Conference in Harmonic Analysis and Partial

 Differential Equations in Honour of Eric Sawyer

Page 1 of 44

Go Back

Convexity and Partial Convexity for Solution of Partial Differential Equations

Introduction

 Convexity Problem Partial Convexity. Main ResultsDepartment of Mathematics, Tongji University, China

Talk Outline

(2)
 Introduction

(2) Convexity Problem
(2) Partial Convexity Problem
(3)

Main Results
Proof for CRP
Applications

Page 3 of 44
Go Back

1. Introduction

Heat Equation

- Consider the following Cauchy problem for heat equation

$$
\begin{gather*}
u_{t}-\frac{1}{2} u_{x x}=0,(x, t) \in R \times(0, \infty) \tag{1}\\
u(x, 0)=\phi(x), x \in R \tag{2}
\end{gather*}
$$

- Poisson Formula

$$
\begin{equation*}
u(x, t)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\eta^{2}} \phi(x+\sqrt{2 t} \eta) d \eta \tag{3}
\end{equation*}
$$

- Convexity is Preserved(Improved): $u(x, t)$ is convex in x if $\phi(x)$ is convex.

Title Page

Page 4 of 44

Go Back

Linear Equation

- Linear equation

$$
\begin{align*}
u_{t}-a_{i j}(x, t) u_{x_{i} x_{j}} & =0,(x, t) \in R^{n} \times(0, \infty) \tag{4}\\
u(x, 0) & =\phi(x), x \in R^{n} \tag{5}
\end{align*}
$$

\square Sufficient and Necessary Condition

- Convexity Inequality:

$$
2 a_{i j}^{z} P_{i j}^{z}+2 a_{i j}^{z}, z N_{i j}^{z}+a_{i j}^{z}, z z M_{i j}^{z} \geq 0
$$

for all unit vector z and for all $M, N, P \in S^{n}$ such that

$$
\left(\begin{array}{cc}
M^{z} & N^{z} \\
N^{z T} & P^{z}
\end{array}\right) \geq 0
$$

$$
f^{z}=\left(f_{i j}^{z}\right), \quad f_{i j}^{z}=\left(\delta_{i k}-z_{i} z_{k}\right) f_{k l}\left(\delta_{l j}-z_{l} z_{j}\right)
$$

$$
g, z=\frac{\partial g}{\partial z}
$$

$$
a_{i j}=\text { constant }
$$

- Linear equation of parabolic type
- P.L.Lions, M.Musiela, Convexity of solutions of parabolic equations, C.R.Acad. Sci. Paris, 2006

Page 7 of 44

Go Back
\square Stochastic Analysis Approach

- Solution can be expressed by expectation

$$
\begin{equation*}
u(x, t)=E\left(\phi\left(X_{t}\right) \mid X_{0}=x\right) \tag{7}
\end{equation*}
$$

subject to the SDE

$$
d X_{t}=b d t+\sqrt{2} \sigma\left(X_{t}\right) d W_{t}, X_{0}=x
$$

where

$$
a_{i j}=\sigma_{i k} \sigma_{j k}
$$Brascamp, Lieb, 1976, J. Functional Anal.

- On Extensions of the Brunn-Minkowski and Pr^{\prime} ekopa- Leindler Theorems, Including Inequalities for Log-Concave Functions, and with an Application to

Page 9 of 44

Go Back

Related Problems

- Extension to nonlinear equation, such as Bellman equation and Geometric
- Elliptic equation: Existence of convex solution

Title Page

2. Convexity Problem

\square Convexity problem for Elliptic PDE

- Consider the following fully nonlinear elliptic partial differential equation

$$
\begin{gather*}
F\left(\nabla^{2} u, \nabla u, u, x\right)=0, x \in \Omega \tag{8}\\
u=?, x \in \partial \Omega \tag{9}
\end{gather*}
$$

where Ω is in \mathbb{R}^{n} or in the manifold, where $F=F(r, p, u, x)$ is a given function in $\mathcal{S}^{n} \times \mathbb{R}^{n} \times \mathbb{R} \times \Omega$. The ellipticity of this equation is assumed.

