Unimodularity of roots of self-inversive polynomials

Matilde Lalín (Université de Montréal)
joint with Mathew Rogers (Université de Montréal),
Chris Smyth (University of Edinburgh)
mlalin@dms.umontreal.ca
http://www.dms.umontreal.ca/~mlalin

3rd Montreal-Toronto Workshop in Number Theory October 7-9, 2011

When do polynomials have their roots on the unit circle?

Theorem (Cohn, 1922)
A polynomial $P(z) \in \mathbb{C}[z]$ has all its roots on the unit circle $\{|z|=1\}$ iff

- $P(z)$ is self-inversive and
- $P^{\prime}(z)$ has all its roots in or on the unit circle $\{|z| \leq 1\}$.
$P(z) \in \mathbb{C}[z]$, deg $P(z)=d$, self-inversive if

$$
P(z)=\varepsilon z^{d} \bar{P}(1 / z) \quad \text { for some constant } \varepsilon
$$

Then

$$
P(z)=\sum_{j=0}^{d} A_{j} z^{j}, \quad A_{j}=\varepsilon \overline{A_{d-j}}
$$

Ramanujan's formula for $\zeta(2 k-1)$

$$
\begin{gathered}
\frac{(2 \pi)^{2 k-1}}{2(2 k)!} \sum_{j=0}^{k}(-1)^{j} B_{2 j} B_{2 k-2 j}\binom{2 k}{2 j} z^{2 j}+\frac{\zeta(2 k-1)}{2}\left((-1)^{k} z+z^{2 k-1}\right) \\
\quad=-\sum_{n=1}^{\infty} \frac{1}{n^{2 k-1}} \frac{z^{2 k-1}}{e^{2 \pi n / z}-1}+(-1)^{k+1} \sum_{n=1}^{\infty} \frac{1}{n^{2 k-1}} \frac{z}{e^{2 \pi n z}-1} .
\end{gathered}
$$

for $z \notin i \mathbb{Q}$.
Analog of Euler's formula for $\zeta(2 k)$:

$$
\zeta(2 k)=\frac{(-1)^{k+1} B_{2 k}(2 \pi)^{2 k}}{2(2 k)!}
$$

Ramanujan's polynomials

$$
\begin{gathered}
\frac{(2 \pi)^{2 k-1}}{2(2 k)!} \sum_{j=0}^{k}(-1)^{j} B_{2 j} B_{2 k-2 j}\binom{2 k}{2 j} z^{2 j}+\frac{\zeta(2 k-1)}{2}\left((-1)^{k} z+z^{2 k-1}\right) \\
=-\sum_{n=1}^{\infty} \frac{1}{n^{2 k-1}} \frac{z^{2 k-1}}{e^{2 \pi n / z}-1}+(-1)^{k+1} \sum_{n=1}^{\infty} \frac{1}{n^{2 k-1}} \frac{z}{e^{2 \pi n z}-1} . \\
R_{2 k-1}(z):=\sum_{j=0}^{k} \frac{B_{2 j} B_{2 k-2 j}}{(2 j)!(2 k-2 j)!} z^{2 j} .
\end{gathered}
$$

Theorem (M.R. Murty, Smyth, Wang (2010))
For $k \geq 2, R_{2 k-1}(z)$

- Has exactly four distinct real roots. The largest one tends to 2 as k goes to infinity.
- All nonreal zeros lie on the unit circle
- The only roots of unity that are zeros are
- Both ± 1 if k is odd.
- All four of $\pm e^{ \pm 2 \pi i / 3}$ if $k \equiv 1(\bmod 3)$, and no others.

Their motivation comes from Gun, M. R. Murty, and Rath (2010)...

