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Quantum computation

Feynman ('81): “Simulating Physics with (Quantum) Computers”

=» Idea of quantum computer further developed by
Deutsch ('85), Lloyd (‘96), ...

! ]
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1st conference on Physics and Computation, 1981



Quantum computation

Shor ('94):. quantum mechanics enables fast factoring

180708208868740480595165616440590556627/81025167694013491701270214
50056662540244048387341127590812303371781887966563182013214880557

=(39685999459597454290161126162883786067576449112810064832555157243)
X (45534498646735972188403686897274408864356301263205069600999044599)

=» Ever since: rapid growing field of quantum information
& computation

o Quantum computational models

1. Circuit model 2. Adiabatic QC: 3. Measurement-based:
(includes topological): '
[Farhi, Goldstone, Gutmann [Raussendorf &Briegel ‘01]
& Sipster ‘00] [Gottesman & Chuang, '99

Childs, Leung & Nielsen ‘04]



Circuit Model

0 Key point: Decompose any unitary U into sequence of
building blocks (universal gates): one + two-qubit gates
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Single-gubit Unitary gates
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o Only need a finite set of gates:
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Two-gubit unitary gates

o Four by four unitary matrices (acting on the two qubits)

00->00 1 0 0 O
v Control-NOT gate; 01201 (o 1oo0 ) _(1]0
J 10>11 CNOT= 000 1| \olXx

11->10 00 1 0

00> 00 1 0 0 O
v Control-Phase gate: 01-> 01 cp_| 01O O |_(1]O
10> 10 “1 00 1 0 ~\No0|Z

11->-11 00 0 -1

a Generate entanglement
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Quantum computation by measurement

[Raussendorf & Briegel ‘01]
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[c.f. Gottesman & Chuang, 99
Childs, Leung & Nielsen ‘04]
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Simulated Network Time o

Logical qubits
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o Use cluster state |C) as computational resource

o Information is written on to |C), processed and read out
all by single spin measurements

0

o Can simulate guantum computation by
circuit models (i.e. universal QC)




Q Computation by measurement: intuition

[Raussendorf & Briegel ‘01]

> [c.f. Gottesman & Chuang, 99
1‘ > Childs, Leung & Nielsen ‘04]
e
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Logical qubits

Simulated Network Time

o How can single-spin measurements simulate unitary evolution?

= Entanglement (= state and gate teleportation)
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Cluster state: entangled resource

[Briegel & Raussendorf ‘00]
o Cluster state

)= 11 CP;(H)+)--1+)
edge (i,7)
/

Control-Phase gate applied to pairs of
gubits linked by an edge

CP;j = |0)(0]; ® I; + |1){1]; ® o]

o Can be defined on any graph

O\N =>» Resulting state is called graph state



Cluster and graph states as ground states

o Cluster state |C > = graph state on square lattice

) [Raussendorf &Briegel, 01’]
-0 [C)=][C)
@
= — with Kv = Xy ® J
81tev uwEND(v)
nelghbors

o Graph state: defined on a graph [+, Eisert & Briegel 047

=>» Graph state is the unique ground state of Hg
| K.|G) =|G), Vsite]

Note: X, Y & Z are Pauli matrices




Creating cluster states?

1. Active coupling: to construct Control-Phase gate

(by Ising interaction) |C) = H CPi(|4+)]+) -+ |+))

edge (i,7)
[Implemented in cold atoms:
1 0 0 O Greiner et al. Nature ‘02]
m (1) (2) 1 .
CPpp = e tillmoz)(=077) — 8 0 (1) 8 =» Not necessarily have
00 0 -1 such control

2. Cooling: If cluster states are unique ground states
of certain simple Hamiltonians with a gap

Q
H=-) @ O-Q
i Q

> Cluster state is the unique ground state of five-body
Interacting Hamiltonian (cannot be that of two-body)®
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[Nielsen ‘04]



What about other states?



Ground states as
universal resource states?

o First, finding universal resource states is hard
(they are rare)
[Gross, Flammia & Eisert PRL '09; Bemner, Mora & Winter, PRL ‘09]

0 Second, need to construct short-ranged Hamiltonians
so that they are unigue ground states

> So finding ground states as universal resource states is hard



A tour-de-force example

% TriCluster state (6_|eve|) [Chen, Zeng, Gu,Yoshida & Chuang, PRL'09]
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Ground states as
universal resource states?

o First, finding universal resource states is hard

[Gross, Flammia & Eisert PRL '09; Bemner, Mora & Winter, PRL ‘09]

0 Second, need to construct short-ranged Hamiltonians
so that they are unigue ground states

o Alternatively, first find ground states of short-ranged
Hamiltonians & check whether they are universal resources

> The family of Affleck-Kennedy-Lieb-Tasaki (AKLT) states
provide a good framework
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Affleck-Kennedy-Lieb-Tasaki states