Title Page
44

Page 11 of 44

Go Back
\square Question Existence of convex solution for problem (8)-(9).
\square Convexity Preserving Problem This is the counterpart of elliptic convexity problem for solutions of parabolic equations. Consider the following

$$
\begin{gather*}
u_{t}=F\left(D^{2} u, D u, u, x, t\right), \quad(x, t) \in \Omega_{T}=\Omega \times(0, T] \tag{10}\\
u(x, 0)=u_{0}(x), \quad x \in \Omega \tag{11}\\
u=?, \quad x \in \partial \Omega \times(0, T] \tag{12}
\end{gather*}
$$

Question Assume that $u_{0}(x)$ is convex, is $u(x, t)$ convex for $t>0$?

Hessian flow equation. Curvature flow equation.

- M.C.Caputo, P.Daskalopoulos and N.Sesum, On the evolution of convex hyper-surfaces by the Q_{k} flow, arXiv:0904.0492v1Some equations arising from mathematical finance.

Main Points for Convexity

These convexity problems depend on the- The form of equation, or function $F(r, p, u, x)$.
- The boundary conditions

Title Page
\square Two classes of equations

- Hessian and Hessian quotient equation

$$
\begin{equation*}
F\left(\nabla^{2} u, \nabla u, u, x\right)=\sigma_{k}\left(\lambda_{1}\left(\nabla^{2} u\right), \cdots, \lambda_{n}\left(\nabla^{2} u\right)\right)=0 \tag{13}
\end{equation*}
$$

where $\sigma_{k}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ is the $k-t h$ elemental symmetry function. It includes

Introduction

Convexity Problem Partial Convexity Main Results Proof for CRP Applications Monge-Ampere equation, Hessian quotient equation, Curvature equation.

- Bellman equation

Title Page

44
\square

Typical boundary conditions

- Infinite boundary(Neumann, Dirichlet) condition(B. Guan, H. Jian)

$$
\begin{equation*}
u=+\infty, \frac{\partial u}{\partial n}=-\infty, \quad x \in \partial \Omega \tag{14}
\end{equation*}
$$

- State constrained condition from stochastic optimal control problems with

Introduction Convexity Problem Partial Convexity. Main Results Proof for CRP Applications

Home Page

Title Page
44

Page 15 of 44
Go Back
$\Omega=R^{n}, \Omega=R_{+}^{n}$

Related convexity problem: Constant Rank Principle(CRP)

- If \mathbf{u} is a smooth convex solution of equation (8), is the rank of $D^{2} u(x), r(x)$, a constant in Ω ?
- If \mathbf{u} is a smooth convex solution of equation (10), is the rank of $D^{2} u(x, t)$, $r(x, t)$, a constant in x and monotone in t ?
\square Constant Rank Principle is a powerful tool in the study of convexity, it is particularly useful in producing convex solutions of differential equations via homotopic deformations and by flow.The great advantage of the microscopic convexity principle is that it can treat geometric equations involving tensors on general manifolds.

Related works

\square The CRP was initially studied by L. Caffarelli, A. Friedman and I. Singer, B. Wong, S.T. Yau, Stephen S.T. Yau in 1985.There exist a vast of literatures: CRP and Convexity. Guan,

Ekstrom, E., and J. Tysk, The American Put Is Log-Concave in the LogPrice, J. Math. Anal. Appl., 2006E.Ekstrom and J.Tysk, Properties of option prices in models with jumps, Mathematical Finance, 2007
Y.Giga, S.Goto, H.Ishii, M.H.Sato, Comparison principle and convex-

3. Partial Convexity Problem

Elliptic Partially Convex Solution Existence of convex solution of elliptic equation in partial variables

$$
\begin{gather*}
F\left(D^{2} u, D u, u, x\right)=0, \quad x \in \Omega \tag{16}\\
u=, x \in \partial \Omega \tag{17}
\end{gather*}
$$

\square Question Let $x=\left(x^{\prime}, x^{\prime \prime}\right)$. Is there solution $u(x)=u\left(x^{\prime}, x^{\prime \prime}\right)$ of equation (16) which is convex in x^{\prime} ?

