Elliptic fibrations on the modular surface associated to $\Gamma_{1}(8)$
 arXiv:1105.6312v1 [math.AG] 31 May 2011

Marie José BERTIN \& Odile LECACHEUX

Institut Mathématique de Jussieu
Université Paris 6
4 Place Jussieu, 75005 PARIS

bertin@math.jussieu.fr; lecacheu@math.jussieu.fr
20 August, 2011

Introduction

Motivation:

- ranks of elliptic curves (Lecacheux)
- links between the Mahler measure of K3-surfaces and their L-series (Bertin)

Introduction

The story begins with the family $\left(Y_{k}\right)$ of K3-surfaces

$$
\left(Y_{k}\right) X+\frac{1}{X}+Y+\frac{1}{Y}+Z+\frac{1}{Z}=k
$$

For $k=2,3,6,10,18,102,198$ and some rational k^{2}, Y_{k} is a singular $K 3$ i.e. with Picard number $\rho=20$ (Boyd (computational), Schütt)

- Y_{2} has transcendental lattice

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right)
$$

- with the elliptic fibration of parameter $X+Y+Z=s, Y_{2}$ comes from the elliptic pencil of Beukers-Stienstra

$$
x y z+\tau(x+y)(x+z)(y+z)=0
$$

where $1 / \tau=(s-1)^{2}$

- with parameter s, the singular fibers are of Dynkin type $A_{11}, A_{5}, 2 A_{1}$ or equivalently of Kodaira type $I_{12}, I_{6}, 2 I_{2}, 2 I_{1}$ and

Mordell-Weil group: $\mathbb{Z} / 6 \mathbb{Z}$

Introduction

- Y_{2} carries also the structure of the modular elliptic surface for $\Gamma_{1}(8)$ with parameter $Z=s$, the singular fibers are of
Dynkin type $2 A_{7}, A_{3}, A_{1}$
i.e. Kodaira type $2 I_{8}, I_{4}, I_{2}, 2 I_{1}$

Mordell-Weil group: $\mathbb{Z} / 8 \mathbb{Z}$

Previous results

Elkies gave a list of $11 D<0$ corresponding to a unique $K 3$ over \mathbb{Q} with NS of rank 20 and discriminant $-D$ consisting entirely of classes of divisors over \mathbb{Q}
For $D=-8$, he obtained a model

$$
y^{2}=x^{3}-675 x+27\left(27 t-196+\frac{27}{t}\right)
$$

with $2 E_{8}\left(=2 / I^{*}\right)$ fibers at $t=0$ and $t=\infty$ and $A_{1}\left(=I_{2}\right)$ at $t=-1$ $\mathrm{M}-\mathrm{W}$ has rank 1 and no torsion

Previous results

Schütt proved the existence of $K 3$ surfaces of Picard rank 20 over \mathbb{Q} and gave for the discriminant $D=-8$ an elliptic fibration with singular fibers $A_{3}, E_{7}, E_{8}\left(I_{4}, I I I^{*}, I I^{*}\right)$

Previous results

Shimada \& Zhang obtained a list, without equations but with M-W, of extremal K3 surfaces.
In particuliar 14 extremal elliptic K3 with transcendental lattice

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right)
$$

The results (B-L)

Theorem

(B-L) There are 30 elliptic fibrations with section, distinct up to isomorphism, on the elliptic surface

$$
X+\frac{1}{X}+Y+\frac{1}{Y}+Z+\frac{1}{Z}=2
$$

listed with the rank and torsion of their Mordell-Weil group.
The list contains 14 fibrations of rank 0, 13 fibrations of rank 1 and 3 fibrations of rank 2.
For each fibration, a Weierstrass model is determined.

