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Quantum computation
Feynman (’81): “Simulating Physics with (Quantum) Computers”

� Idea of quantum computer further developed by      
Deutsch (’85), Lloyd (‘96), …

1st conference on Physics and Computation, 1981



Quantum computation

Shor (’94): quantum mechanics enables fast factoring

18070820886874048059516561644059055662781025167694013491701270214
50056662540244048387341127590812303371781887966563182013214880557  

=(39685999459597454290161126162883786067576449112810064832555157243) 
x (45534498646735972188403686897274408864356301263205069600999044599)

� Ever since: rapid growing field of quantum information 
& computation

� Quantum computational models

1. Circuit model 
(includes topological):

2. Adiabatic QC: 3. Measurement-based:
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Circuit Model
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� Key point: Decompose any unitary U into sequence of 
building blocks  (universal gates): one + two-qubit gates
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Single-qubit Unitary gates

� Only need a finite set of gates:



Two-qubit unitary gates
� Four by four unitary matrices (acting on the two qubits)

� Control-NOT gate:
0 0 � 0 0 
0 1 � 0 1
1 0 � 1 1 
1 1 � 1 0

0 0 � 0 0 
� Control-Phase gate:

0 0 � 0 0 
0 1 � 0 1
1 0 � 1 0 
1 1 � -1 1

� Generate entanglement

CP
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Quantum computation by measurement
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Childs, Leung & Nielsen ‘04]

[Raussendorf & Briegel ‘01]

� Use cluster state       as computational resource

� Information is written on to      , processed and read out
all by single spin measurements

� Can simulate quantum computation by 
circuit models (i.e. universal QC) 
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Q Computation by measurement: intuition
[Raussendorf & Briegel ‘01]

Lo
gi

ca
l q

ub
its [c.f. Gottesman & Chuang, ’99

Childs, Leung & Nielsen ‘04]

� How can single-spin measurements simulate unitary evolution?

� Entanglement (� state and gate teleportation)

� Key ingredients: simulating 1- and 2-qubit gates



Cluster state: entangled resource
[Briegel & Raussendorf ‘00]

� Cluster state

Control-Phase gate applied to pairs of
qubits linked by an edge

� Can be defined on any graph 

qubits linked by an edge

� Resulting state is called graph state



Cluster and graph states as ground states 

� Cluster state |C › = graph state on square lattice

X

Z

ZZ

Z

[Raussendorf &Briegel, 01’]

with

Note: X, Y & Z are Pauli matrices

X

ZZ

Z

� Graph state: defined on a graph [Hein, Eisert & Briegel 04’]

� Graph state is the unique ground state of HG

with

neighbors



Creating cluster states?

1. Active coupling: to construct Control-Phase gate

(by Ising interaction)

[Implemented in cold atoms:
Greiner et al. Nature ‘02]

� Not necessarily have
such control

� Cluster state is the unique ground state of five-body 
interacting Hamiltonian (cannot be that of two-body)�

[Nielsen ‘04]

2. Cooling: if cluster states are unique ground states
of certain simple Hamiltonians with a gap

X
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ZZ

Z

such control



What about other states?What about other states?



Ground states as 
universal resource states?

� Second, need to construct short-ranged Hamiltonians

[Gross, Flammia & Eisert  PRL ’09; Bemner, Mora & Winter, PRL ‘09]

� First, finding universal resource states is hard
(they are rare)

� Second, need to construct short-ranged Hamiltonians
so that they are unique ground states 

� So finding ground states as universal resource states is hard



A tour-de-force example

� TriCluster state (6-level) [Chen, Zeng, Gu,Yoshida & Chuang, PRL’09]



Ground states as 
universal resource states?

� Second, need to construct short-ranged Hamiltonians

[Gross, Flammia & Eisert  PRL ’09; Bemner, Mora & Winter, PRL ‘09]

� First, finding universal resource states is hard

� Second, need to construct short-ranged Hamiltonians
so that they are unique ground states 

� Alternatively, first find ground states of short-ranged 
Hamiltonians & check whether they are universal resources

� The family of Affleck-Kennedy-Lieb-Tasaki (AKLT) states
provide a good framework
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Affleck-Kennedy-Lieb-Tasaki states

� Unique* ground states of two-body isotropic Hamiltonians

� States of spin S=1,3/2, or higher (defined on any graph)

[AKLT ’87,88]

� S= (# of neighboring vertices) / 2

� Unique* ground states of two-body isotropic Hamiltonians

� Important progress on 1D spin-1 AKLT state for QC:

[Brennen & Miyake, PRL ‘09][Gross & Eisert, PRL ‘07]

� Can be used to implement rotations on single-qubits

f(x) is a polynomial

*with appropriate boundary conditions



1D spin-1 AKLT state
� Two virtual qubits per site (thus S=2/2)

singlet
Project into

[AKLT ’87,’88]

Project into
symmetric subspace
of two spin-1/2 (qubits)

� Ground state of two-body interacting Hamiltonian (with a gap)

projector
onto S=2

� Can realize rotation on one logical qubit by measurement
(not sufficient for universal QC)

[Brennen & Miyake, PRL ‘09][Gross & Eisert, PRL ‘07]



1D mixed spin-3/2 & spin-1/2 quasichain

singlet

S=1/2

S=3/2

� Ground state of two-body interacting Hamiltonian (with a gap)

Project into
symmetric subspace
of three spin-1/2 (qubits)

� Can realize rotation on one logical qubit by measurement
(not sufficient for universal QC) [Cai et al. PRA ‘10]



