

Conference in Harmonic Analysis and Partial Differential Equations in Honour of Eric Sawyer

Fields Institute, University of Toronto, 2011

Home Page	
Title Page	
•	
Page 1 of 44	
Go Back	
Full Screen	
Close	
Quit	

Example 7 Fields Institute, UT, 2011 Conference in HA and PDE, Toronto, July 26-July 29, 2011

Convexity and Partial Convexity for Solution of Partial Differential Equations

BAOJUN BIAN

This talk is based on the joint works with Pengfei Guan

Department of Mathematics, Tongji University, China

Talk Outline

Convexity Problem

Partial Convexity Problem

Proof for CRP

Applications

Introduction Convexity Problem Partial Convexity... Main Results Proof for CRP Applications

Home	Home Page	
Title	Title Page	
••	•• ••	
•	Þ	
Page	Page 3 of 44	
Go I	Go Back	
Full Screen		
Close		
Quit		

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qu

1. Introduction

□ Heat Equation

• Consider the following Cauchy problem for heat equation

$$u_t - \frac{1}{2}u_{xx} = 0, (x, t) \in R \times (0, \infty)$$
 (1)

$$u(x,0) = \phi(x), x \in R \tag{2}$$

• Poisson Formula

$$u(x,t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\eta^2} \phi(x + \sqrt{2t}\eta) d\eta$$
(3)

• Convexity is Preserved(Improved): u(x,t) is convex in x if $\phi(x)$ is convex.

Home	Page		
Title	Page		
••	••		
	►		
Page 4	4 of 44		
Go Back			
Full S	Full Screen		
Close			
Quit			

□ Linear Equation

• Linear equation

$$u_t - a_{ij}(x, t)u_{x_i x_j} = 0, (x, t) \in \mathbb{R}^n \times (0, \infty)$$
(4)

$$u(x,0) = \phi(x), x \in \mathbb{R}^n \tag{5}$$

• Question: Is Convexity Preserved ?

• S.Janson and J.Tysk, Preservation of convexity of solutions to parabolic equations, JDE, 2004

• They solve this problem completely and get the sufficient and necessary condition

□ Sufficient and Necessary Condition

• Convexity Inequality:

$$2a_{ij}^{z}P_{ij}^{z} + 2a_{ij,z}^{z}N_{ij}^{z} + a_{ij,zz}^{z}M_{ij}^{z} \ge 0$$
(6)

for all unit vector z and for all $M, N, P \in S^n$ such that

$$\begin{pmatrix} M^z & N^z \\ N^{zT} & P^z \end{pmatrix} \ge 0$$

where

$$f^{z} = (f_{ij}^{z}), \ f_{ij}^{z} = (\delta_{ik} - z_{i}z_{k})f_{kl}(\delta_{lj} - z_{l}z_{j})$$

$$g_{,z} = \frac{\partial g}{\partial z}$$

• This condition holds true for n = 1 or if

$$a_{ij} = constant$$

Partial Convexity... Main Results Proof for CRP Applications

Home Page

Title Page

Page 6 of 44

Go Back

Full Screen

Close

Quit

Introduction Convexity Problem

Introduction Convexity Problem Partial Convexity... Main Results Proof for CRP Applications

• Linear equation of parabolic type

• P.L.Lions, M.Musiela, Convexity of solutions of parabolic equations, C.R.Acad. Sci. Paris, 2006

• They discuss the convexity preserving for linear equations and nonlinear equations by use of PDE approach

□ Stochastic Analysis Approach

• Solution can be expressed by expectation

$$u(x,t) = E(\phi(X_t)|X_0 = x)$$
 (7)

subject to the SDE

$$dX_t = bdt + \sqrt{2}\sigma(X_t)dW_t, \ X_0 = x$$

where

$$a_{ij} = \sigma_{ik}\sigma_{jk}$$

• Question: Is Convexity Preserved by Expectation?

Introduction Convexity Problem Partial Convexity... Main Results Proof for CRP Applications

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

□ Brascamp, Lieb, 1976, J. Functional Anal.