Page 18 of 44
Go Back

Partial Convexity Problem for Parabolic Equation Convexity preserving for solutions of parabolic equations in partial variables

$$
\begin{gather*}
u_{t}=F\left(D^{2} u, D u, u, x, t\right), \quad(x, t) \in \Omega_{T}=\Omega \times(0, T] \tag{18}\\
u(x, 0)=u_{0}(x), \quad x \in \Omega \tag{19}\\
u=, x \in \partial \Omega \times(0, T] \tag{20}
\end{gather*}
$$

Question Let $x=\left(x^{\prime}, x^{\prime \prime}\right)$, assume that $u_{0}\left(x^{\prime}, x^{\prime \prime}\right)$ is convex in x^{\prime}, is solution $u(x, t)$ convex in x^{\prime} ?

Partial Constant Rank Principle If u is a smooth solution of equation (18) and convex in x^{\prime}, is the rank of $D_{x^{\prime}}^{2} u(x, t)$ a constant in x and monotone in t in Ω_{T} ?

\square Motivations for Partial Convexity

\square The partial convexity of solutions to fully nonlinear equations in the form has significant geometric implications. In particular, it is important to understand this property for solutions of Monge-Ampere type equations(P.Guan's lecture in Fudan University, Aug. 2010).

Example: Optimal Investment in CEV Model

- Constant Elasticity of Variance model

$$
\begin{equation*}
\mathrm{d} S_{t}=S_{t}\left(\mu \mathrm{~d} t+\sigma S_{t}^{\beta} \mathrm{d} W_{t}\right) \tag{21}
\end{equation*}
$$

- Value function $V(x, s, t)$

$$
\begin{equation*}
V(x, s, t)=\sup _{\pi \in A} E\left(e^{r(t-T)} U\left(X_{T}\right) \mid X_{t}=x, S_{t}=s\right) \tag{22}
\end{equation*}
$$

- Bellman Equation

$$
\begin{gathered}
\frac{\partial V}{\partial t}+\sup _{\pi \geq 0}\left\{\frac{1}{2} \sigma^{2} \pi^{2} x^{2} s^{2 \beta} \frac{\partial^{2} V}{\partial x^{2}}+\sigma^{2} \pi x s^{2 \beta+1} \frac{\partial^{2} V}{\partial x \partial s}+(r+(\mu-r) \pi) x \frac{\partial V}{\partial x}\right\} \\
+\frac{1}{2} \sigma^{2} s^{2 \beta+2} \frac{\partial^{2} V}{\partial s^{2}}+\mu s \frac{\partial V}{\partial s}-r V=0, x, s>0, t<T
\end{gathered}
$$

- Terminal condition

$$
\begin{equation*}
V(x, s, T)=U(x), x>0 \tag{23}
\end{equation*}
$$

\square Optimal Investment Strategy

Title Page

4. Main Results

\square Constant Rank Theorem

\diamond [Bian, Guan, 2009]Constant Rank Theorem for elliptic and parabolic equations.
\diamond [Bian, Guan, 2010]Improvement of 2009's results and Partial Constant Rank

Main Theorem

- Theorem 4.1(CRP, Bian, Guan, 2009) Suppose $F=F(r, p, u, x) \in C^{2,1}$ and F satisfies condition

$$
F\left(A^{-1}, p, u, x\right) \quad \text { is locally convex in }(A, u, x) \text { for each } p \text { fixed. }
$$

Improvement on structural condition for CRP

- Denote \mathcal{S}_{+}^{n} the space of positive definite real symmetric $n \times n$ matrices, for
each fixed $p \in \mathbb{R}^{n}$, define the zero sub-level set

$$
\begin{equation*}
\Gamma_{F}=\left\{(A, u, x) \in \mathcal{S}_{+}^{n} \times \mathbb{R} \times \Omega \mid F\left(A^{-1}, p, u, x\right) \leq 0\right\} \tag{25}
\end{equation*}
$$

