Hardy-Littlewood-Sobolev inequalities on \mathbb{R}^{N} and the Heisenberg group

Xiaolong Han
Joint work with Guozhen Lu and Jiuyi Zhu

July 28, 2011 at Fields Institute

$\S 1$ Hardy-Littlewood-Sobolev inequalities on \mathbb{R}^{N}

- Hardy-Littlewood-Sobolev inequality on \mathbb{R}^{N}. Let $1<r, s<\infty$ and $0<$ $\lambda<N$ such that $\frac{1}{r}+\frac{1}{s}+\frac{\lambda}{N}=2$, then

$$
\begin{equation*}
\left|\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{\overline{f(x)} g(y)}{|x-y|^{\lambda}} d x d y\right| \leq C_{r, \lambda, N}\|f\|_{r}\|g\|_{s} \tag{1}
\end{equation*}
$$

- On \mathbb{R}^{1} : Hardy-Littlewood (1928, 30, 32); on \mathbb{R}^{N} : Sobolev (1938).
- Sharp version (with best constant and formulae for maximizers) when $r=$ $s=2 N /(2 N-\lambda)$: Lieb (1983), Carlen-Loss (1990), Frank-Lieb (2010).
Special cases $(\lambda=N-2)$: Rosen (1971), Aubin (1976), Talenti (1976), Carlen-Carrillo-Loss (2010), etc.
- Existence of maximizers (optimizers or extremals) for all r, s : Lieb (1983), Lions (1985), etc.
- Uniqueness of maximizers: Y. Li, Chen-C. Li-Ou (2004, 2005, 06).
- Open: Sharp versions when $r \neq s$.

Theorem 1 (Carlen-Loss (1990, 1992), Lieb-Loss (1997)). The maximizers for sharp version of (1) when $r=s=2 N /(2 N-\lambda)$ assume the form after translation and dilation

$$
\frac{1}{\left(1+|x|^{2}\right)^{N / r}}
$$

Outline of proof of Theorem 1.

1. Define stereographic projection $\mathcal{S}: x \mapsto s$ from $\mathbb{R}^{N} \cup\{\infty\} \rightarrow \mathbb{S}^{N} \subseteq \mathbb{R}^{N+1}$

$$
\begin{gathered}
\mathcal{S}(x)=\left(\frac{2 x_{j}}{1+|x|^{2}}, \frac{1-|x|^{2}}{1+|x|^{2}}\right) \text { and } \mathcal{S}^{-1}(s)=\left(\frac{s_{j}}{1+s_{n+1}}\right), j=1,2, \ldots, n \\
\mathcal{J}_{\mathcal{S}}(x)=\left(\frac{2}{1+|x|^{2}}\right)^{N}=\left(\frac{1}{1+s_{n+1}}\right)^{N}=\mathcal{J}_{\mathcal{S}^{-1}}(s) \\
|s-t|^{2}=\frac{2}{1+|x|^{2}}|x-y|^{2} \frac{2}{1+|y|^{2}}
\end{gathered}
$$

2.

$$
\begin{gathered}
F(s)=\left|\mathcal{J}_{\mathcal{S}^{-1}(s)}\right|^{1 / r} f\left(\mathcal{S}^{-1}(s)\right) \text { and } G(t)=\left|\mathcal{J}_{\mathcal{S}^{-1}(t)}\right|^{1 / s} f\left(\mathcal{S}^{-1}(t)\right) \\
\|F\|_{r}=\|f\|_{r} \text { and }\|G\|_{s}=\|g\|_{s}
\end{gathered}
$$

3. Only if $r=s=2 N /(2 N-\lambda)$, then

$$
\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{\overline{f(x)} g(y)}{|x-y|^{\lambda}} d x d y=\iint_{\mathbb{S}^{N} \times \mathbb{S}^{N}} \frac{\overline{F(s)} G(t)}{|s-t|^{\lambda}} d s d t
$$