• On Extensions of the Brunn-Minkowski and Pr' ekopa- Leindler Theorems, Including Inequalities for Log-Concave Functions, and with an Application to the Diffusion Equation

 \Box C. Borell: Mixing PDE approach and stochastic approach.

♦ Log-concavity for fundamental solutions of diffusion equation.

- ♦ Log-concavity for first eigenfunction
- Srunn-Minkowski inequality for first eigenvalue

□ Related Problems

- Extension to nonlinear equation, such as Bellman equation and Geometric equation
- Elliptic equation: Existence of convex solution
- Convexity problem in bounded domain?

2. Convexity Problem

□ Convexity problem for Elliptic PDE

• Consider the following fully nonlinear elliptic partial differential equation

$$F(\nabla^2 u, \nabla u, u, x) = 0, x \in \Omega$$
(8)

$$u = ?, x \in \partial \Omega \tag{9}$$

where Ω is in \mathbb{R}^n or in the manifold, where F = F(r, p, u, x) is a given function in $\mathcal{S}^n \times \mathbb{R}^n \times \mathbb{R} \times \Omega$. The ellipticity of this equation is assumed.

Question Existence of convex solution for problem (8)-(9).

□ **Convexity Preserving Problem** This is the counterpart of elliptic convexity problem for solutions of parabolic equations. Consider the following

$$u_t = F(D^2u, Du, u, x, t), \quad (x, t) \in \Omega_T = \Omega \times (0, T]$$
(10)

$$u(x,0) = u_0(x), \quad x \in \Omega \tag{11}$$

$$u = ?, \ x \in \partial\Omega \times (0, T] \tag{12}$$

 \Box Question Assume that $u_0(x)$ is convex, is u(x, t) convex for t > 0?

 \Box Hessian flow equation. Curvature flow equation.

• M.C.Caputo, P.Daskalopoulos and N.Sesum, On the evolution of convex hyper-surfaces by the Q_k flow, arXiv:0904.0492v1

 \Box Some equations arising from mathematical finance.

Ноте	Home Page	
Title	Page	
44	••	
•	►	
Page	12 of 44	
Go	Go Back	
Full S	Full Screen	
Close		
Quit		

□ Main Points for Convexity

 \Box These convexity problems depend on the

- The form of equation, or function F(r, p, u, x).
- The boundary conditions

Some literatures are in manifolds without boundary(B.Guan, P. Guan). If one considers problem in manifolds with boundary or in domain, the boundary condition is important.

Ноте	Home Page		
Title	Page		
••	••		
•			
Page 1	3 of 44		
Go	Go Back		
Full S	Full Screen		
Close			
Quit			

- \Box Two classes of equations
- Hessian and Hessian quotient equation

$$F(\nabla^2 u, \nabla u, u, x) = \sigma_k(\lambda_1(\nabla^2 u), \cdots, \lambda_n(\nabla^2 u)) = 0,$$
(13)

where $\sigma_k(\lambda_1, \dots, \lambda_n)$ is the k - th elemental symmetry function. It includes Monge-Ampere equation, Hessian quotient equation, Curvature equation.

• Bellman equation

$$F(\nabla^2 u, \nabla u, u, x) = \sup_{\alpha \in A} \{a_{ij}^{\alpha}(x)D_{ij}u + b_i^{\alpha}(x)D_iu + c^{\alpha}(x)u - f^{\alpha}(x)\}$$

and Issacs equation arising from stochastic optimal problem and mathematical finance

$$F(\nabla^2 u, \nabla u, u, x) = \sup_{\alpha \in A} \inf_{\beta \in B} \{a_{ij}^{\alpha, \beta}(x) D_{ij}u + b_i^{\alpha, \beta}(x) D_i u + c^{\alpha, \beta}(x)u - f^{\alpha, \beta}(x)\}$$

Ноте	Home Page		
Title	Page		
••	••		
	►		
Page 1	Page 14 of 44		
Gol	Go Back		
Full S	Full Screen		
Close			
Quit			

□ Typical boundary conditions

• Infinite boundary(Neumann, Dirichlet) condition(B. Guan, H. Jian)

$$u = +\infty, \frac{\partial u}{\partial n} = -\infty, \ x \in \partial \Omega$$
 (14)