Table of fibrations

parameter	singular fibers	type of reductible fibers	Rank	Torsion
$1-s$	$2 I_{8}, I_{4}, I_{2}, 2 I_{1}$	$A_{1}, A_{3}, A_{7}, A_{7}$	0	8
$2-k$	$I_{1}^{*}, I_{12}, I_{2}, 3 I_{1}$	A_{11}, A_{1}, D_{5}	1	4
$3-v$	$I_{8}, I_{10}, 6 I_{1}$	A_{7}, A_{9}	2	0
$4-a$	$I_{8}, I_{1}^{*}, I_{6}, 3 I_{1}$	D_{5}, A_{5}, A_{7}	1	0
$5-d$	$2 I_{2}^{*}, I_{2}, I_{0}^{*}$	$A_{1}, D_{4}, 2 D_{6}$	1	2×2
$6-p$	$I_{2}^{*}, I_{4}^{*}, I_{2}, I_{4}$	$A_{1}, D_{6}, A_{3}, D_{8}$	0	2×2
$7-w$	$I_{6}, I_{12}, 2 I_{2}, 2 I_{1}$	$A_{5}, A_{1}, A_{1} A_{11}$	0	6
$8-b$	$2 I I^{*}, I_{6}, 2 I_{1}$	A_{5}, E_{6}, E_{6}	1	3
$9-r$	$I_{6}^{*}, I_{2}^{*}, I_{2}, 2 I_{1}$	D_{6}, A_{1}, D_{10}	1	0
$10-e$	$I I I^{*}, I_{4}^{*}, 2 I_{2}, I_{1}$	$A_{1}, A_{1}, D_{8}, E_{7}$	1	2
$11-f$	$I I I^{*}, I I^{*}, I_{4}, I_{1}$	E_{7}, A_{3}, E_{8}	0	0
$12-g$	$2 I I I^{*}, I_{4}, I_{2}$	$E_{7}, E_{7}, A_{1}, A_{3}$	0	2
$13-h$	$2 I I^{*}, I_{2}, 2 I_{1}$	A_{1}, E_{8}, E_{8}	1	0
$14-t$	$2 I_{4}^{*}, I_{2}, 2 I_{1}$	A_{1}, D_{8}, D_{8}	1	2

parameter	singular fibers	type of reductible fibers	Rank	Torsion
$15-I$	$I_{10}, I_{3}^{*}, 5 I_{1}$	A_{9}, D_{7}	2	0
$16-o$	$I_{12}^{*}, I_{2}, 4 I_{1}$	A_{1}, D_{16}	1	2
$17-q$	$I_{10}^{*}, I_{4}, I_{2}, 2 I_{1}$	A_{3}, A_{1}, D_{14}	0	2
$18-m$	$I_{16}, 3 I_{2}, 2 I_{1}$	$A_{1}, A_{1}, A_{1}, A_{15}$	0	4
$19-n$	$I_{16}, I_{2}, 6 I_{1}$	A_{1}, A_{15}	2	0
$20-j$	$I V^{*}, I_{12}, I_{2}, 2 I_{1}$	A_{11}, E_{6}, A_{1}	0	3
$21-c$	$I_{12}, 6 I_{1}$	A_{17}	1	3
$22-u$	$I_{8}^{*}, I_{1}^{*}, I_{2}, I_{1}$	A_{1}, D_{5}, D_{12}	0	2
$23-i$	$I_{13}^{*}, I_{2}, 3 I_{1}$	$A_{1} D_{17}$	0	0
$24-\psi$	$I I I^{*}, I_{6}^{*}, 3 I_{1}$	$E_{7} D_{10}$	1	2
$25-\delta$	$I_{5}^{*}, I^{*}, I_{2}, 2 I_{1}$	$E_{8}, A_{1} D_{9}$	0	0
$26-\pi$	$I_{3}^{*}, I_{6}^{*}, I_{2}, I_{1}$	A_{1}, D_{10}, D_{7}	0	2
$27-\mu$	$I I^{*}, I_{10}, 2 I_{2}, 2 I_{1}$	$A_{9}, A_{1}, A_{1}, E_{6}$	1	0
$28-\alpha$	$I_{0}^{*}, I_{14}, 4 I_{1}$	D_{4}, A_{13}	1	0
$29-\beta$	$I I I^{*}, I_{2}^{*}, I_{1}^{*}$	E_{7}, D_{6}, D_{5}	0	2
$30-\phi$	$I I I^{*}, I_{7}^{*}, 2 I_{1}$	E_{7}, D_{11}	0	0

Dynkin diagrams of root lattices

$A_{n}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$

$$
d_{l-1}
$$

$$
D_{l}=\left\langle d_{1}, d_{2}, \ldots, d_{l}\right\rangle
$$

$$
E_{p}=\left\langle e_{1}, e_{2}, \ldots, e_{p}\right\rangle
$$

Extended Dynkin diagrams

Some definitions

- The trivial lattice $T(X)$

$$
T(X)=<\bar{O}, F>\oplus_{v \in S} T_{v}
$$

where \bar{O} denotes the zero section, F the general fiber, S the points of C corresponding to the singular fibers and T_{v} the lattice generated by the fiber components except the zero component.

