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Quantare 1S the minimum amount of any physical
entity involved In an interaction

 Quutre 1S @ Misused word, as appeared N Quauntun
groups, gt fields and &aaur Computers.

= Sensible that &«utur Information was a sub-field
of Quartumr Mechanics.

= The first urtar computer in real functioning was
built in 1998.

= In 2006, there was a benchmarking of a 12-y«4/¢
computer.



MY PERSONAL EXPERIENCE

| am a pure mathematician with much interest in
foundation of &«u mechanics in the light of Quutun

Information.

My old short paper of 1975 has been viewed as a
pioneering paper about &« channels.

Suddenly, | was awaken in the new era of Quutun
computers to see frightening features of Quutur
channels for communications of gz iInformation.

As the time runs backwards in an alternating
world through the looking glass, | have to come

back to the same old scene to release myself
from & €entanglements.



@gantum Ghannels through my old Drearm




UNITS OF INFORMATION-- Bits vs Qubits

« A bit (binary integer) is the base of conventional
computer memory.

« 1-bitis read as either a zero or a one with probability in
the real interval [O, 1].

« A 3-bit corresponds to an element in
{0, 1} X {0, 1} X {0, 1} = 23, as vertices of a cube;

but very WRONG to have a cube for probability!

 When n =30, we get 230 =1 giga



 To get a setting of a possible non-commutative
generalization, we associate each 1-bit with a rank-1
diagonal 2 X 2 projection matrix, i.e.,

oo o

« Each 3-bit corresponds to a rank-1 diagonal 8 X 8
projection matrix, as the tensor product of three 2 X 2
matrices where each is

oo o bon

Thus there are eight 3-bits located in an 8-dimensional
space.



*A qubit (quantum bit) is a unit of quantum computer
memory.
»Mathematically, each 1-qubit is regarded as an element in

. L1 —2 y+iz . - - - -
g2 ) ith r° 2422 =
: {2 (y v 14 ;1?) with = + y~ + 1

= {all 2 X 2 rank-1 projection matrices}

= {all vector states acting on C2}

— {one-dimensional complex linear subspaces of C2 }

= {yea’a/ two-dimensional real subspaces of R4}



Physically, a 1-qubit is a superposition of the
spherical surface (called the Bloch sphere),
because an electron can move freely to any
direction from the origin of R3.

Def. An n-qubit (= a vector state) is regarded as a
1-dimensional complex linear subspace of the dim
2" Hilbert space, which can also be identified as a
rank-1 projection in the form as a 2" X 2" complex
maltrix.



DENSITY MATRICES

* In the formal setting of non-commutative probability, the
random position of an n-qubit can be regarded as a
density matrix, to be defined as a convex combination of

rank-1 projections in M,n.

Def: A density matrix is a positive semidefinite matrix of trace 1.

*Thus, each 2 x 2 density matrix is expressed as

1 1-X  y+1z
2| y—iz 1+x
with x2 +y2 + 72 < 1; so all density matrices fill up the

whole solid sphere with S2 as boundary.

®* Nevertheless, for the case n >2, there is no geometrical
picture for the collection of all n x n density matrices.



ecap Of the stmmplest qUANTUIN computer
P Ui

* The setting of 1-qubit computer
IS a solid sphere in R3
--- Just like the solid Earth in space.

* To send out quantum information ----- to
communicate between two 1-qubit computers,
we consider a feasible affine transform
(preserving the 3-dimensional convex structure)
of the solid Earth.



WHAT ON E@H DOES IT MEAN?
(A) Rotation (B) Reflection

= Each 1-1 onto affine transform of the earth
must be a rotation or reflection followed by

a rotation.
= Note that Reflection Is not feasible, In

geography, or in physics, or by topology.




More examples of AFFINE

TRANSFORMS OF THE SPHF RE

* (C) Shrinking to a solid ellipsoid

« (D) Simple translation --- only after
shrinking.

» The affine transform image must be a solid
ellipsoid inside the original solid sphere.

» Each affine transform must be a composition of
the four types above.

» An environmentally feasible affine transform is
the composition of a Rotation and certain
Shrinking followed by appropriate Translation (but
no Reflection).



Notations

M, = the algebra of all n x n complex matrices

M _* =the cone of all n X n positive semidefinite

n .
matrices.

Def: Alinearmap ® : M, — M_ Is a positive
linear map when oM ")c M_*.

m

® is completely positive when @& is of the
form ®(A) =X V*AV, forall Ain M, .



Completely positive linear maps
in CIRCUIT THEORY

« Each transformer defines a positive linear
map A --> V*AV. Thus several
transformers in series define a completely
positive linear maps.

« Main guestion in circuit theory: Besides
transformers, what else can make a
positive linear map?



AFFINE TRANSFORMS induces LINEAR MAPS
M =M*-M* + iM*—iM*

n

= M "= R* x{density matrices}

» {affine transforms on density matrices}
~ {trace-preserving positive linear maps}.

» {affine transforms on density matrices, fixing scalar matrices }
~ {unital trace-preserving positive linear maps}.

» {feasible affine transforms on density matrices}
~ {trace-preserving completely positive linear maps}.



= {density matrices} = { the solid sphere in R3}

---the setting of a 1-qubit computer.

» {trace-preserving positive linear maps}

= {Affine transforms of the solid sphere}

= {Compositions of rotations, reflection, shrinking, & translations}
» {trace-preserving completely positive linear maps}

= {Feasible affine transforms of the solid sphere}

--- quantum channels between two 1-qubit computers

» The transpose map = the reflection of the sphere.

» *-Isomorphism = rotation of the sphere.



Will need full information of special classes of positive
linear maps.

 Notation: Each linear map ® : M, — M, can be
extended to a linear map

O ®idy: My ® My—> My ® M, .

 Def:. ® is said to be p-positive

when O®® id,, is a positive linear map.

P

« Def: ® is said to be completely positive
when @ is a p-positive linear map for

each positive integer p.



FULL STRUCTURE THEORY

Thm.(Chol, 1972) All p-positive linear maps
from M, to M, are completely positive
when n<pork<p.

* Nevertheless, various p provide distinct classes of
p-positive linear maps as elaborated in the following:

« Example: (C
The linear ma
®(A) = (n-1)

nol, 1072)

0 ;. M, > M_ defined as
(trace A)l, — A

IS (n-1)-positive but not n-positive.



« Thm: (Chol, 1975) A linear map

®: M, — M, Is completely positive
it [D(Ej)] Is positive
Iff when ® Is of the form
DA) =% Vi*AV; forall Ain M, .

*More details for the structure theory.
(This 1975 paper has been cited In
more than 650 research papers, as
of 2011 August Google Scholars.)

 Karl Kraus (1938-1988) was responsible for early
development of quantum information.



Now, we are ready to carry out the full exploration of quantum
information.

Let H, be the system Hilbert space and let H. be the environment
Hilbert space. (Usually, dim H, = dim H, < o.)

Definition: A quantum channel (alias, quantum operation ) 1s a
linear map ®: L(H.) — L(H,) satistying the conditions:

(1) @ Is trace preserving
(i) ®® id: L(Hy)® L(H.) — L(H)® L(H,)
IS positive.

= From the structure theorem, it follows that
® is completely positive and
O(A) = Z V*AV, for all Ain M,

with T V.V =1.



Quantam Channels
as Trace-preserving completely

positive linear maps

Open Question: Let T be an n x n matrix.

What are ®©(T) for all possible quantum
channels ©?

Partial answer: Suppose T Is positive.
Then all ®(T) are precisely all positive

N X N matrices of the same trace as T.