4. One can assume $g=\bar{f}$ because the form is positive definite.
5. Maximizers for sharp version of (1) are radially symmetric on \mathbb{R}^{N} (by symmetrization or moving plane/sphere methods), thus f is invariant under rotations $\mathcal{R} \in O\left(\mathbb{R}^{N}\right)$. As a result, F is invariant under rotations $\mathcal{R} \in O\left(\mathbb{R}^{N}\right)$ that keep the "north pole" n, that is, constant on ever level.
6.

$$
F \xrightarrow{\mathcal{R} \in O(N+1)} \widetilde{F} \xrightarrow{\mathcal{S}^{-1}} \widetilde{f} \xrightarrow{\mathcal{S}} \widetilde{F} \xrightarrow{\mathcal{R}^{-1}} F .
$$

\tilde{f} is also a maximizer thus radially symmetric. Then $F(n)=F(s)$ for s on any level, and F is constant on \mathbb{S}^{N}.
7.

$$
f(x)=\left|\mathcal{J}_{\mathcal{S}^{-1}(s)}\right|^{-1 / r} F\left(\mathcal{S}^{-1}(s)\right)=c\left(1+|x|^{2}\right)^{-N / r}
$$

Remark.

- Too beautiful to be generalized.
- May be used to get the formulae for maximizers under special cases in other inequalities. E.g. Radon-like transform inequalities, see Christ (2010, 11).
- Weighted Hardy-Littlewood-Sobolev inequality on \mathbb{R}^{N} :

$$
\left|\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{\overline{f(x)} g(y)}{|x|^{\alpha}|x-y|^{\lambda}|y|^{\beta}} d x d y\right| \leq C_{\alpha, \beta, r, \lambda, N}\|f\|_{r}\|g\|_{s}
$$

where $1<r, s<\infty, 0<\lambda<N$ and $\alpha+\beta \geq 0$ such that $\lambda+\alpha+\beta \leq N$, $\alpha<N / r^{\prime}, \beta<N / s^{\prime}$ and $\frac{1}{r}+\frac{1}{s}+\frac{\lambda+\alpha+\beta}{N}=2$.

- On \mathbb{R}^{N} : Stein-Weiss (1958).
- Existence of maximizers when $\alpha, \beta \geq 0$: Lieb (1983).
- Uniqueness of maximizers: Chen-C. Li (2007).
- Singularity analysis and asymptotic behavior of maximizers: Jin-C. Li (2006), C. Li-Lim (2007), etc.
- Special cases: $r=s$ and $\alpha=\beta=\frac{N}{r+1}-\frac{N-2}{N}$, maximizers assume

$$
c\left[\frac{t}{t^{2}+|z|^{\frac{(N-2)(r-1)}{2}}}\right]^{\frac{2}{r-1}}
$$

for some constants c and t : Chen-C. Li (2007).

- Open: Existence of maximizers when $\alpha>0$ and $\beta<0$ (or vise versa), formulae of maximizers and all others.

$\S 2$ Hardy-Littlewood-Sobolev inequalities on \mathbb{H}^{n}

- Hardy-Littlewood-Sobolev inequality on $\mathbb{H}^{n}=\mathbb{C}^{n} \times \mathbb{R}$:

$$
\begin{equation*}
\left|\iint_{\mathbb{H}^{n} \times \mathbb{H}^{n}} \frac{\overline{f(u)} g(v)}{\left|u^{-1} v\right|^{\lambda}} d u d v\right| \leq C_{r, \lambda, n}\|f\|_{r}\|g\|_{s} \tag{2}
\end{equation*}
$$

- On \mathbb{H}^{n} : Folland-Stein $(1973,74)$.
- Sharp version when $\lambda=Q-2$ and $r=s=2 Q /(2 Q-\lambda)=2 Q /(Q+2)$: Jerison-Lee (1988).
- Sharp version for all λ and when $r=s=2 Q /(2 Q-\lambda)$: Frank-Lieb (2010).