• State constrained condition from stochastic optimal control problems with stochastic viability. It is related to degenerate equation and viscosity solution.

$$F(D^2u, Du, u, x) = 0, x \in \Omega; F(D^2u, Du, u, x) \le 0, x \in \partial\Omega$$
(15)

Alvarez, Lasry and Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl. **76**(1997), 265-288

• Cauchy problem with growth condition at infinite

$$\Omega = R^n, \, \Omega = R^n_+$$

□ Related convexity problem: Constant Rank Principle(CRP)

• If u is a smooth convex solution of equation (8), is the rank of $D^2u(x)$, r(x), a constant in Ω ?

• If u is a smooth convex solution of equation (10), is the rank of $D^2u(x,t)$, r(x,t), a constant in x and monotone in t?

 \Box Constant Rank Principle is a powerful tool in the study of convexity, it is particularly useful in producing convex solutions of differential equations via homotopic deformations and by flow.

□ The great advantage of the microscopic convexity principle is that it can treat geometric equations involving tensors on general manifolds.

□ The CRP was initially studied by L. Caffarelli, A. Friedman and I. Singer, B. Wong, S.T. Yau, Stephen S.T. Yau in 1985.

□ There exist a vast of literatures: CRP and Convexity. Guan,

□ Ekstrom, E., and J. Tysk, The American Put Is Log-Concave in the Log-Price, J. Math. Anal. Appl., 2006

□ E.Ekstrom and J.Tysk, Properties of option prices in models with jumps, Mathematical Finance, 2007

□ Y.Giga, S.Goto, H.Ishii, M.H.Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J., 1991, 40:443-470.

Ноте	Home Page		
Title	Title Page		
44	•• ••		
•			
Page	Page 17 of 44		
Go Back			
Full Screen			
Close			
Quit			

3. Partial Convexity Problem

□ Elliptic Partially Convex Solution Existence of convex solution of elliptic equation in partial variables

$$F(D^2u, Du, u, x) = 0, \quad x \in \Omega$$
(16)

$$u =, \ x \in \partial \Omega \tag{17}$$

Question Let x = (x', x''). Is there solution u(x) = u(x', x'') of equation (16) which is convex in x'?

Partial Constant Rank Principle If u is a smooth solution of equation (16) and convex in x', is the rank of $D_{x'}^2 u(x)$ a constant in Ω ?

Home	e Page		
ПОПЕ	Faye		
Title	Page		
••	••		
Page	Page 18 of 44		
Go	Go Back		
Full S	Full Screen		
Cl	Close		
Quit			

□ Partial Convexity Problem for Parabolic Equation Convexity preserving for solutions of parabolic equations in partial variables

$$u_t = F(D^2u, Du, u, x, t), \quad (x, t) \in \Omega_T = \Omega \times (0, T]$$
(18)

$$u(x,0) = u_0(x), \quad x \in \Omega \tag{19}$$

$$u =, \ x \in \partial\Omega \times (0, T] \tag{20}$$

 \Box Question Let x = (x', x''), assume that $u_0(x', x'')$ is convex in x', is solution u(x, t) convex in x'?

 \Box **Partial Constant Rank Principle** If u is a smooth solution of equation (18) and convex in x', is the rank of $D^2_{x'}u(x,t)$ a constant in x and monotone in t in Ω_T ?

Motivations for Partial Convexity

□ The partial convexity of solutions to fully nonlinear equations in the form has significant geometric implications. In particular, it is important to understand this property for solutions of Monge-Ampere type equations(P.Guan's lecture in Fudan University, Aug. 2010).

 \Box Curvature flow equation.

 \Box Models in mathematical finance.

