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1. Introduction and main results

Standard Calderón-Zygmund theory: Let T be a bounded operator on L2(X )
where X is a doubling space. Assume that the kernel of T satisfies the
Hörmander condition, then T is of weak type (1, 1), bounded on Lp(X ),
1 < p <∞, bounded from the Hardy space H1(X ) into L1(X ) and bounded
from L∞(X ) into BMO(X ). One can also obtain boundedness of the
commutator of T and a BMO function on Lp(X ).

In the last ten years or so, there are lots of research devoted to the study of
boundedness of T when the kernel of T is rough and does not satisfy the
Hörmander condition. A successful approach is to define certain Hardy spaces
associated to T itself, then show that T maps this Hardy space into L1(X ).
Then one can interpolate between L2 and this Hardy space to obtain
boundedness of T on Lp or Hp for 1 < p < 2. For p > 2, one can study
boundedness of T from L∞(X ) into certain BMO space associated to T .

In this talk, we present certain results along this line for T and its commutator
with a BMO function.



Let (X , d , µ) be a metric measure space endowed with a distance d and a
doubling measure µ, i.e.

V (x , 2r) ≤ CV (x , r) <∞, (1)

where B(x , r) = {y ∈ X : d(x , y) < r} and V (x , r) = µ(B(x , r)).
Note that the doubling property implies the following strong homogeneity
property,

V (x , λr) ≤ cλnV (x , r) (2)

for some c, n > 0 uniformly for all λ ≥ 1 and x ∈ X . The smallest value of the
parameter n is a measure of the dimension of the space. There also exist c and
N, 0 ≤ N ≤ n, so that

V (y , r) ≤ c

„
1 +

d(x , y)

r

«N

V (x , r) (3)

uniformly for all x , y ∈ X and r > 0.
We will write B for B(xB , rB) and for λ > 0, λB means the λ-dilated ball,
which is the ball with the same center as B and with radius rλB = λrB . For
each ball B ⊂ X we set

S0(B) = B and Sj(B) = 2jB\2j−1B for j ∈ N.



Assume that there exists an operator L defined on L2(X ). For our results, we
will need some of the following assumptions:

(H1) L is a non-negative self-adjoint operator on L2(X );

(H2) The operator L generates an analytic semigroup {e−tL}t>0 which satisfies
the Davies-Gaffney condition. That is, there exist constants C , c > 0 such that
for any open subsets U1, U2 ⊂ X ,

|〈e−tLf1, f2〉| ≤ C exp
“
− dist(U1,U2)2

c t

”
‖f1‖L2(X )‖f2‖L2(X ), ∀ t > 0, (4)

for every fi ∈ L2(X ) with supp fi ⊂ Ui , i = 1, 2, where
dist(U1,U2) := infx∈U1,y∈U2 d(x , y).

(H3) The kernel pt(x , y) of e−tL satisfies the Gaussian upper bound, i.e. there
exist constants C , c > 0 such that for almost every x , y ∈ X ,

|pt(x , y)| ≤ C

V (x ,
√

t)
exp

„
−d2(x , y)

ct

«
,∀t > 0. (5)



Remark
The Gaussian bound (H3) implies the Davies-Gaffney condition (H2).

We list a number of examples:

(i) The Laplace operator ∆ on the Euclidean space Rn satisfies (H1) and (H3).
So do the second order non-negative self-adjoint divergence form operators
with real bounded measurable coefficients on Rn. Second order divergence form
operators with complex bounded measurable coefficients on Rn would satisfy
(H2). They satisfy (H3) for low dimensions n but might not satisfy (H3) for
higher dimensions n.

(ii) Schrödinger operators or magnetic Schrödinger operators with non-negative
potentials satisfy (H1) and (H3).

(iii) Laplace-Beltrami operators on all complete Riemannian manifolds satisfy
(H1) and (H2) but do not satisfy (H3) in general.

(iv) Laplace type operators acting on vector bundles satisfy (H1) and (H2).