Theorem (Grosswald (1970))
Let

$$
\sigma_{k}(n)=\sum_{d \mid n} d^{k}
$$

and set

$$
F_{k}(z)=\sum_{n=1}^{\infty} \frac{\sigma_{k}(n)}{n^{k}} e^{2 \pi i n z}
$$

for $\operatorname{Im}(z)>0$. Then
$F_{2 k-1}(z)-z^{2 k-2} F_{2 k-1}\left(-\frac{1}{z}\right)=\frac{1}{2} \zeta(2 k-1)\left(z^{2 k-2}-1\right)+\frac{(2 \pi i)^{2 k-1}}{2 z} R_{2 k-1}(z)$.
$F_{2 k-1}$ is an Eichler integral

$$
F_{k}(z)=\frac{(2 \pi i)^{k}}{(k-1)!} \int_{i \infty}^{z}\left(E_{k+1}(\tau)+\frac{B_{k+1}}{2(k+1)}\right)(\tau-z)^{k-1} d \tau
$$

$$
\begin{gathered}
\frac{(2 \pi)^{2 k-1}}{2(2 k)!} \sum_{j=0}^{k}(-1)^{j} B_{2 j} B_{2 k-2 j}\binom{2 k}{2 j} z^{2 j}+\frac{\zeta(2 k-1)}{2}\left((-1)^{k} z+z^{2 k-1}\right) \\
\quad=-\sum_{n=1}^{\infty} \frac{1}{n^{2 k-1}} \frac{z^{2 k-1}}{e^{2 \pi n / z}-1}+(-1)^{k+1} \sum_{n=1}^{\infty} \frac{1}{n^{2 k-1}} \frac{z}{e^{2 \pi n z}-1} .
\end{gathered}
$$

Case $k=2$, left-hand side yields

$$
z^{4}+5 z^{2}+1-\frac{90 \zeta(3)}{\pi^{3}}\left(z^{3}+z\right)=0
$$

has all of its zeros on the unit circle.
Is this true in general?

Theorem

$$
\begin{aligned}
P_{k}(z):= & \frac{(2 \pi)^{2 k-1}}{(2 k)!} \sum_{j=0}^{k}(-1)^{j} B_{2 j} B_{2 k-2 j}\binom{2 k}{2 j} z^{2 j} \\
& +\zeta(2 k-1)\left(z^{2 k-1}+(-1)^{k} z\right) \\
Q_{k}(z):= & \left(2^{2 k}+1\right) P_{k}(z)-2^{2 k} P_{k}(z / 2)-P_{k}(2 z), \\
W_{k}(z):= & \left(2^{2 k-1}+2\right) P_{k}(z)-2^{2 k} P_{k}(z / 2)-P_{k}(2 z), \\
S_{k}(z):= & \sum_{j=0}^{k} E_{2 j} E_{2 k-2 j}\binom{2 k}{2 j} z^{2 j} .
\end{aligned}
$$

have all its nontrivial roots on the unit circle.

$$
\begin{aligned}
Q_{k}(z): & =\frac{(2 \pi)^{2 k-1}}{(2 k)!} \sum_{j=0}^{k}(-1)^{j} B_{2 j} B_{2 k-2 j}\left(2^{2 j}-1\right)\left(2^{2 k-2 j}-1\right)\binom{2 k}{2 j} z^{2 j} \\
& +\zeta(2 k-1)\left(2^{2 k-1}-1\right)\left((-1)^{k} z+z^{2 k-1}\right) \\
W_{k}(z):= & \frac{(2 \pi)^{2 k-1} 2^{2 k}}{(2 k)!} \sum_{j=0}^{k}(-1)^{j} B_{2 j} B_{2 k-2 j}\left(1-2^{1-2 j}\right)\left(1-2^{1-2 k+2 j}\right)\binom{2 k}{2 j} z^{2 j}
\end{aligned}
$$

The polynomial $S_{k}(z)$ appears in another identity of Ramanujan:

$$
\begin{aligned}
& \frac{(\pi / 2)^{2 k+1}}{2(2 k)!} S_{k}(i z)=z^{2 k} \sum_{n=1}^{\infty} \frac{\chi_{-4}(n) \sec (\pi n / 2 z)}{n^{2 k+1}} \\
& \quad+(-1)^{k} \sum_{n=1}^{\infty} \frac{\chi_{-4}(n) \sec (\pi n z / 2)}{n^{2 k+1}}
\end{aligned}
$$