□ Example: Optimal Investment in CEV Model

• Constant Elasticity of Variance model

$$dS_t = S_t(\mu dt + \sigma S_t^\beta dW_t)$$
(21)

• Value function V(x, s, t)

$$V(x, s, t) = \sup_{\pi \in A} E(e^{r(t-T)}U(X_T)|X_t = x, S_t = s)$$
(22)

• Bellman Equation

$$\frac{\partial V}{\partial t} + \sup_{\pi \ge 0} \{ \frac{1}{2} \sigma^2 \pi^2 x^2 s^{2\beta} \frac{\partial^2 V}{\partial x^2} + \sigma^2 \pi x s^{2\beta+1} \frac{\partial^2 V}{\partial x \partial s} + (r + (\mu - r)\pi) x \frac{\partial V}{\partial x} \}$$

$$+\frac{1}{2}\sigma^2 s^{2\beta+2} \frac{\partial^2 V}{\partial s^2} + \mu s \frac{\partial V}{\partial s} - rV = 0, x, s > 0, t < T$$

• Terminal condition

$$V(x, s, T) = U(x), x > 0$$

Introduction Convexity Problem Partial Convexity... Main Results Proof for CRP Applications

(23)

Introduction Convexity Problem Partial Convexity... Main Results Proof for CRP Applications

Ноте	Home Page		
Title	Page		
••	••		
Page 2	Page 22 of 44		
Gol	Go Back		
Full S	Full Screen		
Close			
Quit			

□ Optimal Investment Strategy

• If value function V(x, s, t) is smooth and strictly concave in x, then we can construct optimal control

 \bullet Suppose U(x) is (strictly) concave, discuss the concavity for value function V(x,s,t) in x

4. Main Results

□ Constant Rank Theorem

♦ [Bian, Guan, 2009]Constant Rank Theorem for elliptic and parabolic equations.

◊ [Bian, Guan, 2010]Improvement of 2009's results and Partial Constant Rank Theorem for elliptic and parabolic equations.

□ Convexity Preserving for Parabolic Equation Convexity preserving for solutions of parabolic equations

◊ [Bian, Guan, 2008]Convexity preserving for parabolic equation and Bellman equation.

◊ []Partial convexity preserving for parabolic equation.

Ноте	Home Page	
Title	Page	
••	••	
•	►	
Page 23 of 44		
Go Back		
Full Screen		
Close		
Quit		

□ Main Theorem

• Theorem 4.1(CRP, Bian, Guan, 2009) Suppose $F = F(r, p, u, x) \in C^{2,1}$ and F satisfies condition

 $F(A^{-1}, p, u, x)$ is locally convex in (A, u, x) for each p fixed.

If $u \in C^{2,1}(\Omega)$ is a convex solution of

 $F(D^2u, Du, u, x) = 0, \ x \in \Omega$ (24)

then the rank of Hessian $(\nabla^2 u(x))$ is constant in Ω .

□ Improvement on structural condition for CRP

• Denote S^n_+ the space of positive definite real symmetric $n \times n$ matrices, for each fixed $p \in \mathbb{R}^n$, define the zero sub-level set

$$\Gamma_F = \{ (A, u, x) \in \mathcal{S}^n_+ \times \mathbb{R} \times \Omega | F(A^{-1}, p, u, x) \le 0 \}.$$
(25)

• Theorem 4.2(CRP, Bian, Guan, 2010) Let $F = F(r, p, u, x) \in C^{2,1}(\mathcal{S}^n \times \mathbb{R}^n \times \mathbb{R} \times \Omega)$ and let $u \in C^{2,1}(\Omega)$ be a convex solution of (13). Suppose F satisfies condition and at $(\nabla^2 u(x), \nabla u(x), u(x), x)$ for each $x \in \Omega$. If for each $x \in \Omega$ and $p = \nabla u(x)$,

 Γ_F is locally convex at (A, u(x), x), (26)

then the rank of the hessian $(\nabla^2 u(x))$ is constant in Ω .

• **Remark** We can prove this theorem under weaker condition

Ноте	Home Page		
Title	Page		
••	••		
•			
Page 2	Page 25 of 44		
	Go Back		
Full S	Full Screen		
Close			
Quit			

Example: Poisson Equation

• Consider

$$\Delta u - f(x) = 0, \ x \in \Omega \tag{27}$$

♦ The condition in Theorem 4.2 is that $\frac{1}{f(x)}$ is convex. This is the condition in L. Caffarelli, A. Friedman, 1985.