- Theorem 4.2(CRP, Bian, Guan, 2010) Let $F=F(r, p, u, x) \in C^{2,1}\left(\mathcal{S}^{n} \times\right.$ $\mathbb{R}^{n} \times \mathbb{R} \times \Omega$) and let $u \in C^{2,1}(\Omega)$ be a convex solution of (13). Suppose F satisfies condition and at $\left(\nabla^{2} u(x), \nabla u(x), u(x), x\right)$ for each $x \in \Omega$. If for each $x \in \Omega$ and $p=\nabla u(x)$,

$$
\begin{equation*}
\Gamma_{F} \text { is locally convex at }(A, u(x), x), \tag{26}
\end{equation*}
$$

then the rank of the hessian $\left(\nabla^{2} u(x)\right)$ is constant in Ω.

- Remark We can prove this theorem under weaker condition

Example: Poisson Equation

- Consider

$$
\begin{equation*}
\Delta u-f(x)=0, \quad x \in \Omega \tag{27}
\end{equation*}
$$

\diamond The condition in Theorem 4.2 is that $\frac{1}{f(x)}$ is convex. This is the condition in L. Caffarelli, A. Friedman, 1985.

Parabolic Constant Rank Principle(Bian, Guan, 2009)

- Theorem 4.3(PCRP, 2009) Let $u \in C^{2,1}(\Omega \times[0, T))$ be a convex solution of the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=F\left(\nabla^{2} u, \nabla u, u, x, t\right), \tag{28}
\end{equation*}
$$

and assume

$$
\begin{equation*}
F\left(A^{-1}, p, u, x, t\right) \quad \text { is locally convex in }(A, u, x) \text { for each }(p, t) \text { fixed. } \tag{29}
\end{equation*}
$$

Suppose For each $T>t>0$, let $l(t)$ be the minimal rank of $\left(\nabla^{2} u(x, t)\right)$ in Ω.

Introduction Convexity Problem Partial Convexity. Main Results
Proof for CRP
Applications

Home Page

Title Page

44

Page 27 of 44
Go Back

Example: Linear Parabolic Equations

- Consider

$$
\begin{equation*}
-u_{t}+a_{i j}(x) D_{i j} u=0, \quad x \in \Omega \tag{30}
\end{equation*}
$$

\diamond The condition in Theorem 4.2 is the condition in S.Janson and J.Tysk, 2004.

Notations for Partial Convexity

- Let us write $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \Omega$ and $p=\left(p^{\prime}, p^{\prime \prime}\right) \in R^{N}$ with $p^{\prime} \in R^{N^{\prime}}$, $p^{\prime \prime} \in R^{N^{\prime \prime}}$ and split a matrix $A \in \mathcal{S}^{N}$ into $\left(\begin{array}{cc}a & b \\ b^{T} & c\end{array}\right)$ with $a \in \mathcal{S}^{N^{\prime}}, b \in \mathbb{R}^{N^{\prime} \times N^{\prime \prime}}$
and $c \in \mathcal{S}^{N^{\prime \prime}}$. Let

$$
\mathcal{S}^{N, \oplus}=\left\{A \in \mathcal{S}^{N} \left\lvert\, A=\left(\begin{array}{cc}
a & b \\
b^{T} & c
\end{array}\right)\right., a \in \mathcal{S}_{+}^{N^{\prime}}\right\}
$$

Introduction

Convexity Problem Partial Convexity.

- Define for $(A, p, u, x) \in \mathcal{S}^{N, \oplus} \times \mathbb{R}^{N} \times \mathbb{R} \times \Omega$

$$
\tilde{F}\left(A, p^{\prime \prime}, u, x^{\prime}\right)=F\left(\left(\begin{array}{cc}
a^{-1} & a^{-1} b \\
\left(a^{-1} b\right)^{T} & c+b^{T} a^{-1} b
\end{array}\right), p, u, x\right)
$$

For each fixed $x^{\prime \prime}$ and $p^{\prime} \in \mathbb{R}^{N^{\prime}}$, define the zero sub-level set

Elliptic Partial Constant Rank Principle(Bian, Guan, 2010)