[AKLT '87,88]

o States of spin S=1,3/2, or higher (defined on any graph)

=» S= (# of neighboring vertices) / 2

o Unique* ground states of two-body isotropic Hamiltonians

H = f(bi : §j) f(x) is a polynomial
)

(i,
0 Important progress on 1D spin-1 AKLT state for QC:

[Gross & Eisert, PRL ‘07] [Brennen & Miyake, PRL ‘09]

=>» Can be used to implement rotations on single-qubits

*with appropriate boundary conditions



1D spin-1 AKLT state

[AKLT '87,'88]

o Two virtual qubits per site (thus S=2/2)

Lol 100) = [1,1)

2 ® 2 =0 @ smglet

Project into 11y =1, -1) O — _
symmetric subspace ) ‘ > 01) =10y =Th =111
of two spin-1/2 (qubits) L(j01) + |10>)/\/§ = ‘17 ()>

o Ground state of two-body interacting Hamiltonian (with a gap)

1 ~ 9 oo projector
H = Z [S Sz+1 + 3(S Sz-l-l + 5} — ZZPz(zH) < ontoS=2

= Can reallze rotation on one logical qubit by measurement

(not sufficient for universal QC) _ _
[Gross & Eisert, PRL ‘07] [Brennen & Miyake, PRL ‘09]



1D mixed spin-3/2 & spin-1/2 quasichain
S=1/2
? S= 3/2 H

ﬂ

Project into 1000) <> ‘g g> W) =
symmetric subspace
of three spin-1/2 (qubits) 111) \_ __> W) =

Oumn .
OIII

O smglet

(|001> +1010) + [100)) ‘ >

~ Sl

(|110>+\101>+|011 o ‘_ __>

ﬁ‘

o Ground state of two-body interacting Hamiltonian (with a gap)

H = Z PA At + Z P + PAl bo + PAN ,ON 41

= Can reallze rotation on one logical qubit by measurement
(not sufficient for universal QC)  [cai et al. PRA “10]



Spin-3/2 AKLT state on honeycomb lattice

)2 :
spin
. smglet '. .
rOJector e
) . .S+ .S+ .. 4. _|_m
.. . )
® o

> We show that the spin-3/2 2D AKLT state on
honeycomb lattice is a universal resource state

[Wel, Affleck & Raussendorf, PRL106, 070501 (2011)]

[Alternative proof: Miyake, Ann Phys (2011)]



2D Cal-Miyake-Dur-Briegel state

[Cai, Miyake, Dur & Briegel ',PRA10]

H A H H
onu ....,.........’.........’.. =0 quasichain
S=3/2 E B @ @
on s “‘-‘“o - quasichain
& © © |
on ..‘....C?)....‘.......‘ .C?) » oo 2 Qubits
_ to S=3/2

=» No longer rotationally invariant; not AKLT state

=» But universal for guantum computation
[Cai, Miyake, Dur & Briegel ,PRA'10] [Wei,Raussendorf & Kwek,arXiv'11]



Unified understanding of
these resource states

They can be locally converted to a cluster state
(known resource state) in the same dimension:

=» Unvelling cluster states hidden in these
AKLT / AKLT-like states

o Spin 1 (2 levels) or 3/2 (4 levels) - Spin %2 (2 levels)?

=>» Need “projection” into smaller subspace

o We use generalized measurement (or POVM)

=>» Give rise to a graph state;
but random outcome modifies the graph

0 Use percolation argument (if necessary):
=» typical random graph state converted to cluster state



Now focus on the spin-3/2 honeycomb case




Spin 3/2 and three virtual qubits

o Addition of angular momenta of 3 spin-1/2’s

1 1 1
@ 2® 2

DO o

D

\

Symmetric subspace

@1
2

N | =
[\V)
N | =

o The four basis states in the symmetric subspace

———

3 1
Y §> Effective 2 levels
3 1> of a qubit

0 Projector onto symmetric subspace

Ps,y = [000)(000] + [1LL)(LL1| + [W)(W| + [W)HW]| <> I3



Generalized measurement (POVM)

2 (13
SN (Y
i
2 (13
S
i
o 2 (13
v: site index Foy = §(§><

31 4 _§><_§ )—i(52_1) [Wei, Affleck &
21z 2 21z V6N T4 Raussendorf '10;
3 3 31y _ 1 /e 1 Miyake *10]
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= Three elements satisfy: FJ  Foo+ F) Foy+F) F, . =1,

o POVM outcome (X,y, or z) is random (a, ={x,y,z} € A for all sites v)

p.S

@ Y
2|2
\\§

o

—

=> effective 2-level system
50, [0}, [=3),, & [m)

=> a, : hew quantization axis

2= )3, - -3, TR -
Z=’§><§Lf\—5><—§% X=15)073l., T2\ T3l.,

- state becomes |®) — F 4, |®)



Post-POVM state

K
o Outcome a, ={X,y,z} € A for all sites v /‘
Y
N4
.“,3I'Z pO\’
V() = @F i, [Basar) =T

~ ® v.a [ ®akrT) |
v [Wei, Affleck & Raussendorf,

arxiv'10 & PRL'11]

= \What Is this state?