Proof for $S_{k}(z)$

Uses

Theorem (Lakatos, Losonczi, Schinzel, 2002-09)
If

$$
f(z)=\sum_{j=0}^{k} A_{j} z^{j}
$$

is reciprocal and there is a $c \in \mathbb{C}$ such that

$$
\left|A_{k}\right| \geq \sum_{j=0}^{k}\left|c A_{j}-A_{k}\right|
$$

then $f(z)$ has all of its zeros on the unit circle. If inequality is strict, zeros are simple.

Proof for $S_{k}(z)$

The proof uses the Euler polynomial binomial convolution

$$
\sum_{j=0}^{n}\binom{n}{j} E_{j}(v) E_{n-j}(w)=2(1-w-v) E_{n}(v+w)+2 E_{n+1}(v+w)
$$

and inequalities

$$
\begin{gathered}
\frac{4^{k+1}(2 k)!}{\pi^{2 k+1}}>\left|E_{2 k}\right|>\frac{4^{k+1}(2 k)!}{\pi^{2 k+1}\left(1+3^{-1-2 k}\right)} \\
c=\frac{\pi}{4\left(1+3^{-1-2 k}\right)}
\end{gathered}
$$

Understanding the proof

$$
f(z)=\sum_{j=0}^{k} A_{j} z^{2 j}, \quad\left|A_{k}\right| \geq \sum_{j=0}^{k}\left|c A_{j}-A_{k}\right|
$$

implies

$$
\left|\frac{c}{A_{k}} f(z)-\frac{z^{2(k+1)}-1}{z^{2}-1}\right|<1
$$

$z=e^{i \theta}$,

$$
\frac{\sin ((k+1) \theta)}{\sin (\theta)}
$$

has $2 k$ extremes of absolute value ≥ 1 and alternating sign in the unit circle.

$$
\frac{(2 j+1) \pi}{2(k+1)}, \quad j=-k, \ldots, 0, \ldots, k-1
$$

We can replace $\frac{z^{2(k+1)}-1}{z^{2}-1} \ldots$

Proof of $W_{k}(z)$

$$
W_{k}(z):=\frac{(2 \pi)^{2 k-1} 2^{2 k}}{(2 k)!} \sum_{j=0}^{k}(-1)^{j} B_{2 j} B_{2 k-2 j}\left(1-2^{1-2 j}\right)\left(1-2^{1-2 k+2 j}\right)\binom{2 k}{2 j} z^{2 j}
$$

we will compare it with

$$
w_{k}(z)=\left(z^{k}+z^{-k}\right)+\frac{\pi^{2}}{6}\left(z^{k-2}+z^{2-k}\right)+\frac{2}{\left(1-2^{1-2 k}\right)} \frac{z^{k-3}-z^{3-k}}{z-z^{-1}}
$$

Proof of $W_{k}(z)$

$$
\begin{gathered}
W_{k}(i z)=\sum_{j=0}^{k} A_{j} z^{2 j} \\
w_{k}(z)=\left(z^{k}+z^{-k}\right)+\frac{\pi^{2}}{6}\left(z^{k-2}+z^{2-k}\right)+\frac{2}{\left(1-2^{1-2 k}\right)} \frac{z^{k-3}-z^{3-k}}{z-z^{-1}} .
\end{gathered}
$$

The A_{j} have all sign $(-1)^{k}$.

$$
\frac{\pi^{2}}{6}=\lim _{k \rightarrow \infty} \frac{A_{1}}{A_{0}} \quad \frac{A_{j}}{A_{0}}<\frac{2}{\left(1-2^{1-2 k}\right)}
$$