- Theorem 4.4(PCRP, 2010) Let $F=F(r, p, u, x) \in C^{2,1}\left(\mathcal{S}^{N} \times \mathbb{R}^{N} \times \mathbb{R} \times \Omega\right)$ and let $u \in C^{2,1}(\Omega)$ be a partial convex solution of (13). Suppose F satisfies condition

$$
\Gamma_{F} \text { is locally convex at }\left(A, p^{\prime \prime}, u, x^{\prime}\right)
$$

then the rank of the hessian $\left(\nabla_{x^{\prime}}^{2} u(x)\right)_{N^{\prime} \times N^{\prime}}$ is constant in $x=\left(x^{\prime}, x "\right) \in \Omega$. If l is the rank of $\left(\nabla_{x^{\prime}}^{2} u(x)\right)_{N^{\prime} \times N^{\prime}}$, then $\forall x_{0} \in \Omega$, there exist a neighborhood U of x_{0} and $\left(N^{\prime}-l\right)$ fixed directions $V_{1}, \ldots, V_{N^{\prime}-l} \in \mathbb{R}^{N^{\prime}}$ such that $\left(\nabla_{x^{\prime}}^{2} u(x)\right)_{N^{\prime} \times N^{\prime}} V_{j}=$ 0 for all $1 \leq j \leq N^{\prime}-l$ and $x \in U$.

Parabolic Partial Constant Rank Principle(Bian, Guan, 2010)

- Theorem 4.5(PPCRP, 2010) Let $u \in C^{2,1}(\Omega \times[0, T))$ be a smooth and partially convex (in x^{\prime}) solution of the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=F\left(\nabla^{2} u, \nabla u, u, x, t\right), \tag{32}
\end{equation*}
$$

and assume

$$
\begin{equation*}
\tilde{F}\left(A^{-1}, p^{\prime \prime}, u, x^{\prime}, t\right) \quad \text { is locally convex in }(A, u, x) \text { for each }\left(p^{\prime}, x^{\prime \prime}, t\right) \text { fixed. } \tag{33}
\end{equation*}
$$

Suppose For each $T>t>0$, let $l(t)$ be the minimal rank of $\left(\nabla_{x^{\prime}}^{2} u(x, t)\right)$ in Ω. Then, the rank of $\left(\nabla_{x^{\prime}}^{2} u(x, t)\right)$ is constant for each $T>t>0$ and $l(s) \leq l(t)$ for all $s \leq t<T$.

Example: Partial Convexity Preserving for Linear Parabolic Equations

- Consider

$$
u_{t}=\sum_{i, j=1}^{N} a_{i j}(x) D_{i j} u, \quad x \in \Omega
$$

- The condition in Theorem 4.5 is

$$
\begin{gathered}
a_{i j}, x_{k}=0,1 \leq k \leq N^{\prime}, N^{\prime}+1 \leq i, j \leq N \\
a_{i j, x_{k} x_{l}}=0,1 \leq i, k, l \leq N^{\prime}, N^{\prime}+1 \leq j \leq N
\end{gathered}
$$

and the convexity inequality

$$
\sum_{i, i=1}^{N}\left[a_{i j}^{z}, z z M_{i j}^{z}+2 a_{i j}^{z}, z N_{i j}^{z}+2 a_{i j}^{z} P_{i j}^{z}\right] \geq 0
$$

Introduction

 Convexity Problem Partial Convexity. Main ResultsProof for CRP
Applications

$$
\left(\begin{array}{cc}
M^{z} & N^{z} \\
\left(N^{z}\right)^{T} & P^{z}
\end{array}\right) \geq 0
$$

5. Proof for CRP

Key points in proof

To consider function $\sigma_{l+1}\left(\nabla_{x^{\prime}}^{2} u\right)$ here l the minimal rank of $\nabla_{x^{\prime}}^{2} u$. $\nabla_{x^{\prime}}^{2} u$ is of constant rank is equivalent to $\sigma_{l+1}\left(\nabla_{x^{\prime}}^{2} u\right) \equiv 0$.When deal with general equation, linear terms of third order derivatives

