My Personal Adventure in Quantum Wonderland

Man-Duen Choi, Math Department University of Toronto

2011 August at Fields Institute

- Quantum is the minimum amount of any physical entity involved in an interaction
 - Quantum is a misused word, as appeared in Quantum groups, Quantum fields and Quantum Computers.
 - Sensible that Quantum Information was a sub-field of Quantum Mechanics.
 - The first Quantum computer in real functioning was built in 1998.
 - In 2006, there was a benchmarking of a 12-qubit computer.

MY PERSONAL EXPERIENCE

- I am a pure mathematician with much interest in foundation of Quantum mechanics in the light of Quantum information.
- My old short paper of 1975 has been viewed as a pioneering paper about Quantum channels.
- Suddenly, I was awaken in the new era of Quantum computers to see frightening features of Quantum channels for communications of Quantum information.
- As the time runs backwards in an alternating world through the looking glass, I have to come back to the same old scene to release myself from Quantum entanglements.

Quantum Channels through my old Dream

UNITS OF INFORMATION-- Bits vs Qubits

- A bit (binary integer) is the base of conventional computer memory.
- 1-bit is read as either a zero or a one with probability in the real interval [0, 1].
- A 3-bit corresponds to an element in
 {0, 1} X {0, 1} X {0, 1} = 2³, as vertices of a cube;

but very WRONG to have a cube for probability!

• When n = 30, we get $2^{30} = 1$ giga

 To get a setting of a possible non-commutative generalization, we associate each 1-bit with a rank-1 diagonal 2 x 2 projection matrix, i.e.,

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

• Each 3-bit corresponds to a rank-1 diagonal 8 X 8 projection matrix, as the tensor product of three 2 X 2 matrices where each is

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Thus there are eight 3-bits located in an 8-dimensional space.

- A qubit (quantum bit) is a unit of quantum computer memory.
- •Mathematically, each 1-qubit is regarded as an element in

$$S^2 \simeq \left\{ \frac{1}{2} \begin{pmatrix} 1-x & y+iz \\ y-iz & 1+x \end{pmatrix} \quad with \ x^2+y^2+z^2=1 \right\}$$

- = {all 2 X 2 rank-1 projection matrices}
- = {all vector states acting on \mathbf{C}^2 }
- = {one-dimensional complex linear subspaces of \mathbf{C}^2 }
- = { special two-dimensional real subspaces of \mathbb{R}^4 }

Physically, a 1-qubit is a superposition of the spherical surface (called the Bloch sphere), because an electron can move freely to any direction from the origin of **R**³.

Def. An *n*-*qubit* (= a vector state) is regarded as a 1-dimensional complex linear subspace of the dim 2ⁿ Hilbert space, which can also be identified as a rank-1 projection in the form as a 2ⁿ X 2ⁿ complex matrix.

DENSITY MATRICES

• In the formal setting of non-commutative probability, the random position of an n-qubit can be regarded as a density matrix, to be defined as a convex combination of rank-1 projections in M_2 n.

Def: A *density matrix* is a positive semidefinite matrix of trace 1.

•Thus, each 2 x 2 density matrix is expressed as

$$\frac{1}{2} \begin{bmatrix} 1-x & y+iz \\ y-iz & 1+x \end{bmatrix}$$

with $x^2 + y^2 + z^2 \le 1$; so all density matrices fill up the whole solid sphere with S^2 as boundary.

 Nevertheless, for the case n >2, there is no geometrical picture for the collection of all n x n density matrices.

Recap of the simplest quantum computer

- The setting of 1-qubit computer is a solid sphere in R³
- --- just like the solid Earth in space.

 To send out quantum information ----- to communicate between two 1-qubit computers, we consider a feasible affine transform (preserving the 3-dimensional convex structure) of the solid Earth.

(A) Rotation

(B) Reflection

- Each 1-1 onto affine transform of the earth must be a rotation or reflection followed by a rotation.
- Note that Reflection is not feasible, in geography, or in physics, or by topology.

More examples of AFFINE TRANSFORMS OF THE SPHFRE

- (C) Shrinking to a solid ellipsoid
- (D) Simple *translation* --- only after shrinking.

- The affine transform image must be a solid ellipsoid inside the original solid sphere.
- ➤ Each affine transform must be a composition of the four types above.
- An environmentally feasible affine transform is the composition of a *Rotation* and certain *Shrinking* followed by appropriate *Translation* (but no *Reflection*).