Our aim is to study boundedness of certain singular integral operators with
non-smooth kernels and boundedness of their commutators via estimates on
related function spaces.
Denote by Hp

L (X ), 0 < p ≤ 1, the Hardy spaces associated to the operator L.
Assume that T is a bounded operator on L2(X ). There are a number of known
sufficient conditions on T or its associated kernel k(x , y) so that
L2-boundedness of T can be extended to other spaces such as Lebesgue space
Lp, p 6= 2, Hardy spaces, and BMO spaces. Another natural question is to
study boundedness of the commutator of a BMO function b and T which is
given by

[b,T ]f := bTf − Tbf

for all functions f with compact supports.
We aim to establish a sufficient condition on an L2 bounded operator T so that
it implies the following:
(i) T is bounded from the Hardy spaces Hp

L (X ) to Lp(X ), 0 < p ≤ 1; and
(ii) the commutator [b,T ] is bounded from H1

L(X ) to L1,∞(X ) under the extra
assumption that T is of weak type (1, 1).



The main result is as follows.

Theorem
Let L be an operator which satisfies (H1) and (H2). Let 0 < p ≤ 1. Let a be a
(p, 2,m)-atom in the Hardy space Hp

L associate to the operator L. Assume that
T is a bounded operator on L2(X ) so that Ta satisfies the estimate Z

Sj (B)

|Ta|2dx

! 1
2

≤ C2−2jmV (B)
1
2
− 1

p (6)

for any (p, 2,m)-atom a supported in the ball B.
Then, we have:

(i) T is bounded from Hp
L (X ) to Lp(X ); and

(ii) in addition, if T is of weak type (1, 1) then the commutator [T , b], where
b is a BMO function, maps continuously from H1

L to L1,∞.

Remark
(a) There is no explicit regularity condition on the kernel of T , so in general T
is not a standard Calderón-Zygmund singular integral operator.
(b) As applications, we will obtain boundedness of various singular integral
operators and their commutators which do not belong to the class of
Calderón-Zygmund operators.

(c) By interpolation T is bounded from Hp
L (X ) to Lp(X ) for 0 < p ≤ 2.



2. Hardy spaces associated to operators

The theory of Hardy spaces associated to generators of semigroups was
developed in the last fifteen years by P. Auscher, X. Duong, A. McIntosh, L.
Yan, S. Hofmann, S. Mayboroda and others. Hardy spaces associated to
non-negative self-adjoint operators satisfying Davies-Gaffney estimates was
developed recently by S. Hofmann, G. Lu, M. Mitrea, D. Mitrea and L. Yan for
p = 1, and by J. Li and X. Duong for 0 < p < 1.

Let L be an operator which satisfies (H1) and (H2). Consider the area
integrals associated to L

Sh,K f (x) =
“Z ∞

0

Z
d(x,y)<t

|(t2L)K e−t2Lf (y)|2 dµ(y)

V (x , t)

dt

t

”1/2

, x ∈ X (7)

where K is a positive integer and f ∈ L2(X ). We shall write Sh in place of Sh,1.
For each integer K ≥ 1 and 1 ≤ p <∞, we now define

DK ,p =
n

f ∈ L2(X ) : Sh,K f ∈ Lp(X )
o
, 1 ≤ p <∞.



Definition
Let L be a non-negative self-adjoint operator on L2(X ) satisfying the
Davies-Gaffney condition
(i) For each 1 ≤ p ≤ 2, the Hardy space Hp

L,Sh
(X ) associated to L is the

completion of the space D1,p in the norm

‖f ‖Hp
L,Sh

(X ) = ‖Shf ‖Lp(X ).

(ii) For each 2 < p <∞, the Hardy space Hp
L (X ) associated to L is the

completion of the space DK0,p in the norm

‖f ‖Hp
L,Sh

(X ) = ‖Sh,K0 f ‖Lp(X ), K0 =
hn

2

i
+ 1.

It can be verified that H1
L(X ) ⊆ L1(X ), H2

L,Sh
(X ) = L2(X ) and the dual space

of Hp
L,Sh

(X ) is Hp′

L,Sh
(X ) where 1/p + 1/p′ = 1

Hence in general, we have Hp
L (X ) ⊂ Lp(X ) for p ∈ [1, 2) and by duality

Lp(X ) ⊂ Hp
L (X ) for p ∈ (2,∞).

