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    Quantum    is  the minimum amount of any physical 

entity involved in an interaction 

  

. 

 Sensible that  Quantum Information was a sub-field 

of Quantum Mechanics. 

 The first Quantum computer in real functioning was 

built in 1998.   

 In 2006,  there was a benchmarking of a 12-qubit 
computer. 

 

 Quantum is a misused word, as appeared in Quantum 
groups, Quantum fields and Quantum Computers. 



My  Personal  Experience 
• I am a pure mathematician with much interest in 

foundation of Quantum mechanics in the light of Quantum 

information. 

• My old short paper of 1975 has been viewed as a 
pioneering paper about Quantum channels. 

• Suddenly, I was awaken in the new era of Quantum 
computers to see frightening features of Quantum 
channels for communications of Quantum information. 

• As the time runs backwards in an alternating 

world through the looking glass, I have to come 

back to the same old scene to release myself 
from Quantum entanglements.  



 
Quantum  Channels through my old Dream 



 Units of Information-- Bits vs Qubits 

• A bit (binary integer) is the base of conventional 
computer memory. 

 

• 1-bit is read as either a zero or a one with probability in 
the real interval  [0, 1].  

  

• A 3-bit corresponds to an element in  

      {0, 1} X {0, 1} X {0, 1} = 23,  as vertices of a cube; 

 

      but very WRONG to have a cube for probability!  

 

• When n =30, we get  230 = 1 giga 



• To get a setting of a possible non-commutative 

generalization, we associate each  1-bit with  a rank-1 

diagonal  2 X  2  projection matrix, i.e., 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Each 3-bit corresponds to a rank-1 diagonal 8 X 8  

projection matrix, as the tensor product of three 2 X 2 

matrices where each is   
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Thus there are eight 3-bits located in an 8-dimensional 

space. 



A qubit (quantum bit) is a unit of quantum computer 

memory.   

Mathematically, each 1-qubit is regarded as an element in 
 

 

 

 

 

  

= {all 2 X 2 rank-1 projection matrices} 

 

= {all vector states acting on C2
 } 

= {one-dimensional complex linear subspaces of  C2 } 

= {special   two-dimensional real subspaces of R4} 



Def.  An n-qubit (= a vector state) is regarded as a 

1-dimensional complex linear subspace of the dim 

2n Hilbert space, which can also be identified as a 

rank-1 projection in the form as a  2n  X 2n  complex  

matrix. 

Physically, a 1-qubit is a superposition of the 

spherical surface (called the Bloch sphere), 

because an electron can move freely to any 

direction from the origin of R3. 



Density Matrices 

2
1

Def: A density matrix is a positive semidefinite matrix of trace 1. 

•Thus, each 2 x 2 density matrix is expressed as 
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with x2 +y2 + z2 < 1;  so all density matrices fill up the 

whole solid sphere with S2 as boundary. 

• In the formal setting of non-commutative probability, the 

random position of an n-qubit can be regarded as a 

density matrix, to be defined as a convex combination of 

rank-1 projections in  M2n. 

• Nevertheless, for the case n >2, there is no geometrical 

picture for the collection of all n x n density matrices.   



Recap of the simplest quantum computer 

• The setting of 1-qubit computer  

   is  a solid sphere in R3 

--- just like the solid Earth in space. 

 

• To send out quantum information ----- to 

communicate between two 1-qubit computers, 

we consider a feasible  affine transform 

(preserving the 3-dimensional convex structure) 

of the solid Earth. 

 



What  On earth  Does  it  mean? 

(A) Rotation                (B)  Reflection 

 Each 1-1 onto affine transform of the earth 

must be a rotation or reflection followed by 

a rotation. 

 Note that Reflection is not feasible, in 

geography, or in physics, or by topology. 



More examples of Affine 
Transforms of the Sphere 

• (C) Shrinking to a solid ellipsoid 

 • (D) Simple translation --- only after 

shrinking.  

