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Talk Outline

� Introduction

� Convexity Problem

� Partial Convexity Problem

� Main Results

� Proof for CRP

� Applications
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1. Introduction
� Heat Equation

• Consider the following Cauchy problem for heat equation

ut −
1

2
uxx = 0, (x, t) ∈ R× (0,∞) (1)

u(x, 0) = φ(x), x ∈ R (2)

• Poisson Formula

u(x, t) =
1√
π

∫ ∞

−∞
e−η2

φ(x+
√

2tη)dη (3)

• Convexity is Preserved(Improved): u(x, t) is convex in x if φ(x) is convex.

http://192.9.200.1
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� Linear Equation

• Linear equation

ut − aij(x, t)uxixj
= 0, (x, t) ∈ Rn × (0,∞) (4)

u(x, 0) = φ(x), x ∈ Rn (5)

• Question: Is Convexity Preserved ?

• S.Janson and J.Tysk, Preservation of convexity of solutions to parabolic equa-
tions, JDE, 2004

• They solve this problem completely and get the sufficient and necessary con-
dition

http://192.9.200.1
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� Sufficient and Necessary Condition

• Convexity Inequality:

2az
ijP

z
ij + 2az

ij,z N
z
ij + az

ij,zz M
z
ij ≥ 0 (6)

for all unit vector z and for all M,N,P ∈ Sn such that

(
M z N z

N zT P z
) ≥ 0

where

f z = (f z
ij), f

z
ij = (δik − zizk)fkl(δlj − zlzj)

g,z =
∂g

∂z

• This condition holds true for n = 1 or if

aij = constant

http://192.9.200.1
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• Linear equation of parabolic type

• P.L.Lions, M.Musiela, Convexity of solutions of parabolic equations,
C.R.Acad. Sci. Paris, 2006

• They discuss the convexity preserving for linear equations and nonlinear
equations by use of PDE approach

http://192.9.200.1
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� Stochastic Analysis Approach

• Solution can be expressed by expectation

u(x, t) = E(φ(Xt)|X0 = x) (7)

subject to the SDE

dXt = bdt+
√

2σ(Xt)dWt, X0 = x

where
aij = σikσjk

• Question: Is Convexity Preserved by Expectation?

http://192.9.200.1
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� Brascamp, Lieb, 1976, J. Functional Anal.

• On Extensions of the Brunn-Minkowski and Prcekopa- Leindler Theorems,
Including Inequalities for Log-Concave Functions, and with an Application to
the Diffusion Equation

� C. BorellµMixing PDE approach and stochastic approach.

� Log-concavity for fundamental solutions of diffusion equation.

� Log-concavity for first eigenfunction

� Brunn-Minkowski inequality for first eigenvalue

http://192.9.200.1
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� Related Problems

• Extension to nonlinear equation, such as Bellman equation and Geometric
equation

• Elliptic equation: Existence of convex solution

• Convexity problem in bounded domain?

http://192.9.200.1
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2. Convexity Problem
� Convexity problem for Elliptic PDE

• Consider the following fully nonlinear elliptic partial differential equation

F (∇2u,∇u, u, x) = 0, x ∈ Ω (8)

u =?, x ∈ ∂Ω (9)

where Ω is in Rn or in the manifold, where F = F (r, p, u, x) is a given function
in Sn × Rn × R× Ω. The ellipticity of this equation is assumed.

�Question Existence of convex solution for problem (8)-(9).

http://192.9.200.1
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� Convexity Preserving Problem This is the counterpart of elliptic convexity
problem for solutions of parabolic equations. Consider the following

ut = F (D2u,Du, u, x, t), (x, t) ∈ ΩT = Ω× (0, T ] (10)

u(x, 0) = u0(x), x ∈ Ω (11)

u =?, x ∈ ∂Ω× (0, T ] (12)

� Question Assume that u0(x) is convex, is u(x, t) convex for t > 0?

