

Quantum gates for superconducting qubits with fixed coupling CQ/QC Toronto, 12-08-2011

Adrian Lupascu¹, J.-L. Orgiazzi¹, P. C. de Groot², J. Lisenfeld², R. N. Schouten², S. Ashhab³, C. J. P. M. Harmans², J. E. Mooij²

¹Institute for Quantum Computing, University of Waterloo ²Delft University of Technology ³RIKEN

Outline

- Quantum superconducting devices
 - Superconducting artificial atoms
 - The flux qubit
- Use of superconducting quantum systems
 - Quantum computing with superconducting qubits
 - Quantum optics in the strong coupling regime
- Two qubit gate based on controlled transition matrix elements
- Application of the gate to other types of systems

Qubit implementations

Natural systems

- Neutral atoms
- Trapped ions
- Nuclear spins
- Photons

Artificial systems

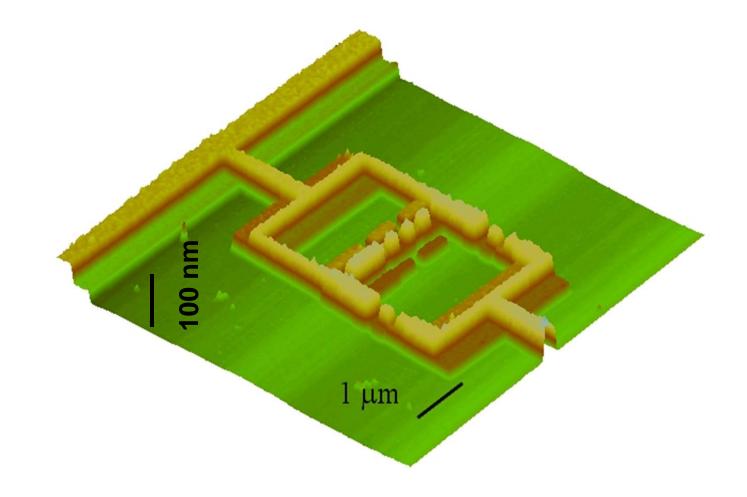
- Superconducting qubits
- Quantum dots

Mixed systems

- NV centers in diamond
- Impurities in Silicon

Artificial systems: top down approach to quantum system design \rightarrow scalability

Example of superconducting qubit



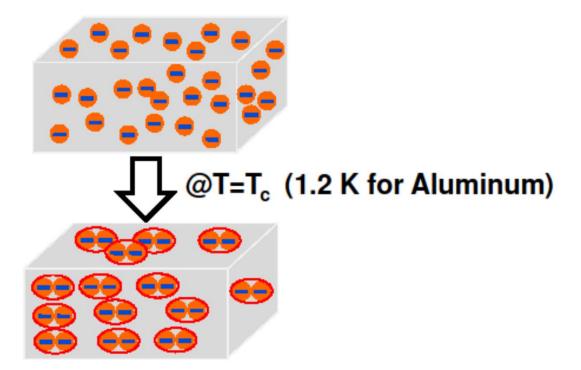
Superconductivity

Normal state

- finite conductivity
- no electron order
- no energy gap

Superconducting state

- · infinite conductivity
- electron order
- energy gap



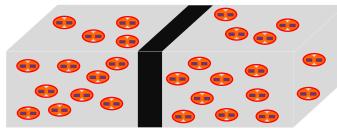
The gap for electron-hole excitations survives in small electromagnetic fields.

Lower energy excitations, with anharmonic spectrum

Josephson energy
 charging energy

Josephson effect: description of a Josephson junction

tunnel barrier

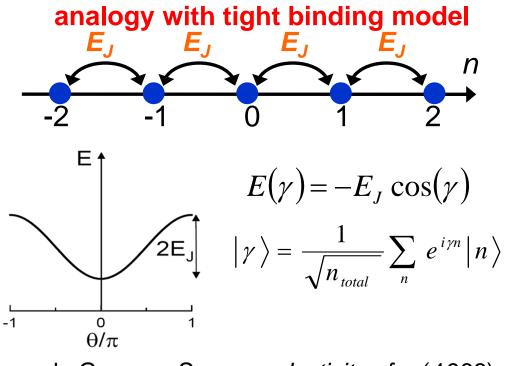


$$N_1 - n = N_2 + n$$

- thick barrier: states with different n are degenerate (neglecting charging energy)
- thin barrier: degeneracy is lifted

$$\hat{H}_{T} = -E_{J} \sum_{n} \left(|n\rangle \langle n+1| + |n+1\rangle \langle n| \right)$$

$$E_{J} - \text{Josephson energy}$$



Josephson, Phys. Lett. 1, 251 (1962) de Gennes, Superconductivity of ..., (1966)

