization to rough vector fields

What do we expect?

Assuming continuity (Rios, Sawyer, Wheeden 2011)

If Lu ∈ C∞ then every continuous weak soulution is smooth

Last step

Show continuity using “subunit metric” approach
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Generalization to rough vector fields

Idea of proof I

Weak solution

−
∫

(∇u)′A∇w =

∫
fw

w ∈W 1,2
0 (Ω), nonnegative

Weak Sobolev inequality 1

|B|

∫
B

|w |2σ
 1

2σ

≤ Cr

 1

|B|

∫
B

||∇w ||2A

 1
2

+C

 1

|B|

∫
B

|w |2
 1

2

for any w ∈W 1,2
0 (B) and some σ > 1

Moser iteration for uβ = (u +m)β, u — positive supersolution
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Generalization to rough vector fields

Idea of proof II

Harnack inequality

ess sup
x∈B

u ≤ C

 1

|B|

∫
B

uγ

 1

|B|

∫
B

u−γ

 ess inf
x∈B

u

log u ∈ BMO ⇒ uγ ∈ A2

“Hölder continuity”

|u(x)− u(y)| ≤ C (||u||L2 , ||f ||L∞)d(x , y)α

Using containment condition

d(x , y) ≤ C |x − y |ε
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Generalization to rough vector fields

Absense of doubling condition

Example: |BR | ∼ e(−1/R2) ⇒ |B2R | = e(3/4R2)|BR |
Moser iteration, volumes of balls “accumulate”

BMO = A2

RBMO space of Tolsa [Tolsa, 2001]

John-Nirengberg inequality [Hytönen, 2010]

|{x ∈ B0 : |f (x)− fB0 | > α}| ≤ Ce
c2α

||f ||RBMOρ |ρ1+εB0|

Poincaré inequality

Sobolev inequality
Typically σ = D/(D − 2) where D is the doubling exponent
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Thank you for your attention!
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