The random state Is
an encoded graph state

[Wel, Affleck & Raussendorf,

o Outcome a, ={x,y,z} € A for all sites v arxiv'10 & PRL'11]

1
A = @, Poasn) ~ @ (82, ~ 7 ) o)

v

0 Encoding: effective two-level (qubit) is delocalized to
a few sites

=>» Property of AKLT (“antiferromagnetic” tendency)
gives us insight on encoding

o What is the graph? Isn’t it honeycomb?

=» Due to delocalization of a “logical” qubit, the graph is modified



Encoding of a qubit: AFM ordering

a AKLT: Neighboring sites cannot have the same S_=+ 3/2
[AKLT '87,'88]

=>» Neighboring sites with same POVM outcome a =X, y or z.
only two AFM orderings (call these site form a domain):

13 33 3 _ 33 33
==, —=, =, —=,... 1 E|——,—,——,—,...>
0)=15-55 73 >a or [1) 2°2° 9279 .

= Form the basis of a qubit

o Effective Pauli Z and X operators become (extended)
Z=10)(0| - [){1] X =[0)(I[ +[1)(0]

o A domain can be reduced to a single site by measurement

=» Regard a domain as a single qubit



Perform generalized measurement:
mapping spin-3/2 to effective spin-1/2




Perform generalized measurement:
mapping spin-3/2 to effective spin-1/2




Perform generalized measurement:
mapping spin-3/2 to effective spin-1/2




The resulting state Is a “cluster” state
on random graph

=» The graph of the graph state



= Quantum computation can be implemented
on such a (random) graph state

‘zvxz' !
Kz ‘ ‘r‘x

‘ Y
X z'“ Iv

» Wires define logical qubits, give CNOT gates

» Sufficient number of wires if graph is supercritical (percolatlon)



Robustness: finite percolation threshold

o Typical graphs are in percolated (or supercritical) phase

Site percolation by deletion

1 T L=|20 T
........ T L= 40
B, = 60
T e =80 =
0.8 | R L=100
4 ok
- +
2 06+t #i*
a supercritical % ® disconnected
04 | B
;
02t [
wh
0 1 1 1 %“[U'ww.f e -
0 01 02 03 04 05 06 07 08
. Pdel
a C.f. Site perc threshold: mee
Square: 0.593, honeycomb:0.697 > threshold =1-0.33=0.67

=>» Sufficient (macroscopic) number of traversing paths exist



Convert graph states to cluster states




=» Thus we have shown the 2D AKLT state
on hexagonal lattice is a universal resource



Other 2D AKLT states expected to
be universal resources

o Trivalent Achimedean lattices (in addition to honeycomb):

T e

Bond percolation ~ . _
threshold > 2/3: 0.7404 0.694 0.677



1D spin-1 AKLT state =» cluster state

Fy. = \/g(\+1><+1\z+\—1><—1\z) = \/g(|00><00!+|11><11!)
Fv,m=\/g(|+1><+1lm+|—1><—1lm) = \/g(|++><++!+!——><——|)
Foy = \/gﬂ + D+ =D(=1y) = \/g(liaiﬂi,i\ + [ =1, =) (4, =)

> POVM

gives rise to an encoded cluster state

> In a large system, cluster state has length 2/3 of AKLT



1D mixed AKLT state =» cluster state

[Wei, Raussendorf& Kwek, arXiv ‘11]

: : : : :
® 06 6 9 90060
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> POVM on spin-3/2’s gives rise to an encoded cluster state
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Universality of Cai-Miyake-Dur-Briegel state
=» cluster state

[Wei, Raussendorf& Kwek, arXiv ‘11]

o POVM on A’s and projective measurement on B’'s =» 2D cluster state

H A H H
@ ‘ "“"O} = 1D cluster state
S=3/2 b‘ B

mEmO } =» 1D cluster state

measurement can induce CP
gate btwn two neighboring A's

L N BO)

bod

4 é.@



Further results

[Li, Browne, Kwek, Raussendorf,
Wei, PRL 107,060501(2011)]

o Extending the “patching” idea to 3D

1%

Y (a)

=» Deterministic “distillation” of a 3D cluster state

=>» Allows quantum computation at finite temperature

=» Even with the Hamiltonian always-on



Conclusion

0 Spin-3/2 valence-bond ground states on some 2D lattices
are universal resource for gquantum computation

(6%) ey ey

=» Design a generalized measurement

=» Convert to graph states and then cluster states (€universal)

o 2D structure from patching 1D AKLT quasichains
also universal

o Can extend to 3D as well with thermal state and always-on
Interaction
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