Current flow through a Josephson junction

Free particle \rightarrow Josephson junctions

$$x \to n, \, p \to \gamma$$

Form a wavepacket with a narrow distribution in γ

$$I = 2e < \dot{n} > = \frac{2e}{\hbar} E_J \sin \gamma$$
$$I_c = \frac{2e}{\hbar} E_J : \text{ critical current}$$

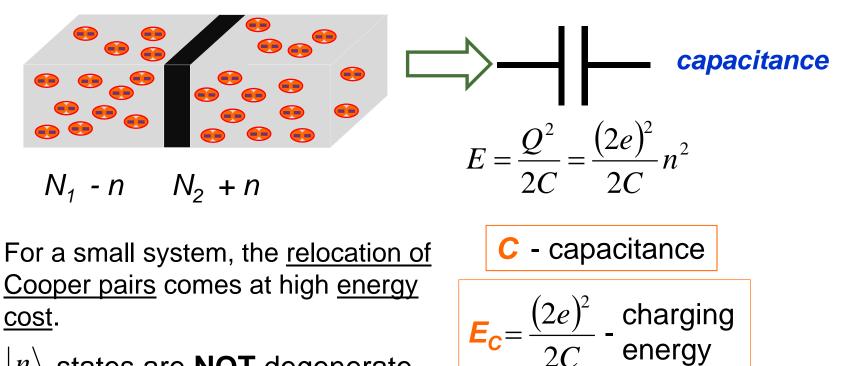
$$\frac{I = I_c \sin \gamma}{\chi}$$

inductance

 E_J : Josephson energy

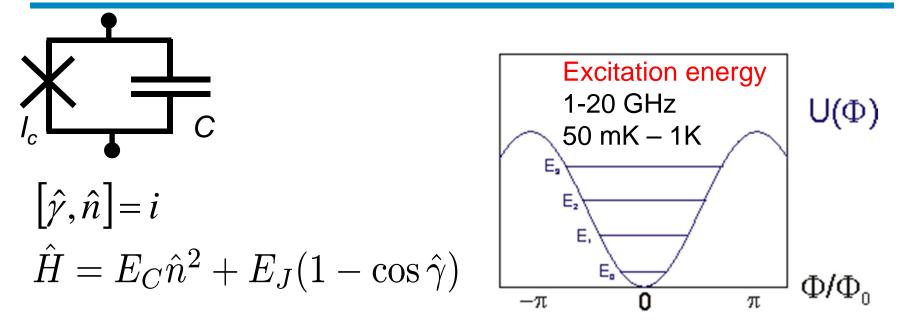
Josephson, Phys. Lett. 1, 251 (1962)

Charging energy of a Josephson junction



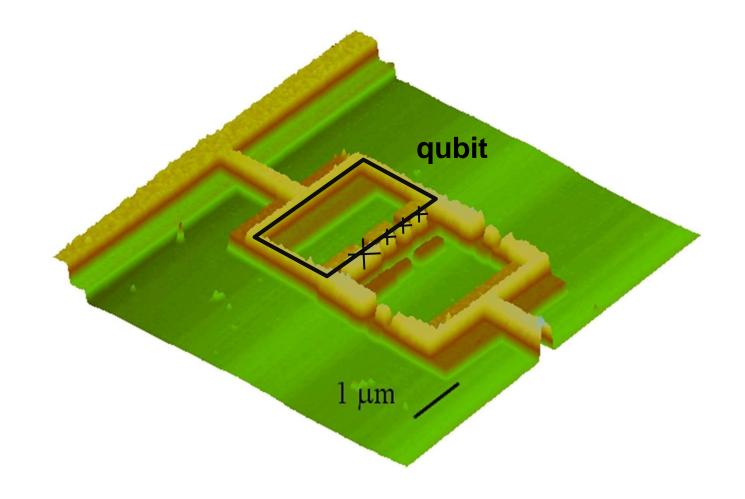
 $|n\rangle$ states are **NOT** degenerate

