Logic, Automata, Games, and Algorithms

Moshe Y. Vardi

Rice University

Two Separate Paradigms in Mathematical Logic

• Paradigm I: Logic – declarative formalism

- Specify properties of mathematical objects, e.g., $(\forall x, y, x)(mult(x, y, z) \leftrightarrow mult(y, x, z))$ - commutativity.

• Paradigm II: Machines – imperative formalism

- Specify computations, e.g., Turing machines, finite-state machines, etc.

Surprising Phenomenon: Intimate connection between logic and machines – *topic of this talk*.

Nondeterministic Finite Automata

- $A = (\Sigma, S, S_0, \rho, F)$
- Alphabet: Σ
- States: S
- Initial states: $S_0 \subseteq S$
- Nondeterministic transition function: $\rho: S \times \Sigma \rightarrow 2^S$
- Accepting states: $F \subseteq S$

Input word: a_0, a_1, \dots, a_{n-1} Run: s_0, s_1, \dots, s_n • $s_0 \in S_0$ • $s_{i+1} \in \rho(s_i, a_i)$ for $i \ge 0$ Acceptance: $s_n \in F$ Recognition: L(A) – words accepted by A.

Fact: NFAs define the class *Reg* of regular languages.

Logic of Finite Words

View finite word $w = a_0, \ldots, a_{n-1}$ over alphabet Σ as a mathematical structure:

- **Domain:** 0, ..., n-1
- Binary relations: $<, \leq$
- Unary relations: $\{P_a : a \in \Sigma\}$

First-Order Logic (FO):

- Unary atomic formulas: $P_a(x)$ ($a \in \Sigma$)
- Binary atomic formulas: $x < y, x \le y$

Example: $(\exists x)((\forall y)(\neg(x < y)) \land P_a(x))$ – last letter is *a*.

Monadic Second-Order Logic (MSO):

- Monadic second-order quantifier: $\exists Q$
- New unary atomic formulas: Q(x)

NFA vs. MSO

Theorem [Büchi, Elgot, Trakhtenbrot, 1957-8 (independently)]: $MSO \equiv NFA$

• Both MSO and NFA define the class Reg.

Proof: Effective

- From NFA to MSO ($A \mapsto \varphi_A$)
 - Existence of run existential monadic quantification

 Proper transitions and acceptance - first-order formula

- From MSO to NFA ($\varphi \mapsto A_{\varphi}$): closure of NFAs under
 - Union disjunction
 - Projection existential quantification
 - Complementation negation

NFA Complementation

Run Forest of A on w:

- Roots: elements of S_0 .
- Children of s at level i: elements of $\rho(s, a_i)$.
- Rejection: no leaf is accepting.

Key Observation: collapse forest into a DAG – at most one copy of a state at a level; width of DAG is |S|.

Subset Construction Rabin-Scott, 1959:

•
$$A^c = (\Sigma, 2^S, \{S_0\}, \rho^c, F^c)$$

•
$$F^c = \{T : T \cap F = \emptyset\}$$

•
$$\rho^c(T,a) = \bigcup_{t \in T} \rho(t,a)$$

•
$$L(A^c) = \Sigma^* - L(A)$$

Complementation Blow-Up

$$A = (\Sigma, S, S_0, \rho, F), |S| = n$$
$$A^c = (\Sigma, 2^S, \{S_0\}, \rho^c, F^c)$$

Blow-Up: 2^n upper bound

Can we do better?

Lower Bound: 2^n Sakoda-Sipser 1978, Birget 1993

$$L_n = (0+1)^* 1(0+1)^{n-1} 0(0+1)^*$$

- $\frac{L_n}{L_n}$ is easy for NFA $\overline{L_n}$ is hard for NFA

NFA Nonemptiness

Nonemptiness: $L(A) \neq \emptyset$

Nonemptiness Problem: Decide if given *A* is nonempty.

Directed Graph $G_A = (S, E)$ of NFA $A = (\Sigma, S, S_0, \rho, F)$: • Nodes: S • Edges: $E = \{(s, t) : t \in \rho(s, a) \text{ for some } a \in \Sigma\}$

Lemma: *A* is nonempty iff there is a path in G_A from S_0 to *F*.

