Conference on Quantum Information and Quantum Control Fields Institute : August 8-12, 2011

On the Ambainis-Bach-Nayak-Vishwanath-Watrous

Conjecture

by

Clement Ampadu

Outline

- Introduction
- Brief History of the Problem
- The Conjecture
- The Konno-Namiki-Soshi-Sudbury Attack
- Failure and the Ampadu Solution
- Resolution of the Conjecture
- Open Problem
- References

Introduction

Consider a one dimensional quantum walk determined by a 2×2 unitary matrix U on the state space $\{0,1, \cdots, N-1, N\}$ where N is finite or infinite

Let Φ below be the collection of initial quibit states: $\Phi=\left\{\varphi=\left[\begin{array}{c}\alpha \\ \beta\end{array}\right] \in C^{2}:|\alpha|^{2}+|\beta|^{2}=1\right\}$.

For $k \in\{0,1 \cdots, N\}$ we are interested in the probabilites $P_{*}^{*}(\varphi)$ and $P_{*}^{*}(\varphi)$ for the walks.

Brief History of the Problem

Let $U=H(\rho)=\left[\begin{array}{cc}\sqrt{\rho} & \sqrt{1-\rho} \\ \sqrt{1-\rho} & -\sqrt{\rho}\end{array}\right]$. Bach et.al showed:
$\lim _{x}([0,1])=\frac{\rho}{1-\rho}\left(\frac{\cos ^{*}(1-2 \rho)}{\pi}-1\right)+\frac{2 \sqrt{\rho}}{\pi \sqrt{1-\rho}}$

Yamaski-Kobayashi-Imai Conjecture

$$
\lim P^{-}([0,1])=\frac{\cos ^{-}(1-2 \rho)}{\pi}
$$

Brief History of the Problem

Let $U=H\left(\frac{1}{2}\right)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.
Ambainis et.al showed: $P_{r}^{(}([0,1])=P([1,0])=\frac{2}{\pi}$
and $\lim _{\operatorname{lin}} P^{*}([0,1])=\frac{1}{\sqrt{2}}$
Bach et.al showed:
$\lim _{-} P_{-}^{*}(\varphi)=\frac{1}{2}|\alpha|^{2}+\left.\left(\frac{2}{\pi}-\frac{1}{2}\right) \beta\right|^{\beta}+\left(\frac{2}{\pi}-1\right) \operatorname{Re}(\alpha \beta)$

The Conjecture

Let $U=H\left(\frac{1}{2}\right)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ and $\left.\varphi=\mid R\right)=[0,1]$
? Is it true that
$\left.P_{\cdot}^{\prime \prime \prime}(R\rangle\right)=\frac{\left.2 P_{\cdot}^{\prime \prime}(R\rangle\right)+1}{2 P_{r}^{r}(|R\rangle)+2} ; N \geq 1$
$\left.P_{,}^{\prime}(R\rangle\right)=0$

Lemma 1: $P_{*}^{\prime \prime}(\varphi)=\sum_{\Sigma}^{\Sigma} P_{1}^{*}(n ; \varphi)$, where

$$
\begin{aligned}
& P^{*}(n ; \varphi)=C(n) \alpha \alpha^{2}+C(n) \mid \beta^{2}+2 \operatorname{Re}(C(n) \alpha \beta), \\
& C_{i}(n)=\mid a p_{0}^{\prime \prime}(n)+c r_{i}^{\prime \prime}(n)^{2}, \quad C_{2}(n)=b p_{i}^{\prime \prime}(n)+d r_{i}^{\prime \prime}(n)^{2}, \\
& C_{i}(n)=\overline{\left(a p_{*}^{*}(n)+c r_{*}^{*}(n)\right)}\left(b p_{*}^{*}(n)+d r_{*}^{*}(n)\right)
\end{aligned}
$$

where the bar denotes complex conjugation, and $p_{t}^{*}(n)$ and $r_{*}^{\prime \prime}(n)$ satisfy certain difference equations that contribute to the solution of $P_{*}^{\prime}(\varphi)$