Sketch of proof

Step 1: Auxiliary function

Define for $W=\left(\nabla_{x^{\prime}}^{2} u\right) \in \mathcal{S}^{N^{\prime}}$

$$
\begin{equation*}
\phi=\sigma_{l+1}(W)+q(W) \tag{3}
\end{equation*}
$$

$$
q(W)=\left\{\begin{array}{lll}
\frac{\sigma_{l+2}(W)}{\sigma_{l+1}(W)}, & \text { if } & \sigma_{l+1}(W)>0 \tag{35}\\
0, & \text { if } & \sigma_{l+1}(W)=0
\end{array}\right.
$$

- Lemma 4.1 Let $u \in C^{3+1,1+1}(\Omega)$ be a convex function in x^{\prime} and $W(x)=$ $\left(\nabla_{x^{\prime}}^{2} u\right), x \in \Omega$. Let $l=\min _{x \in \Omega} \operatorname{rank}(W(x))$, then the functions $q(x)=$ $q(W(x))$ and $\phi(x)$ is in $C^{1+1,1+0}(\Omega)$.

Go Back
\square Step 2: Differential inequality

- Lemma 4.2 Suppose that the function F satisfies conditions, let $u \in$ $C^{3+1,1+1}(\Omega)$ is a partially convex solution. If $\left(\nabla_{x^{\prime}}^{2} u\right)$ attains minimum rank l at certain point $x_{0} \in \Omega$, then there exist a neighborhood \mathcal{O} of x_{0} and a positive constant C independent of ϕ), such that

$$
\begin{equation*}
\sum_{\alpha, \beta=1}^{N} F^{\alpha \beta} \phi_{\alpha \beta}\left(x^{\prime}, x^{\prime \prime}\right) \leq C(\phi+|\nabla \phi|), \quad \forall x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathcal{O} . \tag{3}
\end{equation*}
$$

In turn, $\left(\nabla_{x^{\prime}}^{2} u\right)$ is of constant rank in \mathcal{O}.

- We prove inequality (36) from partial differential equation, structure condition

Proof of Lemma 4.2:

- Let $W(x)=\left(\nabla^{2} u(x)\right)_{N^{\prime} \times N^{\prime}}$ and $l=\min _{x \in \Omega} \operatorname{rank} W(x)$. Since $l=N^{\prime}$ is of full rank, only $l \leq N^{\prime}-1$ is of interest.
- For each $x_{0} \in \Omega$ where W is of minimal rank l. Pick an open neighborhood \mathcal{O} of x_{0}, for any $x \in \mathcal{O}$, let $\lambda_{1}(x) \leq \lambda_{2}(x) \ldots \leq \lambda_{N^{\prime}}(x)$ be the eigenvalues of
\square Differentiate equation in x_{i} and then x_{j}

$$
F\left(\nabla^{2} u, \nabla u, u, x\right)=0
$$

we obtain by the definition of ϕ

$$
\begin{gathered}
\sum_{\alpha, \beta=1}^{N} F^{\alpha \beta} \phi_{\alpha \beta} \\
=O\left(\phi+\sum_{i, j \in B}\left|\nabla u_{i j}\right|\right)-\sum_{\alpha, \beta=1}^{N} F^{\alpha \beta}\left[\frac{\sum_{i \in B} V_{i \alpha} V_{i \beta}}{\sigma_{1}^{3}(B)}+\frac{\sum_{i, j \in B, i \neq j} u_{i j \alpha} u_{j i \beta}}{\sigma_{1}(B)}\right] \\
-\sum_{i \in B}\left[\sigma_{l}(G)+\frac{\sigma_{1}^{2}(B \mid i)-\sigma_{2}(B \mid i)}{\sigma_{1}^{2}(B)}\right] J_{i}
\end{gathered}
$$

- where

$$
V_{i \alpha}=u_{i i \alpha} \sigma_{1}(B)-u_{i i}\left(\sum_{j \in B} u_{j j \alpha}\right)
$$