However, if L satisfies (H1) and (H3), then it was known that Hp
L (X ) and

Lp(X ) coincide for all p ∈ (1,∞).



Let us describe the notion of a (p, 2,M)-atom, 0 < p ≤ 1, associated to
operators on spaces (X , d , µ). In what follows, assume that

M ∈ N and M >
n(2− p)

4p
, (8)

where the parameter n, thought of as a measure of the dimension of the space
X , is the smallest value for the doubling property holds. Let us denote by
D(T ) the domain of an operator T .

Definition
A function a(x) ∈ L2(X ) is called a (p, 2,M)-atom associated to an operator L
if there exist a function b ∈ D(LM) and a ball B of X such that

(i) a = LMb;

(ii) suppLkb ⊂ B, k = 0, 1, . . . ,M;

(iii) ||(r 2
BL)kb||L2(X ) ≤ r 2M

B V (B)
1
2
− 1

p , k = 0, 1, . . . ,M.

In the case µ(X ) <∞ the constant function having value [µ(X )]−
1
p is also

considered to be an atom.



Definition
Given 0 < p ≤ 1 and M > n(2−p)

4p
, the atomic Hardy space Hp

L,at,M(X ) is defined

as follows. We say that f =
P
λjaj is an atomic (p, 2,M)-representation if

{λj}∞j=0 ∈ lp, each aj is a (p, 2,M)-atom, and the sum converges in L2(X ). Set

Hp
L,at,M(X ) = {f : f has an atomic (p, 2,M)-representation},

with the norm given by

||f ||Hp
L,at,M

(X ) = inf{(
X
|λj |p)1/2 : f =

X
λjaj is an atomic (p, 2,M)-representation}

The space Hp
L,at,M(X ) is then defined as the completion of Hp

L,at,M(X ) with
respect to the quasi-metric d defined by d(h, g) = ||h − g ||Hp

L,at,M
(X ) for all

h, g ∈ Hp
L,at,M(X ).

In this case the mapping h→ ||h||Hp
L,at,M

(X ), 0 < p < 1 is not a norm and

d(h, g)) = ||h − g ||Hp
L,at,M

(X ) is a quasi-metric. For p = 1, the mapping

h→ ||h||H1
L,at,M

(X ) is a norm. A straightforward argument shows that Hp
L,at,M(X )

is complete. In particular, H1
L,at,M(X ) is a Banach space and H1

L,at,M(X ) ↪→ L1.
In general, for p ∈ (0, 1], by Hölder inequality we obtain Hp

L (X ) ⊂ Lp(X ).



A basic result concerning these spaces is the following proposition.

Proposition

If an operator L satisfies conditions (H1) and (H2), then for every 0 < p ≤ 1

and for all integers M ∈ N with M > n(2−p)
4p

, the spaces Hp
L,at,M(X ) coincide

and their norms are equivalent.

We next describe the notion of a (p, 2,M, ε)-molecule associated to an
operator L.

Definition
Let 0 < p ≤ 1, 0 < ε and M ∈ N. We say that a function α ∈ L2 is called a
(p, 2,M, ε)-molecule associated to L if there exist a function b ∈ D(LM) and a
ball B such that

(i) α = LMb;

(ii) For every k = 0, 1, . . . ,M and j = 0, 1, . . . , there holds

‖(r 2
BL)kb‖L2(Sj (B)) ≤ r 2M

B 2−jεV (2jB)
1
2
− 1

p .

Proposition

Suppose 0 < p ≤ 1 and M > n(2−p)
4p

. If α is a (p, 2,M, ε)-molecule associated

to L, then α ∈ Hp
L (X ). Moreover, ‖α‖Hp

L
(X ) is independent of m.