Combining with the Bernoulli polynomial binomial convolution,

$$
\left|\frac{z^{-k} W_{k}(i z)}{A_{0}}-w_{k}(z)\right|<0.3
$$

Proof of $W_{k}(z)$

$$
z=e^{i \theta}
$$

$$
w_{k}(\theta)=\cos ((k-1) \theta) \cos (\theta)\left(\frac{\pi^{2}}{3}+2-\frac{4}{\left(1-2^{1-2 k}\right)}\right)
$$

$$
+\sin ((k-1) \theta)\left(\left(\frac{\pi^{2}}{3}-2-\frac{4}{\left(1-2^{1-2 k}\right)}\right) \sin \theta+\frac{2}{\left(1-2^{1-2 k}\right)} \frac{1}{\sin \theta}\right)
$$

If we evaluate at

$$
\theta= \begin{cases}\frac{j \pi}{k-1} & \frac{j}{k-1} \notin(\alpha, 1-\alpha) \cup(\alpha-1,-\alpha) \\ \frac{(2 j-1) \pi}{2(k-1)} & \frac{(2 j-1) \pi}{2(k-1)} \in(\alpha, 1-\alpha) \cup(\alpha-1,-\alpha)\end{cases}
$$

with certain α.
We obtain $2 k$ points of absolute values >0.3 and alternating sign.

This method works as well with $Q_{k}(z) \ldots$
... but not with $P_{k}(z)$.

A "generalization" of Cohn's result

Proposition

$h(z)$ monic, $\operatorname{deg} h=n$, all its zeros in $|z| \leq 1$.
$d>n$ and any λ such that $|\lambda|=1$, then

$$
P^{(\lambda)}(z)=z^{d-n} h(z)+\lambda h^{*}(z)
$$

has all its zeros on the unit circle.
Conversely, $P(z)$ monic self-inversive with roots on the unit circle, we can always find $h(z)\left(h(z)=\frac{P^{\prime}(z)}{d}\right)$.

Here $h^{*}(z)=z^{n} h(1 / z)$.

Corollary
If

$$
f(z)=\sum_{j=0}^{k} A_{j} z^{j}
$$

is reciprocal and

$$
2\left|A_{k}\right| \geq \sum_{j=0}^{k-1}\left|A_{j}-A_{j+1}\right|
$$

then $f(z)$ has all of its zeros on the unit circle.
Proof by looking at $(z-1) f(z)$.
This implies Schinzel's result.

Proof of $P_{k}(z)$

Lemma

Let h be as before, with $|h(z)| \geq c>0$ for $|z|=1$. Let $e(z)$ be another (not necessarily monic) polynomial deg $e=m$ such that $|e(z)| \leq c$ for $|z|=1$. Then for $k>m, n$ the self-inversive polynomial

$$
z^{2 k-n} h(z)+z^{k} e(z)+\lambda\left(h^{*}(z)+z^{k-m} e^{*}(z)\right)
$$

has all its zeros on the unit circle.

We can write,

$$
\begin{gathered}
-\frac{\pi}{\zeta(2 k)}\left(z^{2}+1\right) P_{k}(z)=H_{r}(z)+E_{r}(z) \\
H_{4}(z)=z^{2 k-6} h_{4}(z)+(-1)^{k} h_{4}^{*}(z), \\
E_{4}(z)=z^{k+2} e_{4}(z)+(-1)^{k} z e_{4}^{*}(z), \\
\left|e_{4}(z)\right| \leq 0.019, \quad k \geq 11, \quad|z|=1 \\
h_{4}(z)=z^{8}-3.141592654 z^{7}+4.289868136 z^{6}-3.141592654 z^{5} \\
+1.125221668 z^{4}-0.129960342 z^{2}+0.026531411
\end{gathered}
$$

Zeros satisfy $|z|<1$ and

$$
0.02146485500 \leq\left|h_{4}(z)\right|, \text { in }\{|z|=1\}
$$

Lemma to h_{4} and e_{4} with $c=0.019$.

Further questions

- Explore consequences of the new criterion.
- Can we say anything about the arithmetic nature of $\zeta(2 k-1)$?

Thank you! Merci!