The maximizers assume the form after dilation and translation

$$
\frac{1}{\left[\left(1+|z|^{2}\right)^{2}+t^{2}\right]^{\frac{Q}{2 r}}}
$$

- An upper bound for best constants when $r \neq s$: H. (2011).

$$
\frac{Q\left|B_{1}\right|^{\frac{\lambda}{Q}}}{r s(Q-\lambda)}\left[\left(\frac{\lambda / Q}{1-1 / r}\right)^{\frac{\lambda}{Q}}+\left(\frac{\lambda / Q}{1-1 / s}\right)^{\frac{\lambda}{Q}}\right]
$$

in which B_{1} is the unit Heisenberg ball, and

$$
\left|B_{1}\right|=\frac{2 \pi^{\frac{Q-2}{2}} \Gamma(1 / 2) \Gamma((Q+2) / 4)}{(Q-2) \Gamma((Q-2) / 2) \Gamma((Q+4) / 4)}
$$

- Open: All others.

Strategy of proving existence of maximizers.

1. Define

$$
I_{\lambda}(f)(u)=\int_{\mathbb{H}^{n}} \frac{f(v)}{\left|u^{-1} v\right|} d v,
$$

and there exists a maximizing sequence $\left\{f_{j}\right\}$ with $\left\|f_{j}\right\|_{r}=1$ for $I_{\lambda}: L^{r} \rightarrow$ $L^{s^{\prime}}$.
2. Loss of compactness in $\left\{f_{j}\right\}$ is caused by dilation and translation invariance of I_{λ}.
3.

Symmetrization $\xrightarrow{\text { excluding }}$ Existence $\stackrel{\text { including }}{\longleftrightarrow}$ Concentration compactness.
4.

$$
\left\{\frac{1}{\delta_{j}^{Q / r}} f_{j}\left(\frac{u_{j}^{-1} u}{\delta_{j}}\right)\right\}
$$

is compact for some u_{j} and δ_{j}.

- Weighted HLS inequality on \mathbb{H}^{n} :

Theorem 2 ($|u|$ weighted HLS inequality). For $1<r, s<\infty, 0<\lambda<Q=$ $2 n+2$ and $\alpha+\beta \geq 0$ such that $\lambda+\alpha+\beta \leq Q, \alpha<Q / r^{\prime}, \beta<Q / s^{\prime}$ and $\frac{1}{r}+\frac{1}{s}+\frac{\lambda+\alpha+\beta}{Q}=2$,

$$
\begin{equation*}
\left|\iint_{\mathbb{H}^{n} \times \mathbb{H}^{n}} \frac{\overline{f(u)} g(v)}{|u|^{\alpha}\left|u^{-1} v\right|^{\lambda}|v|^{\beta}} d u d v\right| \leq C_{\alpha, \beta, r, \lambda, n}\|f\|_{r}\|g\|_{s} . \tag{3}
\end{equation*}
$$

- On \mathbb{H}^{n} : H.-Lu-Zhu (2011).
- Singularity analysis and asymptotic behavior of maximizers: H.-Lu-Zhu (2011)
- Open: All others.

Theorem 3 ($|z|$ weighted HLS inequality). For $1<r, s<\infty, 0<\lambda<Q=$ $2 n+2$ and $0 \leq \alpha+\beta \leq n \lambda$ such that $\lambda+\alpha+\beta \leq Q, \alpha<2 n / r^{\prime}, \beta<2 n / s^{\prime}$ and $\frac{1}{r}+\frac{1}{s}+\frac{\lambda+\alpha+\beta}{Q}=2$,

$$
\begin{equation*}
\left|\iint_{\mathbb{H}^{n} \times \mathbb{H}^{n}} \frac{\overline{f(u)} g(v)}{|z|^{\alpha}\left|u^{-1} v\right|^{\lambda}\left|z^{\prime}\right|^{\beta}} d u d v\right| \leq C_{\alpha, \beta, r, \lambda, n}\|f\|_{r}\|g\|_{s} . \tag{4}
\end{equation*}
$$

Here, $u=(z, t)$ and $v=\left(z^{\prime}, t^{\prime}\right)$.

- On $\mathbb{H}^{n}:$ H.-Lu-Zhu (2011).
- Nonexistence of maximizers when $\alpha=\beta=(Q-\lambda) / 2$ and $r=s=2$: Beckner (1997).
- Singularity analysis and asymptotic behavior of maximizers: H.-Lu-Zhu (2011)
- Open: All others.

Thank you!