Introduction
Convexity Problem Partial Convexity. Main Results
Proof for CRP
Applications

$$
\begin{aligned}
& J_{i}=\sum_{\alpha, \beta, \gamma, \eta \notin B} F^{\alpha \beta, \gamma \eta} u_{i \alpha \beta} u_{i \gamma \eta}+2 \sum_{\alpha, \beta \notin B} F^{\alpha \beta} \sum_{j \in G} \frac{1}{\lambda_{j}} u_{i j \alpha} u_{i j \beta} \\
& +2 \sum_{\alpha, \beta \notin B}\left(\sum_{k=N^{\prime}+1}^{N} F^{\alpha \beta, p_{k}} u_{\alpha \beta i} u_{i k}+F^{\alpha \beta, u} u_{i \alpha \beta} u_{i}+F^{\alpha \beta, x_{i}} u_{i \alpha \beta}\right) \\
& +\sum_{k, l=N^{\prime}+1}^{N} F^{p_{k}, p_{l}} u_{i k} u_{i l}+2 \sum_{k=N^{\prime}+1}^{N}\left(F^{p_{k}, u} u_{i k} u_{i}+F^{p_{k}, x_{i}} u_{i k}\right) \\
& \quad+F^{u, u} u_{i}^{2}+2 F^{u, x_{i}} u_{i}+F^{x_{i}, x_{i}}
\end{aligned}
$$

Introduction

Convexity Problem Partial Convexity.

Main Results

Proof for CRP
Applications

- We have from structural conditions

$$
\begin{gathered}
J_{i} \geq-C\left(\phi+\sum_{i, j \in B}\left|\nabla u_{i j}\right|\right) \\
C \geq \sigma_{l}(G)+\frac{\sigma_{1}^{2}(B \mid i)-\sigma_{2}(B \mid i)}{\sigma_{1}^{2}(B)} \geq 0
\end{gathered}
$$

- Hence the inequality is reduced to

$$
\begin{gathered}
\sum_{\alpha, \beta} F^{\alpha \beta} \phi_{\alpha \beta} \leq C\left(\phi+\sum_{i, j \in B}\left|\nabla u_{i j}\right|\right) \\
-\sum_{\alpha, \beta} F^{\alpha \beta}\left(\frac{\sum_{i \in B} V_{i \alpha} V_{i \beta}}{\sigma_{1}^{3}(B)}+\frac{\sum_{i, j \in B, i \neq j} u_{i j \alpha} u_{j i \beta}}{\sigma_{1}(B)}\right)
\end{gathered}
$$

Introduction

Convexity Problem Partial Convexity.

$$
\sum_{i, j \in B}\left|\nabla u_{i j}\right| \leq \delta\left(\frac{\sum_{i \in B} V_{i \alpha} V_{i \beta}}{\sigma_{1}^{3}(B)}+\frac{\sum_{i, j \in B, i \neq j} u_{i j \alpha} u_{j i \beta}}{\sigma_{1}(B)}\right)+\frac{C}{\delta}(\phi+|\nabla \phi|)
$$

Page 40 of 44

Go Back

6. Applications

Convexity Preserving for Parabolic Bellman Equations

- Bian,Guan, 2008
- These equations are from finance problem in jump diffusion model
\square We obtain Macro nature convexity preserving by using constant rank theorem

Theorem 6.1 Assume
$F(A, p, u, x, t)$ is locally convex in (A, u, x) for each (p, t) fixed.
If $u \in C^{4,2}$ is a solution of equation, then $u(x, t)$ is convex provided the initial date $u(x, 0)$ is convex.

Partial convexity: CEV Model

- Terminal condition

$$
\begin{equation*}
V(x, s, T)=U(x), x>0 \tag{39}
\end{equation*}
$$

- We prove that $V(x, s, t)$ is smooth and strictly concave in x if $U(x)$ is concave and Inada, then get optimal investment strategy.
- Bian,Miao,Zheng, Smooth Value Functions for a Class of Nonsmooth Utility

Thank you!

Convexity Problem Partial Convexity.
 Main Results
 Proof for CRP

Introduction

Applications

Home Page

Title Page

4 4

4

Page 44 of 44

Go Back

Full Screen