□ Parabolic Constant Rank Principle(Bian, Guan, 2009)

• Theorem 4.3(PCRP, 2009) Let $u \in C^{2,1}(\Omega \times [0,T))$ be a convex solution of the equation

$$\frac{\partial u}{\partial t} = F(\nabla^2 u, \nabla u, u, x, t), \tag{28}$$

and assume

$$F(A^{-1}, p, u, x, t)$$
 is locally convex in (A, u, x) for each (p, t) fixed. (29)

Suppose For each T > t > 0, let l(t) be the minimal rank of $(\nabla^2 u(x, t))$ in Ω . Then, the rank of $(\nabla^2 u(x, t))$ is constant for each T > t > 0 and $l(s) \le l(t)$ for all $s \le t < T$.

Home	Home Page		
Title	Page		
••	••		
•			
Page 2	Page 27 of 44		
Go	Go Back		
Full S	Full Screen		
C/	Close		
	Quit		
Quit			

Example: Linear Parabolic Equations

• Consider

$$-u_t + a_{ij}(x)D_{ij}u = 0, \ x \in \Omega$$
(30)

♦ The condition in Theorem 4.2 is the condition in S.Janson and J.Tysk, 2004.

□ Notations for Partial Convexity

• Let us write $x = (x', x'') \in \Omega$ and $p = (p', p'') \in R^N$ with $p' \in R^{N'}$, $p'' \in R^{N''}$ and split a matrix $A \in S^N$ into $\begin{pmatrix} a & b \\ b^T & c \end{pmatrix}$ with $a \in S^{N'}$, $b \in \mathbb{R}^{N' \times N''}$ and $c \in S^{N''}$. Let

$$\mathcal{S}^{N,\oplus} = \{ A \in \mathcal{S}^N | A = \begin{pmatrix} a & b \\ b^T & c \end{pmatrix}, a \in \mathcal{S}_+^{N'} \}$$

• Define for
$$(A, p, u, x) \in \mathcal{S}^{N, \oplus} \times \mathbb{R}^N \times \mathbb{R} \times \Omega$$

$$\tilde{F}(A, p'', u, x') = F((\begin{array}{cc} a^{-1} & a^{-1}b \\ (a^{-1}b)^T & c + b^T a^{-1}b \end{array}), p, u, x)$$

For each fixed $x^{''}$ and $p^{'} \in \mathbb{R}^{N^{'}}$, define the zero sub-level set

$$\Gamma_F = \{ (A, p^{''}, u, x^{'}) \in \mathcal{S}^{N, \oplus} \times \mathbb{R}^{N^{''}} \times \mathbb{R} \times \mathbb{R}^{N^{'}} | \tilde{F}(A, p^{''}, u, x^{'}) \le 0 \}.$$
(31)

Introduction Convexity Problem Partial Convexity... Main Results Proof for CRP Applications

Elliptic Partial Constant Rank Principle(Bian, Guan, 2010)

• Theorem 4.4(PCRP, 2010) Let $F = F(r, p, u, x) \in C^{2,1}(\mathcal{S}^N \times \mathbb{R}^N \times \mathbb{R} \times \Omega)$ and let $u \in C^{2,1}(\Omega)$ be a partial convex solution of (13). Suppose F satisfies condition

 Γ_F is locally convex at (A, p'', u, x'),

then the rank of the hessian $(\nabla_{x'}^2 u(x))_{N' \times N'}$ is constant in $x = (x', x^{"}) \in \Omega$. If l is the rank of $(\nabla_{x'}^2 u(x))_{N' \times N'}$, then $\forall x_0 \in \Omega$, there exist a neighborhood U of x_0 and (N'-l) fixed directions $V_1, \ldots, V_{N'-l} \in \mathbb{R}^{N'}$ such that $(\nabla_{x'}^2 u(x))_{N' \times N'} V_j = 0$ for all $1 \leq j \leq N' - l$ and $x \in U$.