We introduced the Hardy spaces Hp
L,Sh

(X ) for p ≥ 1. Now consider the case
0 < p < 1. The space Hp

L,Sh
(X ) is defined as the completion of

{f ∈ L2(X ) : ||Shf ||Lp(X ) <∞}

under the norms given by the Lp norm of the square function; i.e.,

||f ||Hp
L,Sh

(X ) = ||Shf ||Lp(X ), 0 < p < 1.

Then the “square function” and “atomic” Hp spaces are equivalent, if the
parameter M > n(2−p)

4p
. In fact, we have the following result.

Proposition

Suppose 0 < p ≤ 1 and M > n(2−p)
4p

. Then we have Hp
L,at,M = Hp

L,Sh
(X ) and

their norms are equivalent.

Consequently, as in the next definition, one may write Hp
L,at in place of Hp

L,at,M

when M > n(2−p)
4p

. Precisely, we have the following definition.

Definition
The Hardy space Hp

L (X ), p ≥ 1, is the space

Hp
L (X ) := Hp

L,Sh
(X ) := Hp

L,at(X ) := Hp
L,at,M(X ), M > n(2− p)/4p.

Note that when L = −∆ on Rn, the space Hp
L coincides with the classical

Hardy space.



3. Boundedness of singular integrals and their commutators

To prove that an operator T is bounded on Hardy space Hp
L which possesses an

atomic decomposition, it is not enough in general to prove that Ta is uniformly
bounded for all atomic functions a. However, if the operator T satisfies extra
condition such as being L2 bounded (or even the weaker condition of weak type
(2, 2)), then the uniform boundedness of Ta does imply the boundedness of T
on Hp

L (X ). More precisely, we have the following result.

Proposition

Suppose that T is a linear (resp. nonnegative sublinear) operator which maps
L2(X ) continuously into L2,∞(X ). The following statements hold:

(i) If there exists a constant C such that

||Ta||L1,∞ ≤ C

for all (1, 2,m)-atoms a ∈ H1
L(X ), then T extends to a bounded linear

(resp. sublinear) operator from H1
L(X ) to L1,∞(X ).

(ii) If there exists, for 0 < p ≤ 1, a constant C such that

||Ta||Lp ≤ C

for all (p, 2,m)-atoms a ∈ Hp
L (X ), then T extends to a bounded linear

(resp. sublinear) operator from Hp
L (X ) to Lp(X ).



The Proposition above is used in the proof of the Main Result.
Proof of Main Theorem (i) It suffices to show that for any (p, 2,m)-atom a,

for m > n(2−p)
4p

, associated to the ball B, we have ||Ta||Lp ≤ C .
Indeed, we have Z

X

(Ta)pdµ(x) =
∞X
j=0

Z
Sj (B)

(Ta)pdµ(x)

=
∞X
j=0

Kj .

By Jensen and Hölder inequalities and (6), one has, for each j ,

Kj ≤ V (Sj(B))1− p
2 ||Ta||p

L2(Sj (B))

≤ CV (2jB)1− p
2 2−2jmpV (B)

p
2
−1

≤ C2j(n− np
2

)−2mp.

This together with m > n(2−p)
4p

giveZ
X

(Ta)pdµ(x) ≤ C
∞X
j=0

2j(n− np
2

)−2mp ≤ C .

The proof of (i) is complete.



(ii) We now show that there exists a constant c > 0 such that

µ{x ∈ M : |[b,T ]a| > λ} ≤ c

λ
||b||BMO

for all (1, 2,m)-atom a, m > n
4

, and all λ > 0.
Suppose that a is a (1, 2,m)-atom associated to the ball B. Setting
bB = 1

V (B)

R
B

bdµ, we have

[b,T ]a(x) = [b(x)− bB ]Ta(x) + T ([bB − b]a)(x).

Therefore,

λµ{x ∈ M : |[b,T ]a| > λ} ≤ λµ{x ∈ M : |[b(x)− bB ]Ta(x)| > λ/2}
+ λµ{x ∈ M : |T ([bB − b]a)(x)| > λ/2} = E1 + E2.

Let us estimate E2 first. Since T is of weak type (1, 1), one has, by Hölder
inequality

E2 ≤ C

Z
M

|[bB − b(x)]a(x)|dµ(x)

≤ C ||(bB − b)||L2(B)||a||L2(B) ≤ C ||b||BMOV (B)1/2V (B)−1/2 = C ||b||BMO .