- The frame $W(X)$

$$
W(X)=\langle\bar{O}, F\rangle^{\perp} \subset N S(X)
$$

The frame $W(X)$ is a negative-definite even lattice of rank $\rho(X)-2$.

$$
\begin{gathered}
M W L(X)=W(X) / \overline{W(X})_{\text {root }} \quad(M W)_{\text {tors }}=\overline{W(X)}_{\text {root }} / W(X)_{\text {root }} \\
T(X)=U \oplus W(X)_{\text {root }}
\end{gathered}
$$

The bar denotes the primitive closure of a set inside another.

Some ingredients in the proof

Fact Up to isomorphism, there is only a finite number of elliptic fibrations

Nishiyama's method

- Idea: embed the frames of all elliptic fibrations into an unimodular lattice of rank 24,i.e. a Niemeier lattice given in the following table.

Niemeier lattices

$L_{\text {root }}$	$L / L_{\text {root }}$	$L_{\text {root }}$	$L / L_{\text {root }}$
E_{8}^{3}	(0)	$D_{5}^{\oplus 2} \oplus A_{7}^{\oplus 2}$	$\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$
$E_{8} \oplus D_{16}$	$\mathbb{Z} / 2 \mathbb{Z}$	$A_{8}^{\oplus 3}$	$\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 9 \mathbb{Z}$
$E_{7}^{\oplus 2} \oplus D_{10}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	A_{24}	$\mathbb{Z} / 5 \mathbb{Z}$
$E_{7} \oplus A_{17}$	$\mathbb{Z} / 6 \mathbb{Z}$	$A_{12}^{\oplus 2}$	$\mathbb{Z} / 13 \mathbb{Z}$
D_{24}	$\mathbb{Z} / 2 \mathbb{Z}$	$D_{4}^{\oplus 6}$	$(\mathbb{Z} / 2 \mathbb{Z})^{6}$
$D_{12}^{\oplus 2}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$D_{4} \oplus A_{5}^{\oplus 4}$	$\mathbb{Z} / 2 \mathbb{Z} \oplus(\mathbb{Z} / 6 \mathbb{Z})^{2}$
$D_{8}^{\oplus 3}$	$(\mathbb{Z} / 2 \mathbb{Z})^{3}$	$A_{6}^{\oplus 4}$	$(\mathbb{Z} / 7 \mathbb{Z})^{2}$
$D_{9} \oplus A_{15}$	$\mathbb{Z} / 8 \mathbb{Z}$	$A_{4}^{\oplus 6}$	$(\mathbb{Z} / 5 \mathbb{Z})^{3}$
$E_{6}^{\oplus 4}$	$(\mathbb{Z} / 3 \mathbb{Z})^{2}$	$A_{3}^{\oplus 8}$	$(\mathbb{Z} / 4 \mathbb{Z})^{4}$
$E_{6} \oplus D_{7} \oplus A_{11}$	$\mathbb{Z} / 12 \mathbb{Z}$	$A_{2}^{\oplus 12}$	$(\mathbb{Z} / 3 \mathbb{Z})^{6}$
$D_{6}^{\oplus 4}$	$(\mathbb{Z} / 2 \mathbb{Z})^{4}$	$A_{1}^{\oplus 24}$	$(\mathbb{Z} / 2 \mathbb{Z})^{12}$
$D_{6} \oplus A_{9}^{\oplus 2}$	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 10 \mathbb{Z}$	0	Λ_{24}

Realization

Let q_{L} denote the discriminant quadratic form of L.

- Determine an even negative-definite lattice M such that

$$
q_{M}=-q_{N S(X)} \quad \operatorname{rk}(M)+\rho(X)=26
$$

- By Nikulin's theorem, $M \oplus W(X)$ admits a Niemeier lattice L as an overlattice such that the embeddings of M and $W(X)$ into L are primitive and satisfy

$$
M_{L}^{\perp}=W(X), \quad W(X)_{L}^{\perp}=M
$$

How to get M ?

cf. Schütt \& Shioda, Elliptic surfaces in Adv. stud. in Pure Math. (2010) Let $\mathbb{T}(X)$ the transcendental lattice, i.e.

$$
\begin{gathered}
\mathbb{T}(X)=N S(X)^{\perp} \subset H^{2}(X, \mathbb{Z}) \\
\operatorname{rk}(\mathbb{T}(X))=r=22-\rho(X) \quad \text { signature }=(2,20-\rho(X))
\end{gathered}
$$