� Hessian flow equation. Curvature flow equation.

• M.C.Caputo, P.Daskalopoulos and N.Sesum, On the evolution of convex
hyper-surfaces by the Qk flow, arXiv:0904.0492v1

� Some equations arising from mathematical finance.

http://192.9.200.1
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� Main Points for Convexity

� These convexity problems depend on the

• The form of equation, or function F (r, p, u, x).

• The boundary conditions

Some literatures are in manifolds without boundary(B.Guan, P. Guan). If one
considers problem in manifolds with boundary or in domain, the boundary con-
dition is important.

http://192.9.200.1
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� Two classes of equations

• Hessian and Hessian quotient equation

F (∇2u,∇u, u, x) = σk(λ1(∇2u), · · · , λn(∇2u)) = 0, (13)

where σk(λ1, · · · , λn) is the k − th elemental symmetry function. It includes
Monge-Ampere equation, Hessian quotient equation, Curvature equation.

• Bellman equation

F (∇2u,∇u, u, x) = sup
α∈A

{aα
ij(x)Diju+ bαi (x)Diu+ cα(x)u− fα(x)}

and Issacs equation arising from stochastic optimal problem and mathematical
finance

F (∇2u,∇u, u, x) = sup
α∈A

inf
β∈B

{aα,β
ij (x)Diju+ bα,β

i (x)Diu+ cα,β(x)u− fα,β(x)}

http://192.9.200.1
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� Typical boundary conditions

• Infinite boundary(Neumann, Dirichlet) condition(B. Guan, H. Jian)

u = +∞,
∂u

∂n
= −∞, x ∈ ∂Ω (14)

• State constrained condition from stochastic optimal control problems with
stochastic viability. It is related to degenerate equation and viscosity solution.

F (D2u,Du, u, x) = 0, x ∈ Ω;F (D2u,Du, u, x) ≤ 0, x ∈ ∂Ω (15)

Alvarez, Lasry and Lions, Convex viscosity solutions and state constraints, J.
Math. Pures Appl. 76(1997), 265-288

• Cauchy problem with growth condition at infinite

Ω = Rn, Ω = Rn
+

http://192.9.200.1
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� Related convexity problem: Constant Rank Principle(CRP)

• If u is a smooth convex solution of equation (8), is the rank of D2u(x), r(x),
a constant in Ω?

• If u is a smooth convex solution of equation (10), is the rank of D2u(x, t),
r(x, t), a constant in x and monotone in t?

� Constant Rank Principle is a powerful tool in the study of convexity, it is
particularly useful in producing convex solutions of differential equations via
homotopic deformations and by flow.

� The great advantage of the microscopic convexity principle is that it can treat
geometric equations involving tensors on general manifolds.

http://192.9.200.1
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~ Related works

� The CRP was initially studied by L. Caffarelli, A. Friedman and I. Singer,
B. Wong, S.T. Yau, Stephen S.T. Yau in 1985.

� There exist a vast of literatures: CRP and Convexity. Guan,

� Ekstrom, E., and J. Tysk, The American Put Is Log-Concave in the Log-
Price, J. Math. Anal. Appl., 2006

� E.Ekstrom and J.Tysk, Properties of option prices in models with jumps,
Mathematical Finance, 2007

� Y.Giga, S.Goto, H.Ishii, M.H.Sato, Comparison principle and convex-
ity preserving properties for singular degenerate parabolic equations on un-
bounded domains, Indiana Univ. Math. J., 1991, 40:443-470.
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3. Partial Convexity Problem
� Elliptic Partially Convex Solution Existence of convex solution of elliptic
equation in partial variables

F (D2u,Du, u, x) = 0, x ∈ Ω (16)

u =, x ∈ ∂Ω (17)

� Question Let x = (x′, x
′′
). Is there solution u(x) = u(x′, x

′′
) of equation (16)

which is convex in x′?