□ Parabolic Partial Constant Rank Principle(Bian, Guan, 2010)

• Theorem 4.5(PPCRP, 2010) Let $u \in C^{2,1}(\Omega \times [0,T))$ be a smooth and partially convex(in x') solution of the equation

$$\frac{\partial u}{\partial t} = F(\nabla^2 u, \nabla u, u, x, t),$$
(32)

and assume

$$\tilde{F}(A^{-1}, p'', u, x', t)$$
 is locally convex in (A, u, x) for each (p', x'', t) fixed.
(33)

Suppose For each T > t > 0, let l(t) be the minimal rank of $(\nabla_{x'}^2 u(x, t))$ in Ω . Then, the rank of $(\nabla_{x'}^2 u(x, t))$ is constant for each T > t > 0 and $l(s) \le l(t)$ for all $s \le t < T$.

Ноте	Home Page		
Title	Title Page		
••	••		
•			
Page 3	Page 31 of 44		
Go	Go Back		
	Full Screen		
	Close		
Q	Quit		

Example: Partial Convexity Preserving for Linear Parabolic Equations

• Consider

$$u_t = \sum_{i,j=1}^N a_{ij}(x) D_{ij} u, \ x \in \Omega$$

• The condition in Theorem 4.5 is

$$a_{ij,x_k} = 0, \ 1 \le k \le N', \ N' + 1 \le i, j \le N$$

$$a_{ij,x_kx_l} = 0, \ 1 \le i,k,l \le N', \ N' + 1 \le j \le N$$

Ноте	Home Page		
Title	Title Page		
••	••		
•	Þ		
Page 3	Page 32 of 44		
Go	Go Back		
Full S	Full Screen		
Close			
Quit			

Introduction Convexity Problem Partial Convexity... Main Results Proof for CRP Applications

Ноте	Home Page		
Title	Title Page		
••	••		
•	•		
Page 33 of 44			
Go Back			
Full S	Full Screen		
Close			
Quit			

and the convexity inequality

$$\sum_{i,j=1}^{N} \left[a_{ij,zz}^{z} M_{ij}^{z} + 2a_{ij,z}^{z} N_{ij}^{z} + 2a_{ij}^{z} P_{ij}^{z} \right] \ge 0$$

for all unit vector $z \in \mathbb{R}^N$ with $z_k = 0, N' + 1 \le k \le N$ and for all M, N, P such that

$$\begin{pmatrix} M^z & N^z \\ (N^z)^T & P^z \end{pmatrix} \ge 0$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

5. Proof for CRP

Key points in proof

 \Box To consider function $\sigma_{l+1}(\nabla_{x'}^2 u)$ here *l* the minimal rank of $\nabla_{x'}^2 u$. $\nabla_{x'}^2 u$ is of constant rank is equivalent to $\sigma_{l+1}(\nabla_{x'}^2 u) \equiv 0$.

 \Box When deal with general equation, linear terms of third order derivatives of u (i.e., the gradient of the symmetric tensor $\nabla^2 u$) will appear. How to control them is the major challenge.

 \Box We introduce a new auxiliary function which is composed as a quotient of elementary symmetric functions $\frac{\sigma_{l+2}(\nabla_{x'}^2 u)}{\sigma_{l+1}(\nabla_{x'}^2 u)}$ near points where $\nabla_{x'}^2 u(x)$ is of minimal rank l. We show $\frac{\sigma_{l+2}(\nabla_{x'}^2 u)}{\sigma_{l+1}(\nabla_{x'}^2 u)}$ has optimal C^{1+1} , regularity.

Introduction Convexity Problem Partial Convexity... Main Results Proof for CRP Applications

Home Page

Title Page

Page 34 of 44

Go Back

Full Screen

Close

Quit

••

□ Step 1: Auxiliary function

Define for $W = (\nabla_{x'}^2 u) \in \mathcal{S}^{N'}$

$$\phi = \sigma_{l+1}(W) + q(W) \tag{34}$$

here

$$q(W) = \begin{cases} \frac{\sigma_{l+2}(W)}{\sigma_{l+1}(W)}, & \text{if } \sigma_{l+1}(W) > 0\\ 0, & \text{if } \sigma_{l+1}(W) = 0 \end{cases}$$
(35)

• Lemma 4.1 Let $u \in C^{3+1,1+1}(\Omega)$ be a convex function in x' and $W(x) = (\nabla_{x'}^2 u), x \in \Omega$. Let $l = \min_{x \in \Omega} \operatorname{rank}(W(x))$, then the functions q(x) = q(W(x)) and $\phi(x)$ is in $C^{1+1,1+0}(\Omega)$.