Let $t=r-2$.
By Nikulin's theorem on signatures, since $U^{t} \bigoplus E_{8}$ is an even unimodular lattice

$$
\underbrace{\mathbb{T}(X)[-1]}_{\text {signature }(20-\rho(X), 2)} \underbrace{\hookrightarrow}_{\text {primitive }} \underbrace{U^{t} \oplus E_{8}}_{(20-\rho(X), 20-\rho(X)+8)}
$$

And

$$
M=\mathbb{T}(X)[-1]^{\perp} \hookrightarrow U^{t} \oplus E_{8}
$$

By construction, M is a negative definite lattice of rank $2 t+8-r=r+4=26-\rho(X)$. Again by Nikulin

$$
q_{M}=-q_{\mathbb{T}(X)[-1]}=q_{\mathbb{T}(X)}=-q_{\mathrm{NS}(X)}
$$

So M has the required shape.
Now, for

$$
\mathbb{T}(X)=\left(\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right)
$$

we get

$$
M=A_{1} \oplus D_{5} .
$$

Torsion

Denote $N:=M^{\perp}$ into $L_{\text {root }}$ and $W=M^{\perp}$ into L.

- Since M satisfies $M_{\text {root }}=M$,
M primitively embedded in $L_{\text {root }} \Longleftrightarrow M$ primitively embedded in L

$$
N_{\text {root }}=W_{\text {root }}
$$

- Rank of the Mordell-Weil $=r k(W)-r k\left(W_{\text {root }}\right)$
-

$$
(M W)_{\text {tors }}=\bar{W}_{\text {root }} / W_{\text {root }}
$$

- If $\operatorname{det} N=\operatorname{det} M$, then the Mordell-Weil group is torsion-free.
- If $r=0$, then the Mordell-Weil group is isomorphic to W / N.
- In general,

$$
\bar{W}_{\text {root }} / W_{\text {root }} \subset W / N \subset L / L_{\text {root }}
$$

An example

Let

$$
D_{5} \oplus A_{1} \underset{\text { primitive }}{\hookrightarrow} E_{7}
$$

with the embedding $\left\langle e_{2}, e_{5}, e_{4}, e_{3}, e_{1}\right\rangle \oplus\left\langle e_{7}\right\rangle$ Thus

$$
\left(D_{5} \oplus A_{1}\right) \frac{\perp}{E_{7}}=\left\langle 3 e_{2}+2 e_{1}+4 e_{3}+6 e_{4}+5 e_{5}+4 e_{6}+2 e_{7}\right\rangle=\langle(-4)\rangle
$$

Thus a primitive embedding in $L_{\text {root }}=E_{7} A_{17}$ and

$$
N=\left(D_{5} \oplus A_{1}\right) \frac{\perp}{L_{\text {root }}}=\langle(-4)\rangle \oplus A_{17}
$$

Now

$$
\begin{gathered}
W_{\text {root }}=N_{\text {root }}=A_{17} \\
\operatorname{rkM} M=\operatorname{rk} W-\operatorname{rk} W_{\text {root }}=18-17=1 \\
\operatorname{det}(N)=4 \times 18=\operatorname{det}(W) \times 9 \\
W / N \simeq \mathbb{Z} / 3 \mathbb{Z}
\end{gathered}
$$

Recall

$$
\bar{W}_{\text {root }} / W_{\text {root }} \subset W / N \subset L / L_{\text {root }} .
$$

Since

$$
L / L_{\text {root }} \simeq\left\langle\eta_{7}+3 \alpha_{17}+L_{\text {root }}\right\rangle \simeq \mathbb{Z} / 6 \mathbb{Z}
$$

with

$$
\begin{gathered}
\eta_{7}=-\frac{1}{2}\left(2 e_{1}+3 e_{2}+4 e_{3}+6 e_{4}+5 e_{5}+4 e_{6}+3 e_{7}\right) \\
\alpha_{17}=\frac{1}{18}\left(17 a_{1}+16 a_{2}+\ldots+a_{17}\right)
\end{gathered}
$$

It follows

$$
W / N=\left\langle 6 \alpha_{17}+N\right\rangle
$$

and since $6 \alpha_{17} \in \bar{W}_{\text {root }}$

$$
\bar{W}_{\text {root }} / W_{\text {root }} \simeq \mathbb{Z} / 3 \mathbb{Z}
$$