�Partial Constant Rank Principle If u is a smooth solution of equation (16)
and convex in x′, is the rank of D2

x′u(x) a constant in Ω?

http://192.9.200.1
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� Partial Convexity Problem for Parabolic Equation Convexity preserving
for solutions of parabolic equations in partial variables

ut = F (D2u,Du, u, x, t), (x, t) ∈ ΩT = Ω× (0, T ] (18)

u(x, 0) = u0(x), x ∈ Ω (19)

u =, x ∈ ∂Ω× (0, T ] (20)

� Question Let x = (x′, x
′′
), assume that u0(x

′, x
′′
) is convex in x′, is solution

u(x, t) convex in x′?

� Partial Constant Rank Principle If u is a smooth solution of equation (18)
and convex in x′, is the rank of D2

x′u(x, t) a constant in x and monotone in t in
ΩT ?

http://192.9.200.1
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�Motivations for Partial Convexity

� The partial convexity of solutions to fully nonlinear equations in the form has
significant geometric implications. In particular, it is important to understand
this property for solutions of Monge-Ampere type equations(P.Guan’s lecture in
Fudan University, Aug. 2010).

� Curvature flow equation.

� Models in mathematical finance.

http://192.9.200.1
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� Example: Optimal Investment in CEV Model

• Constant Elasticity of Variance model

dSt = St(µdt+ σSβ
t dWt) (21)

• Value function V (x, s, t)

V (x, s, t) = sup
π·∈A

E(er(t−T )U(XT )|Xt = x, St = s) (22)

• Bellman Equation

∂V

∂t
+ sup

π≥0
{1

2
σ2π2x2s2β∂

2V

∂x2 + σ2πxs2β+1 ∂
2V

∂x∂s
+ (r + (µ− r)π)x

∂V

∂x
}

+
1

2
σ2s2β+2∂

2V

∂s2 + µs
∂V

∂s
− rV = 0, x, s > 0, t < T

• Terminal condition

V (x, s, T ) = U(x), x > 0 (23)

http://192.9.200.1
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� Optimal Investment Strategy

• If value function V (x, s, t) is smooth and strictly concave in x, then we can
construct optimal control

• Suppose U(x) is (strictly) concave, discuss the concavity for value function
V (x, s, t) in x

http://192.9.200.1
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4. Main Results

� Constant Rank Theorem

� [Bian, Guan, 2009]Constant Rank Theorem for elliptic and parabolic equa-
tions.

� [Bian, Guan, 2010]Improvement of 2009’s results and Partial Constant Rank
Theorem for elliptic and parabolic equations.

� Convexity Preserving for Parabolic Equation Convexity preserving for
solutions of parabolic equations

� [Bian, Guan, 2008]Convexity preserving for parabolic equation and Bellman
equation.

� []Partial convexity preserving for parabolic equation.

http://192.9.200.1
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� Main Theorem

• Theorem 4.1(CRP, Bian, Guan, 2009) Suppose F = F (r, p, u, x) ∈ C2,1 and
F satisfies condition

F (A−1, p, u, x) is locally convex in (A, u, x) for each p fixed.

If u ∈ C2,1(Ω) is a convex solution of

F (D2u,Du, u, x) = 0, x ∈ Ω (24)

then the rank of Hessian (∇2u(x)) is constant in Ω.

http://192.9.200.1
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� Improvement on structural condition for CRP

• Denote Sn
+ the space of positive definite real symmetric n × n matrices, for

each fixed p ∈ Rn, define the zero sub-level set

ΓF = {(A, u, x) ∈ Sn
+ × R× Ω|F (A−1, p, u, x) ≤ 0}. (25)

• Theorem 4.2(CRP, Bian, Guan, 2010) Let F = F (r, p, u, x) ∈ C2,1(Sn ×
Rn × R × Ω) and let u ∈ C2,1(Ω) be a convex solution of (13). Suppose F
satisfies condition and at (∇2u(x),∇u(x), u(x), x) for each x ∈ Ω. If for each
x ∈ Ω and p = ∇u(x),

ΓF is locally convex at (A, u(x), x), (26)

then the rank of the hessian (∇2u(x)) is constant in Ω.