Spin-3/2 AKLT state on honeycomb lattice

� Unique ground state of 

[Wei, Affleck & Raussendorf, PRL106, 070501 (2011)]

[Alternative proof: Miyake, Ann Phys (2011)]

� We show that the spin-3/2 2D AKLT state on 
honeycomb lattice is a universal resource state
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2D Cai-Miyake-Dur-Briegel state

quasichain

quasichain

S=3/2

[Cai, Miyake, Dür & Briegel ’,PRA’10]

� No longer rotationally invariant; not AKLT state

Map 2 qubits
to S=3/2

� But universal for quantum computation
[Cai, Miyake, Dür & Briegel ’,PRA’10] [Wei,Raussendorf & Kwek,arXiv’11]



Unified understanding of 
these resource states

They can be locally converted to a cluster state
(known resource state) in the same dimension:

� Unveiling cluster states hidden in these  
AKLT / AKLT-like  states

� Need “projection” into smaller subspace

� We use generalized measurement (or POVM)

� Spin 1 (2 levels) or 3/2 (4 levels) � Spin ½ (2 levels)?

� Give rise to a graph state;
but random outcome modifies the graph

� Use percolation argument  (if necessary):
� typical random graph state converted to cluster state



Now focus on the spin-3/2 honeycomb case



Spin 3/2 and three virtual qubits

� Addition of angular momenta of 3 spin-1/2’s 

� The four basis states in the symmetric subspace

Symmetric subspace

� Projector onto symmetric subspace

Effective 2 levels
of  a qubit



Generalized measurement (POVM)

� Three elements satisfy: 

[Wei,Affleck & 
Raussendorf ’10;

Miyake ‘10]

v: site index

� POVM outcome (x,y, or z) is random (av ={x,y,z} ϵ A for all sites v)

� Three elements satisfy: 

� av : new quantization axis

� state becomes 

� effective 2-level system



Post-POVM state

� Outcome av ={x,y,z} ϵ A for all sites v

� What is this state?

[Wei, Affleck & Raussendorf , 
arxiv’10 & PRL’11]



The random state is 
an encoded graph state

� Outcome  av ={x,y,z} ϵ A for all sites v
[Wei, Affleck & Raussendorf , 
arxiv’10 & PRL’11]

� Encoding: effective two-level (qubit) is delocalized to 
a few sites

� Property of AKLT (“antiferromagnetic” tendency)
gives us insight on encoding

� What is the graph? Isn’t it honeycomb?

� Due to delocalization of a “logical” qubit, the graph is modified



Encoding of a qubit: AFM ordering

� AKLT: Neighboring sites cannot have the same Sa=± 3/2  

� Neighboring sites with same POVM outcome  a = x, y or z:
only two AFM orderings (call these site form a domain):

or

[AKLT ’87,’88]

� Form the basis of a qubit

� Effective Pauli Z and X operators become (extended)

or

� A domain can be reduced to a single site by measurement

� Regard a domain as a single qubit



Perform generalized measurement:
mapping spin-3/2 to effective spin-1/2



Perform generalized measurement:
mapping spin-3/2 to effective spin-1/2



Perform generalized measurement:
mapping spin-3/2 to effective spin-1/2



The resulting state is a “cluster” state 
on random graph

� The graph of the graph state



� Quantum computation can be implemented
on such a (random) graph state

� Wires define logical qubits

� Sufficient number of wires if graph is supercritical (percolation) 

, links give CNOT gates



Robustness: finite percolation threshold 

� Typical graphs are in percolated (or supercritical) phase

Site percolation by deletion 

supercritical disconnected

� C.f. Site perc threshold: 
Square: 0.593, honeycomb:0.697 � threshold ≈1-0.33=0.67

� Sufficient (macroscopic) number of traversing paths exist



Convert graph states to cluster states

� Can identity graph structure and trim it down to square



�Thus we have shown the 2D AKLT state
on hexagonal lattice is a universal resource on hexagonal lattice is a universal resource 



Other 2D AKLT states expected to 
be universal resources

� Trivalent Achimedean lattices (in addition to honeycomb):

Bond percolation
threshold > 2/3:

≈0.7404 ≈0.694 ≈0.677



1D spin-1 AKLT state � cluster state

x y x z z y y z x x

� POVM 

� In a large system, cluster state has length 2/3 of AKLT

x y x z z y y z x xz

gives rise to an encoded cluster state

y x



1D mixed AKLT state � cluster state

x y x z z y y z x x

� POVM on spin-3/2’s gives rise to an encoded cluster state

[Wei, Raussendorf& Kwek, arXiv ‘11]

x y x z z y y z x xz y x



Universality of Cai-Miyake-Dur-Briegel state 
� cluster state

[Wei, Raussendorf& Kwek, arXiv ‘11]

b
b

A

B

� 1D cluster state
S=3/2

� POVM on A’s and projective measurement on B’s � 2D cluster state

Ab B

� 1D cluster state

measurement can induce CP
gate btwn two neighboring A’s

A

B



Further results

� Extending the “patching” idea to 3D

[Li, Browne, Kwek, Raussendorf, 
Wei, PRL 107,060501(2011)]

� Even with the Hamiltonian always-on

� Allows quantum computation at finite temperature

� Deterministic “distillation” of a 3D cluster state



Conclusion

� Spin-3/2 valence-bond ground states on some 2D lattices 
are universal resource for quantum computation

� Design a generalized measurement

� Convert to graph states and then cluster states (universal)

� 2D structure from patching 1D AKLT quasichains 
also universal 

� Can extend to 3D as well with thermal state and always-on
interaction
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