The Konno-Namiki-Soshi-Sudbury Attack

Theorem 2: $P_{*}^{*}(\varphi)=C|\alpha|^{2}+C| |^{2}+2 \operatorname{Re}\left(C_{i} \bar{\alpha} \beta\right)$,

where

$$
\begin{aligned}
& \left.C_{1}=\frac{1}{2 \pi}{ }_{1}^{2!} \right\rvert\, a p_{i}^{\prime \prime}\left(e^{\omega}\right)+c r_{n}^{\prime \prime}\left(e^{u}\right)^{2} d \theta \\
& \left.C_{2}=\frac{1}{2 \pi}{ }^{r^{\prime}} \right\rvert\, b p_{i}^{*}\left(e^{u}\right)+d r_{i}^{*}\left(e^{u}\right)^{2} d \theta \\
& C_{s}=\frac{1}{2 \pi}{ }^{\prime \prime}\left(\overline{\left.a p_{i}^{\prime \prime}\left(e^{u}\right)+c r_{n}^{*}\left(e^{*}\right)\right)\left(b p_{i}^{*}\left(e^{*}\right)+d r_{*}^{*}\left(e^{u}\right)\right) d \theta}\right.
\end{aligned}
$$

The Konno-Namiki-Soshi-Sudbury Attack

IDEOLOGY: In the special case of the Hadamard walk, explicitly determine $p_{t}^{*}\left(e^{*}\right)$ and $r_{i}^{*}\left(e^{*}\right)$ in Theorem 2, from the difference equation they satisfy and use it in the special case of $\varphi=|R\rangle$ $k=1$ to show the truth or falsity of the

Conjecture

Failure and the Ampadu Solution

Lemma 3: Let $\lambda=\frac{z^{*}-1 \pm \sqrt{z^{*}+1}}{\sqrt{2} z}, p_{c}^{*}=(\lambda)^{\prime}$,
$r^{\prime \prime}=(\lambda)^{\prime}$, then the solution to the difference equation $p_{t}^{*}(z)=A p_{n \prime \prime}^{*}(z)+B r_{z=1}^{*}(z)$,
$r_{n}^{\prime \prime}(z)=A p_{m}^{\prime \prime}(z)+B r_{z+1}^{*}(z)$, with prescribed boundary conditions $r_{s, 1}^{\prime \prime}(z)=0 \& p^{\prime \prime}(z)=z$ is

$$
\begin{aligned}
& p_{n}^{\prime \prime}(z)=\frac{z(\lambda)^{\prime \prime}}{(\lambda)^{\prime}-(\lambda)^{\prime \prime}} \lambda^{\prime \prime}+\frac{z(\lambda)^{\prime \prime}}{(\lambda)^{\prime}-(\lambda)^{\prime \prime}} \lambda^{\prime \prime} \\
& r_{n}^{\prime \prime}(z)=\frac{z(\lambda)^{\prime \prime}}{(\lambda)^{\prime \prime}-(\lambda)^{\prime \prime}} \lambda^{\prime \prime}+\frac{z(\lambda)^{\prime \prime}}{(\lambda)^{\prime \prime}-(\lambda)^{\prime \prime}} \lambda^{\prime \prime \prime}
\end{aligned}
$$

Failure and the Ampadu Solution

Theorem 4: $P_{*}^{v}(\varphi)=C_{1}|\alpha|^{2}+C_{2}|\beta|^{2}+2 \operatorname{Re}\left(C_{3} \bar{\alpha} \beta\right)$ where