• Remark We can prove this theorem under weaker condition

http://192.9.200.1
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� Example: Poisson Equation

• Consider
∆u− f(x) = 0, x ∈ Ω (27)

� The condition in Theorem 4.2 is that 1
f(x) is convex. This is the condition in

L. Caffarelli, A. Friedman, 1985.

http://192.9.200.1
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� Parabolic Constant Rank Principle(Bian, Guan, 2009)

• Theorem 4.3(PCRP, 2009) Let u ∈ C2,1(Ω × [0, T )) be a convex solution of
the equation

∂u

∂t
= F (∇2u,∇u, u, x, t), (28)

and assume

F (A−1, p, u, x, t) is locally convex in (A, u, x) for each (p, t) fixed. (29)

Suppose For each T > t > 0, let l(t) be the minimal rank of (∇2u(x, t)) in Ω.
Then, the rank of (∇2u(x, t)) is constant for each T > t > 0 and l(s) ≤ l(t) for
all s ≤ t < T .

http://192.9.200.1
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� Example: Linear Parabolic Equations

• Consider
− ut + aij(x)Diju = 0, x ∈ Ω (30)

� The condition in Theorem 4.2 is the condition in S.Janson and J.Tysk, 2004.

http://192.9.200.1
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� Notations for Partial Convexity

• Let us write x = (x
′
, x

′′
) ∈ Ω and p = (p

′
, p

′′
) ∈ RN with p

′ ∈ RN
′
,

p
′′ ∈ RN

′′
and split a matrix A ∈ SN into (

a b

bT c
) with a ∈ SN

′
, b ∈ RN

′×N
′′

and c ∈ SN
′′
. Let

SN,⊕ = {A ∈ SN |A = (
a b

bT c
), a ∈ SN

′

+ }

• Define for (A, p, u, x) ∈ SN,⊕ × RN × R× Ω

F̃ (A, p
′′
, u, x

′
) = F ((

a−1 a−1b

(a−1b)T c+ bTa−1b
), p, u, x)

For each fixed x
′′

and p
′ ∈ RN

′
, define the zero sub-level set

ΓF = {(A, p′′
, u, x

′
) ∈ SN,⊕ × RN

′′
× R× RN

′
|F̃ (A, p

′′
, u, x

′
) ≤ 0}. (31)

http://192.9.200.1


Introduction
Convexity Problem
Partial Convexity . . .

Main Results
Proof for CRP
Applications

Home Page

Title Page

JJ II

J I

Page 30 of 44

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

� Elliptic Partial Constant Rank Principle(Bian, Guan, 2010)

• Theorem 4.4(PCRP, 2010) Let F = F (r, p, u, x) ∈ C2,1(SN ×RN ×R×Ω)

and let u ∈ C2,1(Ω) be a partial convex solution of (13). Suppose F satisfies
condition

ΓF is locally convex at (A, p
′′
, u, x

′
),

then the rank of the hessian (∇2
x′u(x))N ′×N ′ is constant in x = (x′, x”) ∈ Ω. If l

is the rank of (∇2
x′u(x))N ′×N ′ , then ∀x0 ∈ Ω, there exist a neighborhood U of x0

and (N
′−l) fixed directions V1, . . . , VN ′−l ∈ RN

′
such that (∇2

x′u(x))N ′×N ′Vj =

0 for all 1 ≤ j ≤ N
′ − l and x ∈ U .

http://192.9.200.1
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� Parabolic Partial Constant Rank Principle(Bian, Guan, 2010)

• Theorem 4.5(PPCRP, 2010) Let u ∈ C2,1(Ω × [0, T )) be a smooth and
partially convex(in x′) solution of the equation

∂u

∂t
= F (∇2u,∇u, u, x, t), (32)

and assume

F̃ (A−1, p
′′
, u, x′, t) is locally convex in (A, u, x) for each (p′, x

′′
, t) fixed.

