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Carbon Emissions Market

e Cap-and-Trade Market Mechanism

> Ceiling for emissions

> Compliance period

> Market: price to comply with emission target

> Least cost: internal abatement or acquisition of allowances

> Trading between: Regulated emitters, Non-regulated emitters, Non-emitters




Futures Allowance Dynamics

e 5;: d-dimensional vector of discounted futures allowance price,
Sy, t < T} used for compliance at 7;
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Futures Allowance Dynamics

e Discrete time framework with (Q, (F;)s>0, P)
e |f the market is complete:
Sf — fg ti—hw > 1,
¢!is a F;—measurable process.

e However:

> Market is incomplete
> Information set describing expected market position strongly affects the prices




Futures Allowance Dynamics
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Flgu re 1: Price distribution over time of Dec-2009 and Dec-2010 contracts




Futures Allowance Dynamics

e So we model:

Sf — fti—l(gzan—l) g—la\v/t Z 17 (2)

where

> f/ 1 Fy—1—measurable return function

> Y;: non-observable process reflecting the implied investors market expectation po-
sition at time t for the subsequent compliance dates.




Futures Allowance Dynamics
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Flgu re 2: Returns tree of the traded asset in absence of Y, per time step.
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Figure 3: Returns in presence of Y, at t=1, B, = {wi,;i = 1,...8}, and By = {w;,i = 9,...,16}.

“-": the market is expected to be short, “+": the market is anticipated to be long.
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FIgU re 4: Returns tree in presence of Y; at t=2, where Aj ={w( 1yt =1,2,3,4},5 =1,2,3,4
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Futures Allowance Dynamics

e Parameter estimation

> Focus on Dec-2009 (.S}) and Dec 2010 (S?) contracts

> January 2008- December 2009

> Dec-2009 provides information about current market expected position
> Assume & = &' = Empirical average

e We consider a special case for f;

> ftl—l(fgan—l) — fl ‘|‘Y21—1
> P& YY) =8+ Y2,




Futures Allowance Dynamics

e Estimated upward and downward movement returns:

v =1.021 &M = 0.980
£ =1.038 &% =0.982

° Y;l ii.d.:

- Follows a Gaussian mixture distribution.
- Kolmogorov-Smirnov test is accepted at a significance level of 99%.
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Flgu re b: Comparison of empirical CDF of ;! with a Gaussian mixture CDF.

Comparison between empirical and theoretical CDF
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Futures Allowance Dynamics

o VP=g(Y)+ L+ w
> g i.i.d such that Efu; | (Y, ;)] =0

> I, represents the impact of the expected market position at time 77 on Y.

e /; is not observed

> ]t = h()"_thSt"_Ut
> M S;: Expected market position = Sign(Y;!).
> EYE [ (Y 1, MS)] = B[V | (Y 1)

e Regression: Y, = (hg+ ag) +sh_; ap (V)" + i MS; + ¢
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Futures Allowance Dynamics

With M S, I, omitted

Rz ay Rz ay
p=0 | 68.21% - - _
p=1 | 73.86% | 0.541 | 60.35% | 1.17
p=3 | 74.98% | 0.278 | 62.67% | 1.34
p=9 | 76.34% | 0.467 | 70.34% | 2.05
p=10 | 76.34% | 0.467 | 70.34% | 2.05

Table 1: Parameters resulting from the OLS estimator as function of the polynomial degree p in both

cases where [; is omitted or approximated by the proxy variable M.S;.
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Figu re 0: States of nature generated at time ¢t + 1 by a knot at time .
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Pricing Framework: Investor Side

e Given random variable H € £L?(Fr, P) describing the payoff

(Vo,¢) = argmin  Ep[(H —c— Gr(9))?],
(¢,)eRx0O

where

© := {predictable processes 9|1,AS; € L*(P)}.
T
Gr(9) == ¥ 9'AS;.

j=1 7
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Pricing Framework: Investor Side

Definition 1. Non-Degeneracy Condition (ND): Suppose 6 € (0,1). The process (S;)ie1 € L3(P)

meets the non-degeneracy condition, if Vk = 1,...,'T', the random matrix
SE[AS3|Fi1] — (E[ASKFii])’
is positive-semidefinite P-a.s.

Intuition: in 1-dimension, ([6)) corresponds to:
Var(ASY|Fi_1) >0

i.e. we need some randomness or it all falls apart.