□ Step 2: Differential inequality

• Lemma 4.2 Suppose that the function F satisfies conditions, let $u \in C^{3+1,1+1}(\Omega)$ is a partially convex solution. If $(\nabla_{x'}^2 u)$ attains minimum rank l at certain point $x_0 \in \Omega$, then there exist a neighborhood \mathcal{O} of x_0 and a positive constant C independent of ϕ), such that

$$\sum_{\alpha,\beta=1}^{N} F^{\alpha\beta}\phi_{\alpha\beta}(x',x'') \le C(\phi + |\nabla\phi|), \quad \forall x = (x',x'') \in \mathcal{O}.$$
(36)

In turn, $(\nabla_{x'}^2 u)$ is of constant rank in \mathcal{O} .

• We prove inequality (36) from partial differential equation, structure condition and estimates.

Ноте	Home Page		
	Title Page		
••	>>		
•	►		
Page 3	Page 36 of 44		
Go	Go Back		
Full S	Full Screen		
Close			
Quit			

□ Proof of Lemma 4.2:

• Let $W(x) = (\nabla^2 u(x))_{N' \times N'}$ and $l = \min_{x \in \Omega} \operatorname{rank} W(x)$. Since l = N' is of full rank, only $l \leq N' - 1$ is of interest.

• For each $x_0 \in \Omega$ where W is of minimal rank l. Pick an open neighborhood \mathcal{O} of x_0 , for any $x \in \mathcal{O}$, let $\lambda_1(x) \leq \lambda_2(x) \dots \leq \lambda_{N'}(x)$ be the eigenvalues of W at x. There is a positive constant C > 0 depending only on $||u||_{C^{3,1}}$, $W(z_0)$ and \mathcal{O} , such that $\lambda_{N'}(x) \geq \lambda_{N'-1}(x) \dots \geq \lambda_{N'-l+1}(x) \geq C$ for all $x \in \mathcal{O}$. Let $G = \{N' - l + 1, N' - l + 2, \dots, N'\}$ and $B = \{1, \dots, N' - l\}$ be the "good" and "bad" sets of indices respectively.

 \Box Differentiate equation in x_i and then x_j

$$F(\nabla^2 u, \nabla u, u, x) = 0$$

we obtain by the definition of ϕ

$$\sum_{\alpha,\beta=1}^{N} F^{\alpha\beta} \phi_{\alpha\beta}$$

$$= O(\phi + \sum_{i,j\in B} |\nabla u_{ij}|) - \sum_{\alpha,\beta=1}^{N} F^{\alpha\beta} \left[\frac{\sum_{i\in B} V_{i\alpha} V_{i\beta}}{\sigma_1^3(B)} + \frac{\sum_{i,j\in B, i\neq j} u_{ij\alpha} u_{ji\beta}}{\sigma_1(B)} - \sum_{i\in B} [\sigma_l(G) + \frac{\sigma_1^2(B|i) - \sigma_2(B|i)}{\sigma_1^2(B)}] J_i$$

• where

$$V_{i\alpha} = u_{ii\alpha}\sigma_1(B) - u_{ii}(\sum_{j \in B} u_{jj\alpha})$$

Home Page		
Title Page		
••	••	
•	Þ	
Page 38 of 44		
Go Back		
Full Screen		
Close		
Quit		

$$J_{i} = \sum_{\alpha,\beta,\gamma,\eta\notin B} F^{\alpha\beta,\gamma\eta} u_{i\alpha\beta} u_{i\gamma\eta} + 2\sum_{\alpha,\beta\notin B} F^{\alpha\beta} \sum_{j\in G} \frac{1}{\lambda_{j}} u_{ij\alpha} u_{ij\beta}$$