 The affine transform image must be a solid 

ellipsoid inside the original solid sphere. 

 Each affine transform must be  a composition of 

the four types above.   

 An environmentally  feasible affine transform is  

the composition of a Rotation and  certain 

Shrinking followed by  appropriate Translation  (but 

no Reflection). 



Notations 

Mn = the algebra of all n x n complex matrices 

 

Mn
+  = the cone of all n x n positive semidefinite 
matrices. 

  

Def:  A linear map    : Mn   Mm  is a positive 
linear map  when    (Mn

+)    Mm
+ . 

  

   is completely positive  when     is  of the 
form   (A) =  Vj*AVj for all A in Mn . 

 



Completely positive linear maps 

in circuit theory 

•  Each transformer defines a positive linear 

map   A  -->  V*AV .  Thus several 

transformers in series define a completely 

positive linear maps. 

 

• Main question in circuit theory:  Besides 

transformers, what else can make a 

positive linear map? 



Affine  Transforms induces Linear Maps  

 Mn  = Mn
+

  - Mn
+

   +  i Mn
+ – i Mn

+
  

 Mn
+ =  R+ x { density matrices} 

 

 {affine transforms  on density matrices}  

 ≈ {trace-preserving positive linear maps}. 
 

 {affine transforms on density matrices, fixing scalar matrices }  

 ≈ {unital trace-preserving positive linear maps}. 
 

 {feasible affine transforms  on density matrices}  

≈ {trace-preserving completely positive linear maps}. 

 

 



For the case n=2  

 {density matrices} ≈ { the solid sphere in R3} 

---the setting of a 1-qubit computer. 

 {trace-preserving positive linear maps} 

 ≈ {Affine transforms of the solid sphere}   

 = {Compositions of rotations, reflection, shrinking, & translations} 

 {trace-preserving completely positive linear maps} 

≈ {Feasible affine transforms of the solid sphere}  

--- quantum channels between two  1-qubit computers 

The transpose map ≈ the reflection of the sphere. 

*-isomorphism ≈ rotation of the sphere. 





Will need full information of special classes of positive 

linear maps. 

• Notation: Each linear map Φ : Mn → Mk can be 

extended to a linear map  

Φ    idp: Mn       Mp → Mk    Mp .  

• Def: Φ  is said to be p-positive  

     when Φ   idp is  a positive linear map.  

• Def: Φ  is said to be completely positive 

when Φ  is a p-positive linear map for 

each positive integer p.  



Full Structure Theory 

Thm.(Choi, 1972)  All p-positive linear maps 

from Mn to Mk are completely positive 

when      n < p or k < p. 

• Nevertheless, various p provide distinct classes of   

p-positive linear maps as elaborated  in the following:  

• Example: (Choi, 1072)   

  The linear map Φ: Mn  Mn defined as    

     Φ(A) = (n-1)(trace A)In – A  

     is (n-1)-positive but not n-positive. 



• Thm:   (Choi, 1975)  A linear map   

  : Mn   Mk  is completely positive   

iff   [(Eij)] is positive 

iff   when     is  of the form  

         (A) =  Vj*AVj for all A in Mn . 

•More details for the structure theory. 

(This 1975  paper has been cited in 

more than  650  research papers, as 

of 2011 August Google Scholars.) 

• Karl Kraus (1938-1988) was responsible for early 

    development of quantum information. 



(i)  is trace preserving 

(ii)      id:  L(Hs)      L(He) → L(Hs)   L(He) 

     is positive. 

 From the structure theorem, it follows that  

   is completely positive and  

         (A) =  Vj*AVj for all A in Mn  

with  VjVj
* = I .  



 

Open Question:   Let T be an n x n matrix. 

What are (T) for all possible quantum 
channels ? 

 

Partial answer:  Suppose T is positive.  
Then all (T) are precisely all positive   

   n x n matrices of the same trace as T. 

Quantum Channels 
as Trace-preserving completely 

positive linear maps 