• Decidable in time linear in size of *A*, using breadth-first search or depth-first search.

MSO Satisfiability – Finite Words

Satisfiability: $models(\psi) \neq \emptyset$

Satisfiability Problem: Decide if given ψ is satisfiable.

Lemma: ψ is satisfiable iff A_{ψ} is nonnempty.

Corollary: MSO satisfiability is decidable.

- Translate ψ to A_{ψ} .
- Check nonemptiness of A_{ψ} .

Complexity:

• Upper Bound: Nonelementary Growth

 $2^{\cdot \cdot 2^n}$

(tower of height O(n))

• Lower Bound [Stockmeyer, 1974]: Satisfiability of FO over finite words is nonelementary (no bounded-height tower).

Automata on Infinite Words

Büchi Automaton, 1962: $A = (\Sigma, S, S_0, \rho, F)$

- Σ : finite alphabet
- S: finite state set
- $S_0 \subseteq S$: initial state set
- $\rho: S \times \Sigma \to 2^S$: transition function
- $F \subseteq S$: accepting state set

```
Input: w = a_0, a_1 \dots

Run: r = s_0, s_1 \dots

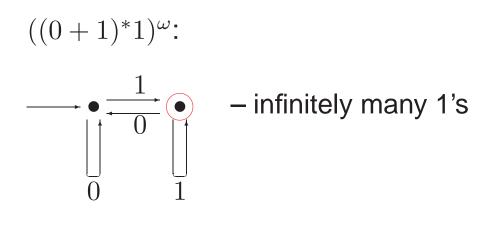
• s_0 \in S_0

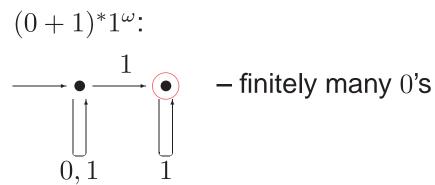
• s_{i+1} \in \rho(s_i, a_i)

Acceptance: run visits F infinitely often.
```

Fact: NBAs define the class ω -*Reg* of ω -regular languages.

Examples





Logic of Infinite Words

View infinite word $w = a_0, a_1, \ldots$ over alphabet Σ as a mathematical structure:

- Domain: N
- Binary relations: <, ≤
- Unary relations: $\{P_a : a \in \Sigma\}$

First-Order Logic (FO):

- Unary atomic formulas: $P_a(x)$ ($a \in \Sigma$)
- Binary atomic formulas: $x < y, x \le y$

Monadic Second-Order Logic (MSO):

- Monadic second-order quantifier: $\exists Q$
- New unary atomic formulas: Q(x)

Example: q holds at every even point.

$$(\exists Q)(\forall x)(\forall y)((((Q(x) \land y = x + 1) \rightarrow (\neg Q(y))) \land (((\neg Q(x)) \land y = x + 1) \rightarrow Q(y))) \land (x = 0 \rightarrow Q(x)) \land (Q(x) \rightarrow q(x))),$$

NBA vs. MSO

Theorem [Büchi, 1962]: MSO \equiv NBA • Both MSO and NBA define the class ω -Reg.

Proof: Effective

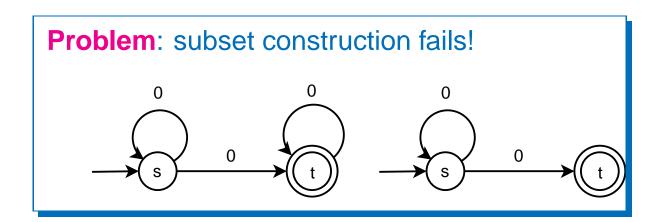
• From NBA to MSO ($A \mapsto \varphi_A$)

- Existence of run - existential monadic quantification

Proper transitions and acceptance - first-order formula

- From MSO to NBA ($\varphi \mapsto A_{\varphi}$): closure of NBAs under
 - Union disjunction
 - Projection existential quantification
 - Complementation negation

Büchi Complementation



History

- Büchi'62: doubly exponential construction.
- SVW'85: 16^{n^2} upper bound
- Saf'88: n^{2n} upper bound
- Mic'88: $(n/e)^n$ lower bound
- KV'97: $(6n)^n$ upper bound
- FKV'04: $(0.97n)^n$ upper bound
- Yan'06: $(0.76n)^n$ lower bound
- Schewe'09: $(0.76n)^n$ upper bound

NBA Nonemptiness

Nonemptiness: $L(A) \neq \emptyset$

Nonemptiness Problem: Decide if given *A* is nonempty.