Now we proceed with the term E1. Obviously,

E1 ≤ C

Z
X

|[b(x)− bB ]Ta(x)|dµ(x)

= C
∞X
j=0

Z
Sj (B)

|[b(x)− bB ]Ta(x)|dµ(x)

≤ C
∞X
j=0

Z
Sj (B)

|[b(x)− b2jB ]Ta(x)|dµ(x) + C
∞X
j=0

Z
Sj (B)

|[bB − b2jB ]Ta(x)|dµ(x).

By Hölder inequality, (6) and the fact that |bB − b2kB | ≤ ck||b||BMO , we have,Z
Sj (B)

|[b(x)− b2jB ]Ta(x)|dµ(x) ≤ C ||[b(x)− b2jB ||L2(2jB)||Ta||L2(Sj (B))

≤ CV (2jB)1/2||b||BMO2−2mjV (B)−1/2

≤ C2j( n
2
−2m)||b||BMO .

(9)



and Z
Sj (B)

|[b2jB − bB ]Ta|dµ(x)

≤ Cj ||b||BMO

Z
Sj (B)

|Ta|dµ(x)

≤ CjV (2jB)1/2||b||BMO2−2mjV (B)−1/2

≤ Cj2j( n
2
−2m)||b||BMO .

(10)

The estimates (9), (10) together with m > n
4

imply E1 ≤ C . The proof of (ii)
is complete.



4. Commutators of BMO functions and Riesz transforms on manifolds

Let X be a complete non-compact connected Riemannian manifold with
doubling property, µ the Riemannian measure, ∇ the Riemannian gradient. It
is well-known that the Laplace-Beltrami operator ∆ satisfies conditions (H1)
and (H2). Denote the Hardy space associated to ∆ by H1

∆(X ).
Let T = ∇∆−1/2, the Riesz transform on X , and take b ∈ BMO(X ) (the space
of functions of bounded mean oscillations on X ). We define the commutator

[b,T ]g = bTg − T (bg),

where g , b are scalar valued and [b,T ]g is valued in the tangent space. In
[AM], it was proved that for any b ∈ BMO(X ), if ∆ has Gaussian heat kernel
bounds, then the commutators [b,T ] is bounded on Lp(X ) with appropriate
weights, for 1 < p < 2.
Our following theorem gives the endpoint estimate for [b,T ] when p = 1.

Theorem
Assume that X satisfies the doubling property (1) and b ∈BMO(X ). Then,
Riesz transform T = ∇∆−1/2 is bounded from Hp

∆ to Lp, for all 0 < p ≤ 1.
Moreover, if the Riesz transform T = ∇∆−1/2 is of weak type (1, 1) then the
commutator [b,T ] maps H1

∆(X ) continuously into L1,∞(X ).

Remark: It is known that if ∆ has Gaussian heat kernel bounds, then
T = ∇∆−1/2 is of weak type (1, 1).



Consider the following versions of the square functions

Gf (x) :=
“Z ∞

0

t|∇e−t
√

∆f (x)|2dt
”1/2

,

Hf (x) :=
“Z ∞

0

|∇e−t∆f (x)|2dt
”1/2

,

gf (x) :=
“Z ∞

0

t|
√

∆e−t
√

∆f (x)|2dt
”1/2

,

and

hf (x) :=
“Z ∞

0

|∆e−t∆f (x)|2dt
”1/2

.

We have

Theorem

(i) G,H, g and h are bounded from Hp
∆(X ) to Lp(X ) for any 0 < p ≤ 1.

(ii) If ∆ has Gaussian heat kernel bounds, then the commutators of a BMO
function b with either G or H or g or h are bounded from H1

∆ to L1,∞.