(33)
Suppose For each T > t > 0, let l(t) be the minimal rank of (∇2

x′u(x, t)) in Ω.
Then, the rank of (∇2

x′u(x, t)) is constant for each T > t > 0 and l(s) ≤ l(t)

for all s ≤ t < T .

http://192.9.200.1
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� Example: Partial Convexity Preserving for Linear Parabolic Equations

• Consider

ut =
N∑

i,j=1

aij(x)Diju, x ∈ Ω

• The condition in Theorem 4.5 is

aij,xk
= 0, 1 ≤ k ≤ N

′
, N

′
+ 1 ≤ i, j ≤ N

aij,xkxl
= 0, 1 ≤ i, k, l ≤ N

′
, N

′
+ 1 ≤ j ≤ N

http://192.9.200.1
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and the convexity inequality

N∑
i,j=1

[az
ij,zz M

z
ij + 2az

ij,z N
z
ij + 2az

ijP
z
ij] ≥ 0

for all unit vector z ∈ RN with zk = 0, N
′
+ 1 ≤ k ≤ N and for all M,N,P

such that

(
M z N z

(N z)T P z
) ≥ 0
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5. Proof for CRP
~ Key points in proof

� To consider function σl+1(∇2
x′u) here l the minimal rank of ∇2

x′u. ∇2
x′u is

of constant rank is equivalent to σl+1(∇2
x′u) ≡ 0.

� When deal with general equation, linear terms of third order derivatives
of u (i.e., the gradient of the symmetric tensor ∇2u) will appear. How to
control them is the major challenge.

� We introduce a new auxiliary function which is composed as a quotient
of elementary symmetric functions σl+2(∇2

x′u)
σl+1(∇2

x′u) near points where ∇2
x′u(x) is

of minimal rank l. We show σl+2(∇2
x′u)

σl+1(∇2
x′u) has optimal C1+1, regularity.
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~ Sketch of proof

� Step 1: Auxiliary function

Define for W = (∇2
x′u) ∈ SN ′

φ = σl+1(W ) + q(W ) (34)

here

q(W ) =

{
σl+2(W )
σl+1(W ), if σl+1(W ) > 0

0, if σl+1(W ) = 0
(35)

• Lemma 4.1 Let u ∈ C3+1,1+1(Ω) be a convex function in x′ and W (x) =

(∇2
x′u), x ∈ Ω. Let l = minx∈Ω rank(W (x)), then the functions q(x) =

q(W (x)) and φ(x) is in C1+1,1+0(Ω).
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� Step 2: Differential inequality

• Lemma 4.2 Suppose that the function F satisfies conditions, let u ∈
C3+1,1+1(Ω) is a partially convex solution. If (∇2

x′u) attains minimum rank l
at certain point x0 ∈ Ω, then there exist a neighborhood O of x0 and a positive
constant C independent of φ), such that

N∑
α,β=1

F αβφαβ(x
′, x

′′
) ≤ C(φ+ |∇φ|), ∀x = (x

′
, x

′′
) ∈ O. (36)

In turn, (∇2
x′u) is of constant rank in O.

•We prove inequality (36) from partial differential equation, structure condition
and estimates.
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� Proof of Lemma 4.2:

• Let W (x) = (∇2u(x))N ′×N ′ and l = minx∈Ω rankW (x). Since l = N
′
is of

full rank, only l ≤ N
′ − 1 is of interest.