Josephson junction: quantum description

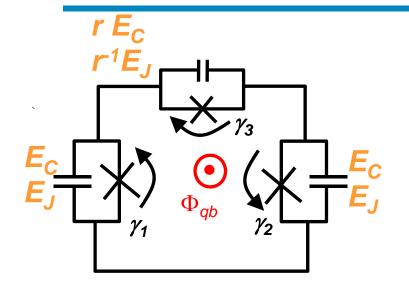


	Phase	Charge
Quantum variables	γ	n
Fundamental constants	$\Phi_0\!=\!\hbar/2 extbf{e}$	2e
Mesoscopic constants	Ι _c 0.1 – 10 μΑ	C 1-100 fF
Energy scales	$E_{J} = \Phi_{0} I_{c}/2\pi$ 50-5000 GHz / 2-200 K	E _c = (2e) ² /2C 0.8 - 80 GHz / 0.04 – 4 K

Flux qubit



Electrical circuit model of the flux qubit



E_c, *E_c*, *r* - *design* (mesoscopic) parameters

 Φ_{qb} – *control* parameter

Flux quantization condition

$$\gamma_1 + \gamma_2 + \gamma_3 = -2\pi \Phi_{qb} / \Phi_0$$

Energy in terms of variables
$$\underline{\gamma_1}$$
 and $\underline{\gamma_2}$

$$\hat{T} = E_C \left(\hat{n_1}^2 + \hat{n_2}^2 + r(\hat{n_1}^2 + \hat{n_2}^2) \right)$$

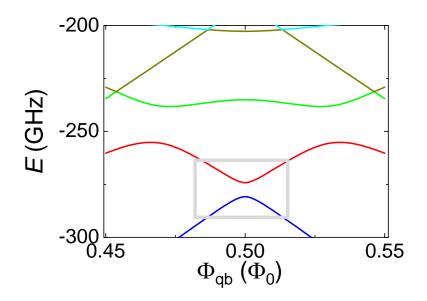
$$\hat{U} = -E_J \left(\cos \hat{\gamma_1} + \cos \hat{\gamma_2} + r \cos \hat{\gamma_2} + r \cos \hat{\gamma_1} + r \cos \hat{\gamma_2} + r \cos \hat{$$

Energy level structure

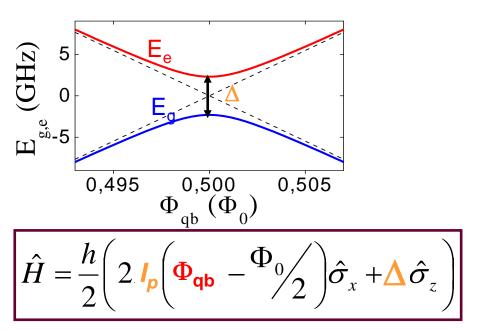
•energy levels depend on Φ_{qb} with period Φ_0

Mooij *et al.*, Science **285**, 1036 (1999)

Energy levels of the flux qubit



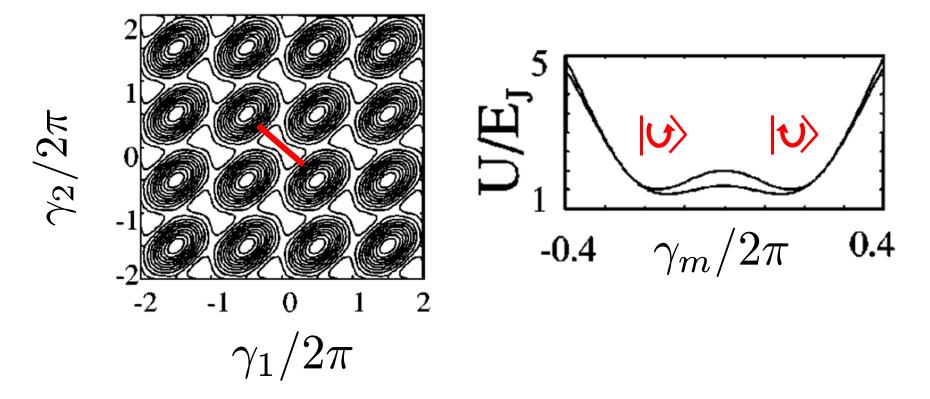
QUBIT MODEL



 I_p , Δ : **design** parameters Φ_{qb} : **control** parameter

Basis:
$$\{ | \mathcal{U} \rangle, | \mathcal{V} \rangle \}$$

Properties of the flux qubit



States localized in the potential wells: well defined phase \rightarrow well defined current/flux