Modular surface for $\Gamma_{1}(8)$

Let

$$
X+\frac{1}{X}+Y+\frac{1}{Y}=k
$$

the modular surface for $\Gamma_{1}(4) \cap \Gamma_{0}$ (8) (Beauville).
Using the birational transformation

$$
X=\frac{-U(U-1)}{V} \text { and } Y=\frac{V}{U-1}
$$

with inverse

$$
U=-X Y \text { and } V=-Y(X Y+1)
$$

we obtain the Weierstrass equation

$$
V^{2}-k U V=U(U-1)^{2}
$$

The point $Q=(U=1, V=0)$ is a $4-$ torsion point. If we want A with $2 A=Q$ to be a rational point, then $k=-s-1 / s+2$. It follows

$$
\begin{equation*}
V^{2}+\left(s+\frac{1}{s}-2\right) U V=U(U-1)^{2} \tag{1}
\end{equation*}
$$

Thus the point $(-s, 1)$ is of order 8 on

$$
X+\frac{1}{X}+Y+\frac{1}{Y}+s+\frac{1}{s}=2
$$

Hence, the modular surface Y_{2} associated to $\Gamma_{1}(8)$ with the elliptic fibration

$$
(X, Y, Z) \mapsto Z=s
$$

and singular fibers $I_{8}($ at $s=0$ and $s=\infty), I_{4}($ at $s=1), I_{2}, 2 I_{1}$.

Weierstrass equations

Proposition

Let X be a $K 3$ surface and D an effective divisor on X that has the same type as a singular fiber of an elliptic fibration. Then X admits a unique elliptic fibration with D as a singular fiber.
Moreover, any irreducible curve C on X with $D . C=1$ induces a section of the elliptic fibration.

If X is a $K 3$ surface and

$$
\pi: X \rightarrow C
$$

an elliptic fibration, then the curve C is of genus 0 and we define an elliptic parameter as a generator of the function field of C.
Moreover if we have two effective divisors D_{1} and D_{2} for the same fibration we can choose an elliptic parameter with divisor $D_{1}-D_{2}$.

From a fibration to another fibration

We start with the fibration of parameter s

$$
E_{s}: y^{2}+\left(s^{2}+1-2 s\right) y x=x\left(x-s^{2}\right)^{2}
$$

and draw the graph of torsion sections and singular fibers for $s=0, \infty, 1$.

Fibration of parameter t

On the previous graph, we can see two singular fibers of type I_{4}^{*} of another fibration. They correspond to two divisors D_{1} and D_{2}

We write $D_{i}=\delta_{i}+\Delta_{i}$ with $i=1,2$ where δ_{i} is an horizontal divisor and Δ_{i} a vertical divisor.
There exists a function t_{0} on E_{s} with divisor $\delta_{1}-\delta_{2}$.
We compute divisor of t_{0} on Y_{2}.
So the parameter of the new fibration is $t=t_{0} s^{a}(s-1)^{b}$ and we can compute a, b.
Using a standard transformation we obtain

$$
y^{2}=x^{3}+t\left(t^{2}+1+4 t\right) x^{2}+t^{4} x
$$

The singular fibers are

$$
\begin{array}{cccc}
\text { at } & t=0 & \text { of type } & I_{4}^{*} \\
\text { at } & t=\infty & \text { of type } & I_{4}^{*} \\
\text { at } & t=-1 & \text { of type } & l_{2} \\
\text { at } & t=t_{0} & \text { of type } & l_{1}
\end{array}
$$

where t_{0} is a root of the polynomial $Z^{2}+6 Z+1$.
The Mordell-Weil group is of rank one and the point $\left(-t^{3}, 2 t^{4}\right)$ is of height 1 . The torsion group is of order 2.

Fibration of parameter ψ

We start with the fibration of parameter c

$$
y^{2}+\left(c^{2}+5\right) y x+y=x^{3}
$$

with a singular fiber I_{18} for $c=\infty$ and 3 -torsion section.

On this graph we see two singular fibers $I I I^{*}$ and I_{6}^{*}. The function x has the horizontal divisor $-2(0)+P+(-P)$ if P denotes the 3-torsion point and we can take it as the parameter ψ of the new fibration. We get the equation

$$
y^{2}=x^{3}-5 x^{2} \psi^{2}-\psi x^{2}-\psi^{5} x
$$

The singular fibers are

$$
\begin{array}{lclc}
\text { at } & \psi=\infty & \text { of type } & I_{6}^{*} \\
\text { at } & \psi=0 & \text { of type } & I I I^{*} \\
\text { at } & \psi=-\frac{1}{4} & \text { of type } & I_{1} \\
\text { at } & \psi=\psi_{0} & \text { of type } & I_{1}
\end{array}
$$

with ψ_{0} root of the polynomial $x^{2}+6 x+1$. The Mordell-Weil group is of rank 1 . The torsion-group is of order 2 .