• For each x0 ∈ Ω where W is of minimal rank l. Pick an open neighborhood
O of x0, for any x ∈ O, let λ1(x) ≤ λ2(x)... ≤ λN ′(x) be the eigenvalues of
W at x. There is a positive constant C > 0 depending only on ‖u‖C3,1, W (z0)

and O, such that λN ′(x) ≥ λN ′−1(x)... ≥ λN ′−l+1(x) ≥ C for all x ∈ O. Let
G = {N ′ − l+ 1, N

′ − l+ 2, ..., N
′} and B = {1, ..., N ′ − l} be the “good” and

“bad” sets of indices respectively.
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� Differentiate equation in xi and then xj

F (∇2u,∇u, u, x) = 0

we obtain by the definition of φ

N∑
α,β=1

F αβφαβ

= O(φ+
∑
i,j∈B

|∇uij|)−
N∑

α,β=1

F αβ[

∑
i∈B ViαViβ

σ3
1(B)

+

∑
i,j∈B,i6=j uijαujiβ

σ1(B)
]

−
∑
i∈B

[σl(G) +
σ2

1(B|i)− σ2(B|i)
σ2

1(B)
]Ji

• where

Viα = uiiασ1(B)− uii(
∑
j∈B

ujjα)
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�

Ji =
∑

α,β,γ,η /∈B

F αβ,γηuiαβuiγη + 2
∑

α,β /∈B

F αβ
∑
j∈G

1

λj
uijαuijβ

+2
∑

α,β /∈B

(
N∑

k=N ′+1

F αβ,pkuαβiuik + F αβ,uuiαβui + F αβ,xiuiαβ)

+
N∑

k,l=N ′+1

F pk,pluikuil + 2
N∑

k=N ′+1

(F pk,uuikui + F pk,xiuik)

+F u,uu2
i + 2F u,xiui + F xi,xi,

• We have from structural conditions

Ji ≥ −C(φ+
∑
i,j∈B

|∇uij|)

C ≥ σl(G) +
σ2

1(B|i)− σ2(B|i)
σ2

1(B)
≥ 0
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• Hence the inequality is reduced to∑
α,β

F αβφαβ ≤ C(φ+
∑
i,j∈B

|∇uij|)

−
∑
α,β

F αβ(

∑
i∈B ViαViβ

σ3
1(B)

+

∑
i,j∈B,i6=j uijαujiβ

σ1(B)
)

• Estimate for term
∑

i,j∈B |∇uij|

∑
i,j∈B

|∇uij| ≤ δ(

∑
i∈B ViαViβ

σ3
1(B)

+

∑
i,j∈B,i6=j uijαujiβ

σ1(B)
) +

C

δ
(φ+ |∇φ|)
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6. Applications
� Convexity Preserving for Parabolic Bellman Equations

• Bian,Guan, 2008

• Integro-differential equation

ut = F (∇2u,∇u, u, x, t) +Bu, (x, t) ∈ Rn × [0, T ], (37)

where Bu is a integro-differential operator

Bu =

∫ 1

0
(u(x+ ψ(x, t, η), t)− u(x, t)

−ψ(x, t, η) · ∇u(x, t))dη

• These equations are from finance problem in jump diffusion model
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� We obtain Macro nature convexity preserving by using constant rank theorem

� Theorem 6.1 Assume

F (A, p, u, x, t) is locally convex in (A, u, x) for each (p, t) fixed. (38)

If u ∈ C4,2 is a solution of equation, then u(x, t) is convex provided the initial
date u(x, 0) is convex.

• Our result works for the Bellman equations

F (∇2u,∇u, u, x, t) = sup
α∈A

{aα
ij(x)Diju+ bαi (x)Diu+ cα(x)u− fα(x)}
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� Partial convexity: CEV Model

• Terminal condition

V (x, s, T ) = U(x), x > 0 (39)

•We prove that V (x, s, t) is smooth and strictly concave in x ifU(x) is concave
and Inada, then get optimal investment strategy.

� Related work on Black-Schoeles model: By use of Full convexity preserving

• Bian,Miao,Zheng, Smooth Value Functions for a Class of Nonsmooth Utility
Maximization Problems, SIAM J. Financial Mathematics, to appear
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