Notations

 M_n = the algebra of all n x n complex matrices

 M_n^+ = the cone of all n x n positive semidefinite matrices.

Def: A linear map $\Phi: M_n \to M_m$ is a *positive* linear map when $\Phi(M_n^+) \subseteq M_m^+$.

 Φ is **completely positive** when Φ is of the form $\Phi(A) = \sum V_j^* A V_j$ for all A in M_n .

Completely positive linear maps in CIRCUIT THEORY

 Each transformer defines a positive linear map A --> V*AV. Thus several transformers in series define a completely positive linear maps.

 Main question in circuit theory: Besides transformers, what else can make a positive linear map?

AFFINE TRANSFORMS induces LINEAR MAPS

- $M_n = M_n^+ M_n^+ + i M_n^+ i M_n^+$
- M_n⁺ = R⁺ x { density matrices}
- > {affine transforms on density matrices}
- ≈ {trace-preserving positive linear maps}.
- > {affine transforms on density matrices, fixing scalar matrices }
- ≈ {unital trace-preserving positive linear maps}.
- > {feasible affine transforms on density matrices}
- ≈ {trace-preserving completely positive linear maps}.

FOR THE CASE n=2

- {density matrices} ≈ { the solid sphere in R³}
- ---the setting of a 1-qubit computer.
- > {trace-preserving positive linear maps}
- ≈ {Affine transforms of the solid sphere}
- = {Compositions of rotations, reflection, shrinking, & translations}
- > {trace-preserving completely positive linear maps}
- ≈ {Feasible affine transforms of the solid sphere}
- --- quantum channels between two 1-qubit computers
- ➤ The transpose map ≈ the reflection of the sphere.
- ➤ *-isomorphism ≈ rotation of the sphere.

Will need full information of special classes of positive linear maps.

Notation: Each linear map Φ : M_n → M_k can be extended to a linear map

$$\Phi \otimes id_p : M_n \otimes M_p \longrightarrow M_k \otimes M_p$$
 .

- Def: Φ is said to be p-positive
 - when $\Phi \otimes id_p$ is a positive linear map.
- Def: Φ is said to be completely positive when Φ is a p-positive linear map for each positive integer p.

FULL STRUCTURE THEORY

Thm.(Choi, 1972) All p-positive linear maps from M_n to M_k are completely positive when n < p or k < p.

- Nevertheless, various p provide distinct classes of p-positive linear maps as elaborated in the following:
- **Example:** (Choi, 1072)

The linear map $\Phi: M_n \to M_n$ defined as

$$\Phi(A) = (n-1)(\text{trace } A)I_n - A$$

is (n-1)-positive but not n-positive.

- Thm: (Choi, 1975) A linear map
 - $\Phi: M_n \to M_k$ is completely positive
- iff $[\Phi(E_{ii})]$ is positive
- iff when Φ is of the form

$$\Phi(A) = \sum V_j^* A V_j$$
 for all A in M_n .

•More details for the structure theory. (This 1975 paper has been cited in more than 650 research papers, as of 2011 August Google Scholars.)

 Karl Kraus (1938-1988) was responsible for early development of quantum information. Now, we are ready to carry out the full exploration of quantum information.

Let H_s be the system Hilbert space and let H_e be the environment Hilbert space. (Usually, dim $H_e \ge \dim H_s < \infty$.)

Definition: A quantum channel (alias, quantum operation) is a linear map $\Phi: L(H_s) \longrightarrow L(H_s)$ satisfying the conditions:

- (i) Φ is trace preserving
- (ii) $\Phi \otimes id$: $L(H_s) \otimes L(H_e) \rightarrow L(H_s) \otimes L(H_e)$ is positive.
- From the structure theorem, it follows that Φ is *completely positive* and $\Phi(A) = \Sigma \ V_j^* A V_j$ for all A in M_n with $\Sigma \ V_i V_i^* = I$.

Quantum Channels

as Trace-preserving completely positive linear maps

Open Question: Let T be an n x n matrix. What are $\Phi(T)$ for all possible quantum channels Φ ?

Partial answer: Suppose T is positive. Then all $\Phi(T)$ are precisely all positive n x n matrices of the same trace as T.