5. Commutators of BMO functions and Riesz transforms associated with
magnetic Schrödinger operators

Consider magnetic Schrödinger operators as follows. Let the real vector
potential ~a = (a1, · · · , an) satisfy

ak ∈ L2
loc(Rn), ∀k = 1, · · · , n, (11)

and an electric potential V with

0 ≤ V ∈ L1
loc(Rn). (12)

Let Lk = ∂/∂xk − iak . We define the form Q by

Q(f , g) =
nX

k=1

Z
Rn

Lk f Lkg dx +

Z
Rn

Vf g dx

with domain D(Q) = Q×Q here

Q = {f ∈ L2(Rn), Lk f ∈ L2(Rn) for k = 1, · · · , n and
√

V f ∈ L2(Rn)}.

It is well known that this symmetric form is closed and this form coincides with
the minimal closure of the form given by the same expression but defined on
C∞0 (Rn) (the space of C∞ functions with compact supports).



Let A be the self-adjoint operator associated with Q. Its domain is given by

D(A) =
n

f ∈ D(Q),∃g ∈ L2(Rn) such that Q(f , ϕ) =

Z
Rn

g ϕ̄dx , ∀ϕ ∈ D(Q)
o
,

and A is given by the expression

Af =
nX

k=1

L∗k Lk f + Vf . (13)

Formally, we write A = −(∇− i~a) · (∇− i~a) + V . For k = 1, · · · , n, the
operators LkA−1/2 are called the Riesz transforms associated with A. It is easy
to check that the operators LkA−1/2 and V 1/2A−1/2 are bounded on L2(Rn).
Using the Gaussian heat kernel bounds, one can prove that for each
k = 1, · · · , n, the Riesz transforms LkA−1/2 and V 1/2A−1/2 are bounded on
Lp(Rn) for all 1 < p ≤ 2.

Theorem
(i) The Riesz transforms LkA−1/2 and V 1/2A−1/2 are bounded from Hp

A to Lp

for all 0 < p ≤ 1.

(ii) Let b ∈ BMO(Rn). Then the commutators
h
b,V 1/2A−1/2

i
andh

b, LkA−1/2
i

maps H1
A continuously into L1,∞(X ).



6. Application to spectral multipliers
Assume that L is non-negative, self-adjoint and satisfies conditions (H1). Let

F (L)f =

Z ∞
0

F (λ)dEL(λ)f

be the spectral multiplier F (L) defined by using the spectral resolution of L.
Our main result on spectral multipliers is the following.

Proposition

Assume that L satisfies conditions (H1) and (H2). Let F be a bounded

function defined on (0,∞) such that for some real number α > n(2−p)
2p

+ 1
2

and

any non-zero function η ∈ C∞c ( 1
2
, 2) there exists a constant Cη such that

sup
t>0
‖η(·)F (t·)‖Wα,2(R+) ≤ Cη (14)

where ‖F‖W p,α(R) = ‖(I − d2/dx2)α/2F‖Lp . Then the multiplier operator
satisfies the following estimate“Z

Sj (B)

|F (
√

L)a|2dx
” 1

2 ≤ C2−jδV (B)
1
2
− 1

p (15)

for some δ > n(2−p)
4p

, for any (p, 2,m)-atom a supported in B and sufficiently
large m.



Theorem

(i) Assume that L satisfies conditions (H1) and (H2). Let F be a bounded

function defined on (0,∞) such that for some real number α > n(2−p)
2p

+ 1
2

and any non-zero function η ∈ C∞c ( 1
2
, 2), the condition (14) is satisfied.

Then the multiplier operator F (L) is bounded from Hp
L (X ) to Lp(X ) for

0 < p < 1.

(ii) Under the same assumptions as (i), the operators F (L) is bounded from
Hp

L (X ) to Hp
L for all 0 < p ≤ 1.

(iii) Assume that L satisfies (H1) and (H3). Let F be a bounded function
defined on (0,∞) such that for some real number α > n

2
+ 1

2
and any

non-zero function η ∈ C∞c ( 1
2
, 2) there exists a constant Cη such that

sup
t>0
‖η(·)F (t·)‖Wα,∞(R+) ≤ Cη. (16)

Then the commutator of F (L) and a BMO function b is bounded from
H1

L(X ) to L1,∞(X ).
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