(6)
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Pricing Framework: Investor Side

Proposition 2. Assume a probability space ((),FF, P) and stochastic process (S;)ier € L3(P)

adapted to the filtration F = (F;)ie7 such that E[AS?|Fi_1] is invertible and satisfies (ND). Therefore,
there exists a unique solution (Vy, () solving (3]), where:

G = or — Br(Vo + Gi=1(€)),
Vo = Ep[H],

[ T
o= (E|ast T (1)

j=k+1

[ T

B = (E AS,% 11 (1 — B}ASj)
I j=k+1

iP 7

AP~ E[Z,|

— T

J=1

2| Fr1

2| Frt

[ T
HASy, 11 (1—B;AS))|Fi

j=k+1

[ T
AS. ] (1—/3}ASj)\]:k_1

j=k+1

|

(7)
(8)

Lo
(10)
(11)
(12)
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Furthermore, the unhedgeable risk defined by (3) is:

— N T T
VPE () - 2B [HE] + B|(H - ¥ s, 11 (1- 6i8S)° (13)
= —j+1

Proof.

> Same as presented in Schweizer (1996) for a 1-dimension processes
> We present the generalization of Rémillard and Rubenthaler (2009) for a multidi-
mensional framework under very mild conditions
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Pricing Framework: Investor Side

e Price a derivative written on S}

> Usual markets: Dynamic hedging position on S/
> Figure 6: Returns of S} and S? have same dynamic pattern
> Spread between prices: Evaluates the uncertainty of the expected market position

e Consider portfolios:

> A: trading on S*
> B: trading on both S! and 5*

e Short position scenario: prices quoted on 4/4/2008:

St =€23.96 and S7 = €24.61.
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Figure {:  Comparison between strategies A and B to price 5 period (5 day) calls written on

St for different strike prices. Market is initially assumed to be short but expected to be long.
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Pricing Framework: Investor Side

Proposition 3. Assume a probability space (), [F, P), H € L*(Fr, P), and stochas-
/

tic process (S}, E)jcr € L3.,(P ) adapted to the filtration F = (F;);cr such that

E[AS?|Fi_1] and E[(AS], AE}.)"?|Fi._1] are invertible and satisfy the non-degeneracy
condition.

If P(E[(H —Vy — Gr((,S))AEr|Fr_1] # 0) > 0, then hedging with (S}, &)t
is more efficient than hedging with (S;)ieT.
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Pricing Framework: Investor Side

e Interdependency between compliance periods:

> Need a multiperiod pricing framework
> Reduce market position risk
> Reduce liquidity: Non-emitters, who fear long term regulatory changes, may not

trade
e An equivalent solution to encourage non-emitters to trade:

> Need regulator’s intervention
> Provide new tradeable asset besides the right to emit
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Pricing Framework: Regulator Side

e New tradeable asset (G

> Allow some of the intrinsic market risk to be hedged

> Exogenous to market participants

> Consider the social wealth of market parameters I, initially set up by the regulator
> Consistent with arbitrage free theory

e Indifference pricing

> U(X™* T): Utility function of the representative agent
> x: Initial wealth; a: trading strategy
> The price 1:(Gry,) of G is given via:

sup Ep [U(X"*,T)] = sup Ep |U(X1)« — G T) (14)
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Pricing Framework: Regulator Side

e Exponential utility

U(x) =—e 7", VYxeRandvy >0,

7 is a parameter selected by the regulator (Elliot and Vander Hoek (2009)).

e Price obtained by moving backward

vi(Gry) = ESY (11 (Gr)),

S.S ]-
ES T (Loyr) = Eq|—log (Ep(e?+ | F,V F5, 1)) | Fl

S

585(];3) = L VT1(GT1) — GTl

F5 =0o{S", Qisthe S equivalent martingale measure.

(15)

(16)
(17)
(18)
(19)
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Pricing Framework: Regulator Side

Example: Digital option
Pays out a certain amount if a predefined event happens at future time 7T’

Regulator announcement about the market position at time ¢: set of Y; values ob-
servable

Example: Regulator pays 1 unit if he announces the market is short and expected to
remain short at the next compliance date

Payment occurs if w € {wy,ws, wg, w13} happens

Strategy C: Investor holds position on S} and 1.
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Figu re 8: Risk ratio between strategy A and C for different values of v — C'(y)— to price 5 period

(5 day) calls for different strike prices.
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