Orlando *et al.*, PRB **60**, 15398 (1999)

- Quantum superconducting devices
 - Superconducting artificial atoms
 - The flux qubit
- Use of superconducting quantum systems
 - Quantum computing with superconducting qubits
 - Quantum optics in the strong coupling regime
- Two qubit gate based on controlled transition matrix elements
- Application of the gate to other types of systems

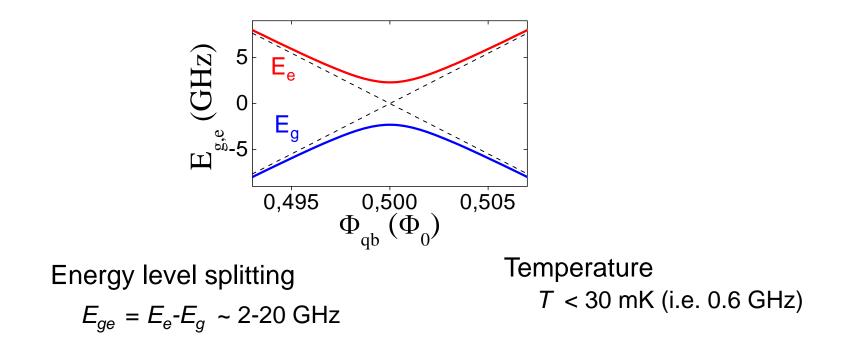
Implementation of QC with superconducting qubits

DiVincenzo criteria

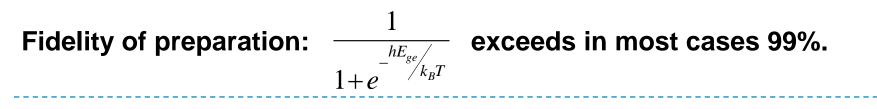
- → 1. a scalable physical system with well characterized qubits
 - 2. the ability to initialize the qubits in a well defined state
 - 3. long decoherence times
 - 4. a universal set of quantum gates
 - 5. a qubit specific measurement capability

DiVincenzo, Fortschr. Phys. 48, 771 (2000)

Qubit initialization



Energy relaxation (typically over microseconds) \rightarrow ground state preparation.



Universal set of quantum gates

- We need
 - 1-qubit gates
 - 2-qubit gates

1-qubit gates

A discrete set is sufficient, but in general continuous sets available

<u>2-qubit gates</u> C-NOT is sufficient

$$egin{aligned} |11
angle
ightarrow |10
angle \ |10
angle
ightarrow |11
angle \ |01
angle
ightarrow |01
angle \ |00
angle
ightarrow |00
angle \end{aligned}$$

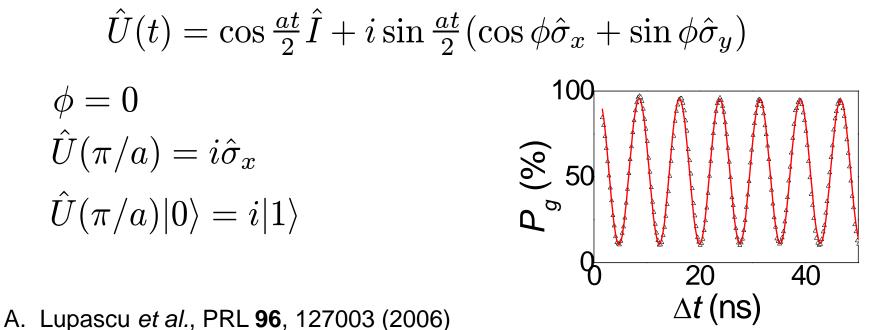
Nielsen and Chuang, Quantum Computation and Quantum Information (2000)

Universal set of quantum gates: 1 - qubit gate

State rotations: resonant driving

$$\hat{H} = -\frac{1}{2}\Delta\hat{\sigma}_z + a\cos\left(\omega t + \phi\right)\hat{\sigma}_z$$

- Undriven (a=0) case: superposition of 0 and 1 acquires phase $\Delta t \omega_{o1}$
- Driven case: additional Rabi oscillations