$$
\begin{aligned}
& C=\frac{1}{2 \pi} \left\lvert\, \frac{1}{\sqrt{2}} p_{n}^{*}\left(e^{u}\right)+\frac{1}{\sqrt{2}} r_{n}^{*}\left(e^{u}\right) d \theta\right. \\
& C_{n}=\frac{1}{2 \pi} \frac{1}{\sqrt{2}} p_{n}^{*}\left(e^{u}\right)-\frac{1}{\sqrt{2}} r_{:}^{*}\left(e^{u}\right) d \theta \\
& C=\frac{1}{2 \pi} \pi^{\prime}\left(\frac{1}{\sqrt{2}} p_{n}^{*}\left(e^{u}\right)+\frac{1}{\sqrt{2}} r^{*}\left(e^{u}\right)\left(\frac{1}{\sqrt{2}} p_{n}^{*}\left(e^{u}\right)-\frac{1}{\sqrt{2}} r_{n}^{*}\left(e^{u}\right)\right) d \theta\right.
\end{aligned}
$$

and $p_{*}^{*}\left(e^{*}\right), r_{i}^{*}\left(e^{*}\right)$ satisfy Lemma 3 with
$z=e^{\prime \prime} ; \theta \in[0,2 \pi]$

Note that $p^{\prime \prime}(z)=z$ for $N \geq 2$. Now let $k=1$, $\varphi=|R\rangle$ in Theorem 4 then we have the following

Corollary 5: For $N \geq 2, P_{,}^{\prime \prime}(|R\rangle)=\frac{1}{2}+\frac{1}{4 \pi} \int_{\mid}^{n \mid} r_{i}^{\prime \prime}\left(e^{u}\right)^{2} d \theta$
where $r^{\prime \prime}(z), z=e^{\prime \prime} ; \theta \in[0,2 \pi]$ satisfies
$r_{r}^{\prime \prime}(z)=\frac{z(\lambda)^{n}}{(\lambda)^{n}-(\lambda)^{n}} \lambda+\frac{z(\lambda)^{n}}{(\lambda)^{n}-(\lambda)^{n}} \lambda$

Resolution of the Conjecture

From Corollary 5 , using facts about $\lambda, \lambda \lambda, \lambda+\lambda$
it can be deduced that $r^{\prime}(z)=\frac{z^{3}}{2 z^{4}-3 z^{2}+2}$ is an
odd complex function. In particular, direct computation shows that $\left.\frac{1}{4 \pi} \int_{!}^{\prime!} \right\rvert\, r_{1}^{\prime}\left(e^{\omega}\right)^{\prime} d \theta=0$,

$$
4 \pi
$$

thus, $\left.P_{\cdot}^{\prime}(R\rangle\right)=\frac{1}{2} \neq \frac{2}{3}$ (as the Conjecture gives)

Open Problem

For a 1D quantum walk determined by a 2×2 unitary matrix on a state space $\{0,1 \cdots, N\}$, where N is finite or infinite, find general analytic formula for the probabilities $P_{*}^{*}(\varphi)$ and $P_{*}^{\prime}(\varphi)$ for any $k \in\{1, \cdots, N-1\}$ and $\varphi \in \Phi$
References

- A. Ambainis, E.Bach, A.Nayak, A.Vishwanath and A. Watrous, One-Dimensional Quantum Walks, Proceedings of the $33^{\text {rd }}$ Annual ACM Symposium on the Theory of Computing (2001), 37-49
- G.Folland, Fourier Analysis and its Applications, Wadsworth \& Brooks/Cole Advanced Books and Software, Pacific Grove, California, 1992
- N.Konno, T.Namiki, T.Soshi and A.Sudbury, Absorption problems for quantum walks in one dimension, J.Phys.A: Math.Gen 36 (2003), 241253
References
- Aharonov D, Ambainis A, Kempe J and Vasirani UV, Quantum Walks on Graphs, Proc. $33^{r d}$ Annual ACM Symp on Theory of Computing (2001), pp 50-59
- Bach E, Coppersmith S, Goldschen M P, Joynt R, and Watrous J, One-dimensional quantum walks with absorbing boundaries (2002), Preprint quant-ph/0207008
- Yamasaki T, Kobayashi H and Imai H, Analysis of absorbing times of quantum walks (2002), Preprint quant-ph/0205045