$$+2\sum_{\alpha,\beta\notin B} \left(\sum_{k=N'+1}^{N} F^{\alpha\beta,p_k} u_{\alpha\beta i} u_{ik} + F^{\alpha\beta,u} u_{i\alpha\beta} u_i + F^{\alpha\beta,x_i} u_{i\alpha\beta}\right)$$

$$+\sum_{k,l=N'+1}^{N} F^{p_k,p_l} u_{ik} u_{il} + 2\sum_{k=N'+1}^{N} (F^{p_k,u} u_{ik} u_i + F^{p_k,x_i} u_{ik}) + F^{u,u} u_i^2 + 2F^{u,x_i} u_i + F^{x_i,x_i},$$

• We have from structural conditions

 \square

$$J_i \ge -C(\phi + \sum_{i,j \in B} |\nabla u_{ij}|)$$

$$C \ge \sigma_l(G) + \frac{\sigma_1^2(B|i) - \sigma_2(B|i)}{\sigma_1^2(B)} \ge 0$$

• Hence the inequality is reduced to

$$\sum_{\alpha,\beta} F^{\alpha\beta} \phi_{\alpha\beta} \leq C(\phi + \sum_{i,j\in B} |\nabla u_{ij}|)$$
$$-\sum_{\alpha,\beta} F^{\alpha\beta} \left(\frac{\sum_{i\in B} V_{i\alpha} V_{i\beta}}{\sigma_1^3(B)} + \frac{\sum_{i,j\in B, i\neq j} u_{ij\alpha} u_{ji\beta}}{\sigma_1(B)}\right)$$

• Estimate for term $\sum_{i,j\in B} |\nabla u_{ij}|$

$$\sum_{i,j\in B} |\nabla u_{ij}| \le \delta\left(\frac{\sum_{i\in B} V_{i\alpha} V_{i\beta}}{\sigma_1^3(B)} + \frac{\sum_{i,j\in B, i\neq j} u_{ij\alpha} u_{ji\beta}}{\sigma_1(B)}\right) + \frac{C}{\delta}(\phi + |\nabla\phi|)$$

Introduction Convexity Problem Partial Convexity... Main Results Proof for CRP Applications

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qu

6. Applications

□ Convexity Preserving for Parabolic Bellman Equations

- Bian, Guan, 2008
- Integro-differential equation

$$u_t = F(\nabla^2 u, \nabla u, u, x, t) + Bu, \ (x, t) \in \mathbb{R}^n \times [0, T],$$
 (37)

where Bu is a integro-differential operator

$$Bu = \int_0^1 (u(x + \psi(x, t, \eta), t) - u(x, t))$$
$$-\psi(x, t, \eta) \cdot \nabla u(x, t)) d\eta$$

• These equations are from finance problem in jump diffusion model


```
Home Page

      Title Page

      Image

      Image
```

\Box We obtain Macro nature convexity preserving by using constant rank theorem

□ Theorem 6.1 Assume

F(A, p, u, x, t) is locally convex in (A, u, x) for each (p, t) fixed. (38)

If $u \in C^{4,2}$ is a solution of equation, then u(x,t) is convex provided the initial date u(x,0) is convex.

• Our result works for the Bellman equations

$$F(\nabla^2 u, \nabla u, u, x, t) = \sup_{\alpha \in A} \{a_{ij}^{\alpha}(x)D_{ij}u + b_i^{\alpha}(x)D_iu + c^{\alpha}(x)u - f^{\alpha}(x)\}$$

□ Partial convexity: CEV Model

• Terminal condition

$$V(x, s, T) = U(x), x > 0$$
 (39)

• We prove that V(x, s, t) is smooth and strictly concave in x if U(x) is concave and Inada, then get optimal investment strategy.

□ Related work on Black-Schoeles model: By use of Full convexity preserving

• Bian, Miao, Zheng, Smooth Value Functions for a Class of Nonsmooth Utility Maximization Problems, SIAM J. Financial Mathematics, to appear

Ноте	Home Page	
Title	Title Page	
••	>>	
•		
Page 4	Page 44 of 44	
Go	Go Back	
Full S	Full Screen	
Close		
Quit		