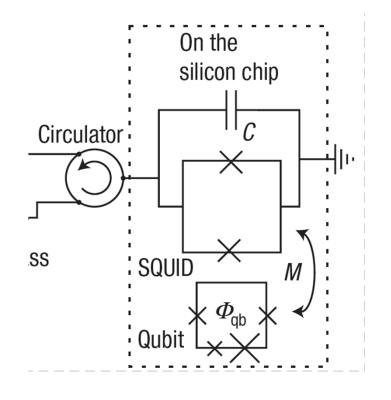


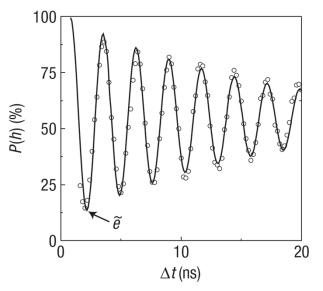
Decoherence

- Long coherence times observed: see eg Bylander *et al.*, Nature Physics (2011)
- Open questions
 - Origin of low frequency noise (dephasing)
 - Relaxation time: microscopic origin, reproducibility
- Best coherence time: requires operation at noise insensitive point

Qubit readout

 Example: a qubit state dependent resonance of a SQUID based circuit

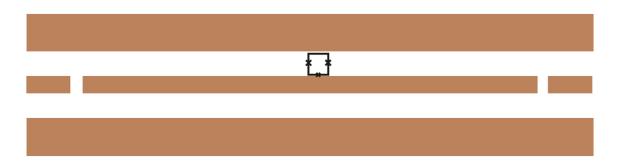




Large fidelity/projective measurements can be achieved (implementation dependent)

Lupascu et al., Nature Physics 3, 119 (2007)

Qubit-resonator system: Jaynes-Cumming model



Jaynes-Cumming model

$$H = \hbar \omega_{res} a^{\dagger} a + \hbar \omega_{qb} / 2\sigma_z + \hbar g \left(\sigma^+ a + \sigma^- a^\dagger \right)$$

Strong coupling regime

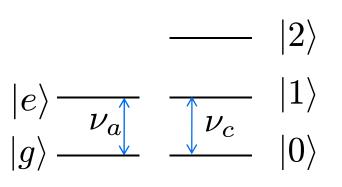
- $g \gg \kappa, \gamma$
- κ, γ cavity/qubit decay rate

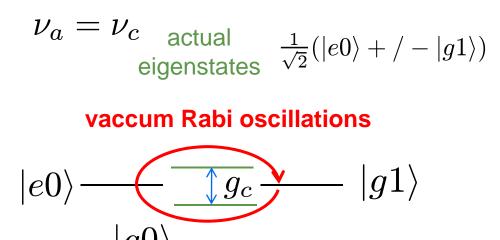
Resonant and dispersive regimes

 $|3\rangle$

Resonant coupling

• Equal atom and cavity frequencies $\nu_a = \nu_c$ actual





Wallraff et al., Nature 431, 162 (2004)

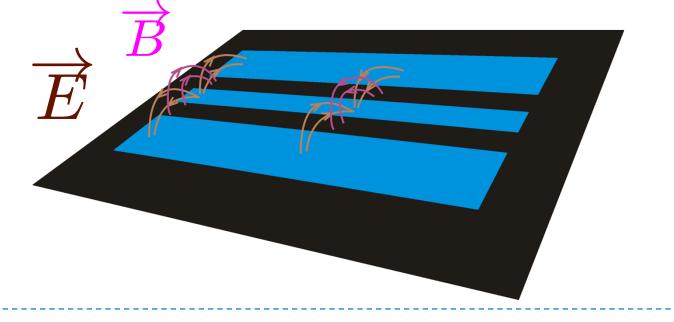
Dispersive coupling

• Detuning much larger than coupling $\Delta \gg g$

$$H \approx \hbar \left[\omega_{res} + \frac{g^2}{\Delta} \sigma_z \right] a^{\dagger} a + \frac{\hbar}{2} \left[\omega_{qb} + \frac{g^2}{\Delta} \right] \sigma_z$$

Single atoms and photons

- Single atom single photon mode interaction: cavity QED (quantum electrodynamics)
- Circuit QED:
 - domain of EM frequencies usually not considered light: ~10¹⁰ Hz compared to ~10¹⁴ for visible light
 - More confined light mode (1d vs 3d) \rightarrow stronger coupling