Directed Graph $G_A = (S, E)$ of NBA $A = (\Sigma, S, S_0, \rho, F)$: • Nodes: S • Edges: $E = \{(s, t) : t \in \rho(s, a) \text{ for some } a \in \Sigma\}$

Lemma: A is nonempty iff there is a path in G_A from S_0 to some $t \in F$ and from t to itself – *lasso*.

• Decidable in time linear in size of *A*, using *depthfirst search* – analysis of cycles in graphs.

MSO Satisfiability – Infinite Words

Satisfiability: $models(\psi) \neq \emptyset$

Satisfiability Problem: Decide if given ψ is satisfiable.

Lemma: ψ is satisfiable iff A_{ψ} is nonnempty.

Corollary: MSO satisfiability is decidable.

- Translate ψ to A_{ψ} .
- Check nonemptiness of A_{ψ} .

Complexity:

• Upper Bound: Nonelementary Growth

```
2^{\cdot \cdot^{2^{O(n\log n)}}}
```

(tower of height O(n))

• Lower Bound [Stockmeyer, 1974]: Satisfiability of FO over infinite words is nonelementary (no bounded-height tower).

Logic and Automata for Infinite Trees

Labeled Infinite *k*-ary Tree: $\tau : \{0, \ldots, k-1\}^* \to \Sigma$

Tree Automata:

• Transition Function– $\rho: S \times \Sigma \to 2^{S^k}$

MSO for Trees:

• Atomic predicates: $E_1(x, y), \ldots, E_k(x, y)$

Theorem [Rabin, 1969]: Tree MSO \equiv Tree Automata

• Major difficulty: complementation.

Corollary: Decidability of satisfiability of MSO on trees – one of the most powerful decidability results in logic.

Standard technique during 1970s: Prove decidability via reduction to MSO on trees.

• Nonelementary complexity.

Temporal Logic

Prior, 1914–1969, Philosophical Preoccupations:

• *Religion*: Methodist, Presbytarian, atheist, agnostic

- *Ethics*: "Logic and The Basis of Ethics", 1949
- Free Will, Predestination, and Foreknowledge:

- "The future is to some extent, even if it is only a very small extent, something we can make for ourselves".

- "Of what will be, it has now been the case that it will be."

- "There is a deity who infallibly knows the entire future."

Mary Prior: "I remember his waking me one night [in 1953], coming and sitting on my bed, ..., and saying he thought one could make a formalised tense logic."

• 1957: "Time and Modality"

The Temporal Logic of Programs

Precursors:

• Prior: "There are practical gains to be had from this study too, for example in the representation of time-delay in computer circuits"

• Rescher & Urquhart, 1971: applications to processes ("a programmed sequence of states, deterministic or stochastic")

[Pnueli, 1977]:

• Future linear temporal logic (LTL) as a logic for the specification of non-terminating programs

• Temporal logic with "next" and "until".

Programs as Labeled Graphs

Key Idea: Programs can be represented as transition systems (state machines)

Transition System: $M = (W, I, E, F, \pi)$

- W: states
- $I \subseteq W$: initial states
- $E \subseteq W \times W$: transition relation
- $F \subseteq W$: fair states
- $\pi : W \rightarrow Powerset(Prop)$: Observation function

Fairness: An assumption of "reasonableness" – restrict attention to computations that visit F infinitely often, e.g., "the channel will be up infinitely often".

Runs and Computations

Run: w_0, w_1, w_2, \ldots

- $w_0 \in I$
- $(w_i, w_{i+1}) \in E$ for i = 0, 1, ...

Computation: $\pi(w_0), \pi(w_1), \pi(w_2), ...$

• L(M): set of computations of M

Verification: System *M* satisfies specification φ –

•••

• all computations in L(M) satisfy φ .

Specifications

Specification: properties of computations.

Examples:

- "No two processes can be in the critical section at the same time." *safety*
- "Every request is eventually granted." *liveness*
- "Every continuous request is eventually granted." *liveness*
- "Every repeated request is eventually granted." liveness

Temporal Logic

Linear Temporal logic (LTL): logic of temporal sequences (Pnueli, 1977)

Main feature: time is implicit
next φ: φ holds in the next state.
eventually φ: φ holds eventually
always φ: φ holds from now on
φ until ψ: φ holds until ψ holds.

Examples

- always not (CS₁ and CS₂): mutual exclusion (safety)
- always (Request implies eventually Grant): liveness
- always (Request implies (Request until Grant)): liveness
- always (always eventually Request) implies eventually Grant: liveness

Expressive Power

Gabbay, Pnueli, Shelah & Stavi, 1980: Propositional LTL has precisely the expressive power of FO over the naturals (builds on [Kamp, 1968]).

Easy Direction: LTL→FO

Example: φ is θ until ψ $FO(\varphi)(x)$:

 $(\exists y)(y > x \land FO(\psi)(y) \land (\forall z)((x \leq z < y) \rightarrow FO(\theta)(z))$

Corollary: There is a translation of LTL to NBA via FO.

• But: Translation is nonelementary.

Elementary Translation

Theorem [V.&Wolper, 1983]: There is an exponential translation of LTL to NBA.
Corollary: There is an exponential algorithm for satisfiability in LTL.

Industrial Impact:

- Practical verification tools based on LTL.
- Widespread usage in industry.

Question: What is the key to efficient translation? **Answer**: *Games*!

Alternating Automata

Alternating automata: 2-player games

Nondeterministic transition: $\rho(s, a) = t_1 \lor t_2 \lor t_3$ Alternating transition: $\rho(s, a) = (t_1 \land t_2) \lor t_3$ "either both t_1 and t_2 accept or t_3 accepts".

•
$$(s,a) \mapsto \{t_1,t_2\}$$
 or $(s,a) \mapsto \{t_3\}$

•
$$\{t_1, t_2\} \models \rho(s, a) \text{ and } \{t_3\} \models \rho(s, a)$$

Alternating transition relation: $\rho : S \times \Sigma \to \mathcal{B}^+(S)$ (positive Boolean formulas over *S*)

Alternative Approach: existential and universal states [Chandra, Kozen & Stckmeyer, 1980]

Alternating Automata

Brzozowski&Leiss, 1980: Boolean automata

$$\begin{array}{l} A = (\Sigma, S, s_0, \rho, F) \\ \bullet \ \Sigma, S, F \subseteq S : \text{ as before} \\ \bullet \ s_0 \in S : \text{ initial state} \\ \bullet \ \rho \ : \ S \times \Sigma \ \rightarrow \ \mathcal{B}^+(S) : \ \text{ alternating transition} \\ \text{function} \end{array}$$

Game:

- Board: $a_0, a_1 \dots$
- Positions: $S \times N$
- Initial position: $(s_0, 0)$
- Automaton move at (s, i): choose $T \subseteq S$ such that $T \models \rho(s, a_i)$
- Opponent's response: move to (t, i + 1) for some $t \in T$
- Automaton wins if play goes through infinitely many positions (s',i) with $s' \in F$

Acceptance: Automaton has a winning strategy.

Example

- $A=(\{0,1\},\{m,s\},m,\rho,\{m\})$
- $\rho(m,1)=m$
- $\rho(m,0) = m \wedge s$
- $\rho(s,1) = \mathbf{true}$
- $\rho(s,0) = s$

Intuition:

- *m* is a master process. It launches *s* when it sees 0.
- *s* is a slave process. It wait for 1, and then terminates successfully.
- L(A) =infinitely many 1's.