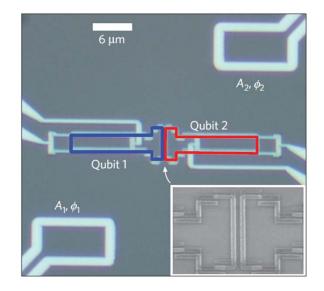
- Quantum superconducting devices
 - Superconducting artificial atoms
 - The flux qubit
- Use of superconducting quantum systems
 - Quantum computing with superconducting qubits
 - Quantum optics in the strong coupling regime
- Two qubit gate based on controlled transition matrix elements
- Application of the gate to other types of systems

Coupled flux qubits

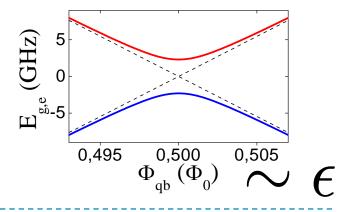
- Coupling mechanism: each qubit senses the magnetic flux of the other qubit
- Formal description

$$\hat{H} = \hat{H}_1 + \hat{H}_2 + \hat{H}_{int}$$
$$\hat{H}_1 = -\frac{1}{2}\Delta_1\hat{\sigma}_{z1} - \frac{1}{2}\epsilon_1\hat{\sigma}_{x1}$$
$$\hat{H}_2 = -\frac{1}{2}\Delta_2\hat{\sigma}_{z2} - \frac{1}{2}\epsilon_2\hat{\sigma}_{x2}$$
$$\hat{H}_{int} = J\hat{\sigma}_{x1}\hat{\sigma}_{x2}$$

- Orders of magnitude
 -) $\mathsf{J} \lesssim arDelta_{_1}$, $arDelta_{_2}$
 - ϵ tunable



de Groot *et al.*, Nature Physics **6**, 763 (2010)



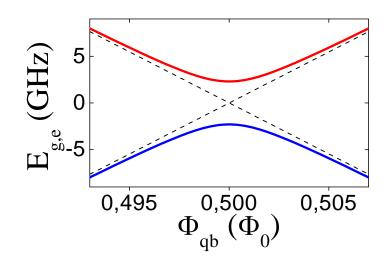
Away from the symmetry point

- $\bullet \epsilon_i \gg \Delta_i$, i=1,2 Hamiltonian $\hat{H} \simeq -\frac{1}{2}\epsilon_1\hat{\sigma}_{x1} - \frac{1}{2}\epsilon_2\hat{\sigma}_{x2} + J\hat{\sigma}_{x1}\hat{\sigma}_{x2}$ Energy levels $|1\rangle = |1\rangle = |1\rangle = |10\rangle$ $\varepsilon_1 = \varepsilon_2 = |0\rangle = |0\rangle$
- Transition frequency ω_{10,11} different of all the other transition frequencies → CNOT

Plantenberg et al., Nature 447, 836 (2007)

Decoherence away from the symmetry point

 Sensitivity to flux fluctuations is minimum at the symmetry point



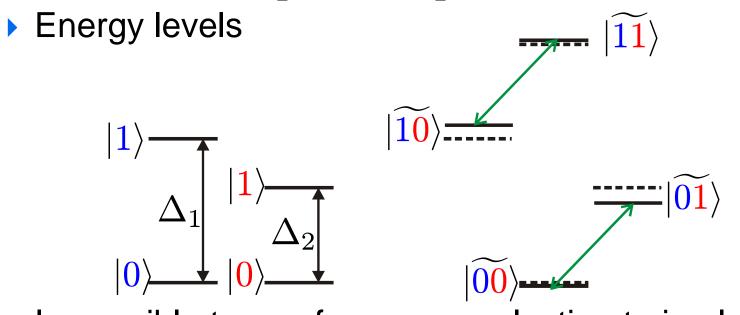
 Strong "pure dephasing" away from the symmetry point

Yoshihara *et al.*, Phys. Rev. Lett. **97**, 167001 (2006)

At the symmetry point

- *ϵ*_i =0, i=1,2
- Hamiltonian

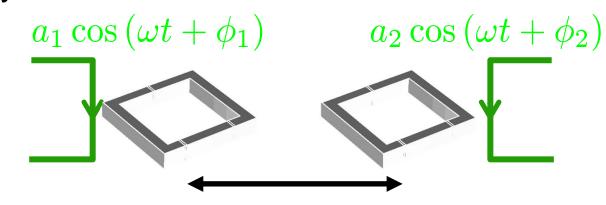
$$\hat{H} = -\frac{1}{2}\Delta_1\hat{\sigma}_{z1} - \frac{1}{2}\Delta_2\hat{\sigma}_{z2} + J\hat{\sigma}_{x1}\hat{\sigma}_{x2}$$