Expressiveness

[Miyano&Hayashi, 1984]:

- Nondeterministic Büchi automata: ω-regular languages
- Alternating automata: ω -regular languages

What is the point?: Succinctness

Exponential gap:

- Exponential translation from alternating Büchi automata to nondeterministic Büchi automata
- In the worst case this is the best possible
- PSPACE nonemptiness test: go via nondeterministic automata.

Theorem[V., 1994] : For each LTL formula φ there is an alternating Büchi automaton A_{φ} with $||\varphi||$ states such that $models(\varphi) = L(A_{\varphi})$.

Game Semantics for LTL

Background: game-semantics for FO, à la [Lorenzen, 1958] and [Hintikka, 1973].

Game for LTL: Protagonist vs Antagonist

- Formula φ
- Infinite word $w = a_0, a_1, \ldots$
- Position (ψ, i) in $subformulas(\varphi) \times N$
- Initial position $(\varphi, 0)$

case

ψ propositional: Protagonist wins iff ψ holds at a_i
ψ = ψ₁ ∨ ψ₂: Protagonist choses ψ_j and moves to (ψ_j, i)
ψ = ψ₁∧ψ₂: Antagonist choses ψ_j and moves to (ψ_j, i)
ψ = next θ: Protagonist moves to (θ, i + 1)
ψ = θ until χ: Protagonist moves to (χ, i) or (θ ∧ (next ψ), i)

Crucial Idea: Alternating automata capture game semantics

LTL to to Alternating Büchi Automata

Input formula: φ

- $subf(\varphi)$: subformulas of φ
- $nonU(\varphi)$: non-Until subformulas of φ

Alternating Büchi Automaton:

$$A_{\varphi} = \{2^{Prop}, subf(\varphi), \varphi, \rho, nonU(\varphi)\}:$$

•
$$\rho(p,a) =$$
true if $p \in a$,

•
$$\rho(p, a) =$$
false if $p \notin a$,

•
$$\rho(\xi \wedge \psi, a) = \rho(\xi, a) \wedge \rho(\psi, a)$$

•
$$\rho(\xi \lor \psi, a) = \rho(\xi, a) \lor \rho(\psi, a),$$

•
$$\rho(X\psi, a) = \psi$$
,

•
$$\rho(\xi U\psi, a) = \rho(\psi, a) \lor (\rho(\xi, a) \land \xi U\psi).$$

Back to Trees

Games, vis alternating automata, provide the key to obtaining elementary decision procedures to numerous modal, temporal, and dynamic logics.

Theorem [Kupferman&V.&Wolper, 1994]: For each CTL formula φ there is an alternating Büchi tree automaton A_{φ} with $||\varphi||$ states such that $models(\varphi) = L(A_{\varphi})$. **Theorem** [KVW, 1986]: There is an exponential translation of alternating Büchi tree automata to nondeterministic Büchi tree automata.

Known: Nonemptiness of nondeterministic Büchi tree automata can be checked in quadratic time [V.&Wolper, 1984]

Corollary: There is an exponential algorithm for satisfiability of CTL [Emerson&Halpern, 1985]

Discussion

Major Points:

- The *logic-automata connection* is one of the most fundamental paradigms of logic.
- One of the major benefits of this paradigm is its algorithmic consequences.
- A newer component of this approach is that of games, and alternating automata as their automata-theoretic counterpart.
- The interaction between logic, automata, games. and algorithms yields a fertile research area.

Tower of Abstractions

Key idea in science: abstraction tower

strings

quarks

hadrons

atoms

molecules

amino acids

genes

genomes

organisms

populations

Abstraction Tower in CS

CS Abstraction Tower:

analog devices digital devices microprocessors assembly languages high-level languages libraries software frameworks

Crux: Abstraction tower is the only way to deal with complexity!

Similarly: We need high-level algorithmic building blocks, e.g., *BFS*, *DFS*.

This talk: *Games/alternation* as a high-level algorithmic construct.

Bottom line: Alternation is a key algorithmic construct in automated reasoning — used in industrial tools.