• Impossible to use frequency selection to implement a CNOT gate: $\omega_{_{10,11}} = \omega_{_{00,01}}$

Way out: independent driving

 Distance between qubits is << λ, but large enough to apply near field microwaves



d ~ 10 μ m << λ ~ 5 mm

Hamiltonian with driving

$$\hat{H} = \sum_{i=1,2} \left[-\frac{1}{2} \Delta \hat{\sigma}_{z,i} + a_i \cos\left(\omega t + \phi_i\right) \hat{\sigma}_{x,i} \right] + J \hat{\sigma}_{x,1} \hat{\sigma}_{x,2}$$

de Groot *et al.*, Nature Phys. **6**, 763 (2010)

Driving both qubits: transition matrix elements

- Matrix element calculation
 - Resonance: $\omega = \omega_{kl} \omega_{ij} \, \left(\omega_{kl} > \omega_{ij} \right)$
 - Result (in rotating frame)

$$T_{kl,ij} = \langle \widetilde{\underline{kl}} | \frac{a_1}{2} e^{i\phi_1} \hat{\sigma}_{x1} + \frac{a_2}{2} e^{i\phi_2} \hat{\sigma}_{x2} | \widetilde{\underline{ij}} \rangle$$

• Results when $J \ll |\Delta_1 - \Delta_2|$ (for simplicity)

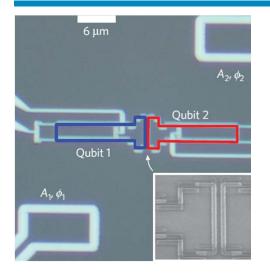
$$\begin{split} |\widetilde{00}\rangle &= |00\rangle \\ |\widetilde{01}\rangle &= |01\rangle - \frac{J}{\Delta_1 - \Delta_2} |10\rangle \\ |\widetilde{10}\rangle &= |10\rangle + \frac{J}{\Delta_1 - \Delta_2} |01\rangle \\ |\widetilde{11}\rangle &= |11\rangle \end{split}$$

$$T_{01,00} = -\frac{J}{\Delta_1 - \Delta_2} \frac{a_1}{2} e^{i\phi_1} + \frac{a_2}{2} e^{i\phi_2}$$
$$T_{11,10} = \frac{J}{\Delta_1 - \Delta_2} \frac{a_1}{2} e^{i\phi_1} + \frac{a_2}{2} e^{i\phi_2}$$

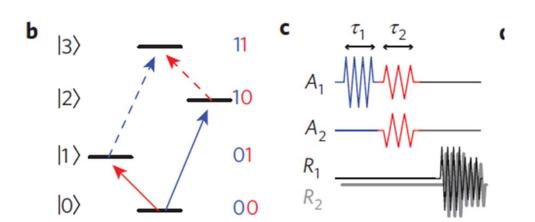
Cancellation condition

$$\frac{a_2}{a_1} = \frac{J}{\Delta_1 - \Delta_2} \qquad \longrightarrow \qquad \begin{array}{c} T_{01,00} = 0 \\ T_{11,10} = a_1 \frac{J}{\Delta_1 - \Delta_2} \end{array}$$

Experimental results



- > Pulse 1: creates a superposition of states $|0\rangle$ and $|1\rangle$ of qubit 1
- Pulse 2: rotation of qubit 2, dependent of state of qubit 1



Oscillations

 $egin{aligned} |00
angle \leftrightarrow |01
angle \ ext{and} & |10
angle \leftrightarrow |11
angle \end{aligned}$

should occur at different rates

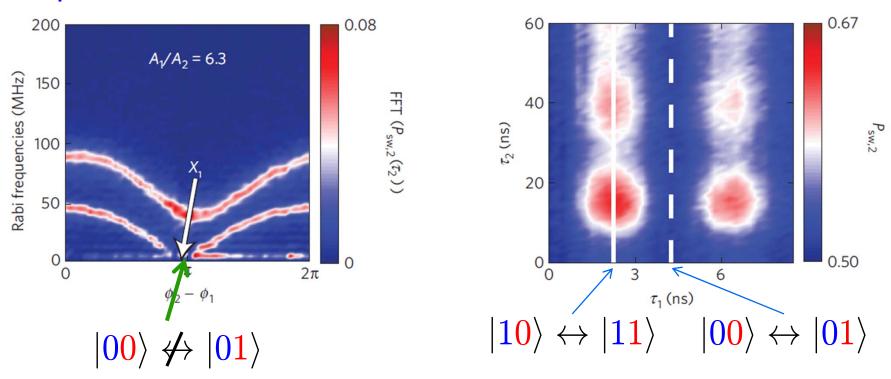
de Groot et al., Nature Physics 6, 763 (2010)

Experimental results

• Prepare qubit 1 in $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ • Demonstration of

• Measure oscillation frequency of qubit 2

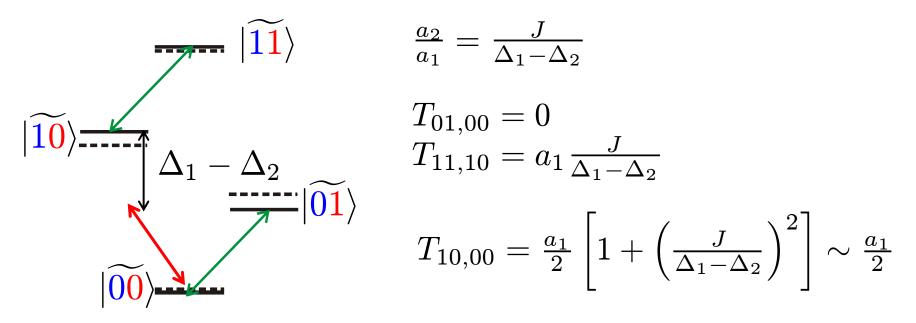
CNOT gate



de Groot et al., Nature Physics 6, 763 (2010)

Gate speed

Limited by off resonance driving



Leakage effects when $T_{10,00} \sim \Delta_1 - \Delta_2$ Maximum gate speed $T_{11,10} < J$

Other schemes for operation at a symmetry point

Parametric modulation

Niskanen et al., Science 316, 723 (2007)

FLIC-FORQ

Rigetti *et al*, Phys. Rev. Lett. **94**, 240502 (2007)

Cross resonance

Rigetti and Devoret, PRB 80, 134507 (2010) - related recent theoretical work

Matrix element gate vs other gates for transverse coupling

- Speed gate: similar (limited by the coupling strength J)
- Advantages
 - No additional coupler element is required (unlike parametric modulation)
 - Tolerant to parameters
- Problems with present implementation
 - Low coherence times, due to low frequency noise coupled through detectors
 - Direct coupling: limited range

Improvement of the matrix element gate

Qubits in cavities

Blais *et al*, Phys. Rev. A **75**, 032329 (2007)

- System model $H = h\nu_{cav}a^{\dagger}a$ $+ h\Delta_{1}\sigma_{z1} + hg_{1}(a\sigma_{1}^{+} + a^{\dagger}\sigma_{1}^{-})$ $+ h\Delta_{2}\sigma_{z2} + hg_{2}(a\sigma_{2}^{+} + a^{\dagger}\sigma_{2}^{-})$

- Quantum superconducting devices
 - Superconducting artificial atoms
 - The flux qubit
- Use of superconducting quantum systems
 - Quantum computing with superconducting qubits
 - Quantum optics in the strong coupling regime
- Two qubit gate based on controlled transition matrix elements
- Application of the gate to other types of systems

Applicability of the gate to other solid state qubits

- Requires interaction of form $\hat{\sigma}_{x1}\hat{\sigma}_{x2}$ generic. All cQED implementations have this term
- Used recently in experiments with transmons

Filipp *et al.*, arxiv 1107.2078 (2011)

Applicable to coupled quantum dots

Application to atomic systems

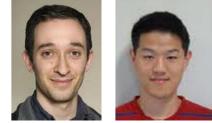
- Difficulties
 - Phase difficult to enforce for short wavelength optical fields
 - Position control
- Potential application: molecular ensembles coupled by resonator: see arxiv 1108.1412

Summary

- The dark transition gate is a flexible and generic method for two qubit gates in superconducting circuits
- Cavity QED architecture for experiments with many flux qubits
- The gate is applicable to other systems with fixed coupling: quantum dots, molecular ensembles

Acknowledgement

- SQD group
 - Jean-Luc Orgiazzi
 - Chunqing Deng
 - Florian Ong
 - Mustafa Bal



- Collaboration
 - Delft group
 - Jonathan Baugh
 - Sahel Ashhab

WATERLOO IQC Institute for Quantum Computing