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Carbon Emissions Market

• Cap-and-Trade Market Mechanism

. Ceiling for emissions

. Compliance period

. Market: price to comply with emission target

. Least cost: internal abatement or acquisition of allowances

. Trading between: Regulated emitters, Non-regulated emitters, Non-emitters
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Futures Allowance Dynamics

• St: d-dimensional vector of discounted futures allowance price,
Sit, t ≤ Ti used for compliance at Ti
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Futures Allowance Dynamics

• Discrete time framework with (Ω, (Ft)t≥0, P)

• If the market is complete:

Sit = ξitS
i
t−1,∀t ≥ 1, (1)

ξit is a Ft−measurable process.

• However:

. Market is incomplete

. Information set describing expected market position strongly affects the prices
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Figure 1: Price distribution over time of Dec-2009 and Dec-2010 contracts
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Futures Allowance Dynamics

• So we model:

Sit = f it−1(ξ
i
t,Yt−1)S

i
t−1,∀t ≥ 1, (2)

where

. f it−1: Ft−1−measurable return function

. Yt: non-observable process reflecting the implied investors market expectation po-
sition at time t for the subsequent compliance dates.
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Figure 2: Returns tree of the traded asset in absence of Yt per time step.
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Figure 3: Returns in presence of Yt at t=1, B1 = {ωi, i = 1, ..., 8}, and B2 = {ωi, i = 9, ..., 16}.

“-”: the market is expected to be short, “+”: the market is anticipated to be long.
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Figure 4: Returns tree in presence of Yt at t=2, where Aj = {ω(j−1)∗4+i, i = 1, 2, 3, 4.}, j = 1, 2, 3, 4.
8



Futures Allowance Dynamics

• Parameter estimation

. Focus on Dec-2009 (S1
t ) and Dec 2010 (S2

t ) contracts
. January 2008- December 2009
. Dec-2009 provides information about current market expected position
. Assume ξit = ξi = Empirical average

• We consider a special case for f it−1

. f 1
t−1(ξ

1
t ,Yt−1) = ξ1 + Y 1

t−1
. f 2

t−1(ξ
2
t ,Yt−1) = ξ2 + Y 2

t−1
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Futures Allowance Dynamics

• Estimated upward and downward movement returns:

ξ1u = 1.021 ξ1d = 0.980
ξ2u = 1.038 ξ2d = 0.982

• Y 1
t i.i.d.:

· Follows a Gaussian mixture distribution.
· Kolmogorov-Smirnov test is accepted at a significance level of 99%.
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Figure 5: Comparison of empirical CDF of Y 1
t with a Gaussian mixture CDF.
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Futures Allowance Dynamics

• Y 2
t = g(Y 1

t ) + It+ ut

. ut i.i.d such that E[ut | (Y 1
t , It)] = 0

. It represents the impact of the expected market position at time T1 on Y 2
t .

• It is not observed

. It = h0 + h1MSt+ υt

. MSt: Expected market position = Sign(Y 1
t ).

. E[Y 2
t | (Y 1

t , It,MSt)] = E[Y 2
t | (Y 1

t , It)]

• Regression: Y 2
t = (h0 + a0) +

∑p
k=1 ak(Y

1
t )

k + h1MSt+ εt
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Futures Allowance Dynamics

With MSt It omitted
R2 a1 R2 a1

p=0 68.21% - - -
p=1 73.86% 0.541 60.35% 1.17
p=3 74.98% 0.278 62.67% 1.34
p=9 76.34% 0.467 70.34% 2.05

p=10 76.34% 0.467 70.34% 2.05

Table 1: Parameters resulting from the OLS estimator as function of the polynomial degree p in both

cases where It is omitted or approximated by the proxy variable MSt.
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Figure 6: States of nature generated at time t+ 1 by a knot at time t.
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Pricing Framework: Investor Side

• Given random variable H ∈ L2(FT ,P ) describing the payoff

(V0, ζ) = arg min
(c,ϑ)∈R×Θ

EP [(H − c−GT (ϑ))
2], (3)

where

Θ := {predictable processes ϑ|ϑ′k∆Sk ∈ L2(P )}, (4)

GT (ϑ) :=
T∑
j=1

ϑ′j∆Sj. (5)
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Pricing Framework: Investor Side

Definition 1. Non-Degeneracy Condition (ND): Suppose δ ∈ (0, 1). The process (St)t∈T ∈ L2
d(P )

meets the non-degeneracy condition, if ∀k = 1, ...,T , the random matrix

δE[∆S2
k|Fk−1]− (E[∆Sk|Fk−1])

2 (6)

is positive-semidefinite P-a.s.

Intuition: in 1-dimension, (6) corresponds to:

V ar(∆S2
k|Fk−1) > 0

i.e. we need some randomness or it all falls apart.
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Pricing Framework: Investor Side

Proposition 2. Assume a probability space (Ω, F,P ) and stochastic process (St)t∈T ∈ L2
d(P )

adapted to the filtration F = (Ft)t∈T such that E[∆S2
k|Fk−1] is invertible and satisfies (ND). Therefore,

there exists a unique solution (V0, ζ) solving (3), where:

ζk = %k − βk(V0 +Gk−1(ζ)), (7)

V0 = EP̃ [H ], (8)

%k =

E
∆S2

k

T∏
j=k+1

(1− β′j∆Sj)2|Fk−1



−1
E

H∆Sk
T∏

j=k+1
(1− β′j∆Sj)|Fk−1

 , (9)

βk =

E
∆S2

k

T∏
j=k+1

(1− β′j∆Sj)2|Fk−1



−1
E

∆Sk T∏
j=k+1

(1− β′j∆Sj)|Fk−1

 , (10)

dP̃

dP
=

Z̃0

E[Z̃0]
, (11)

Z̃0 =
T∏
j=1

(1− β′j∆Sj). (12)
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Furthermore, the unhedgeable risk defined by (3) is:

V 2
0 E

[
Z̃0

]
− 2V0E

[
HZ̃0

]
+E

(H − T∑
j=1

%′j∆Sj
T∏

l=j+1
(1− β′l∆Sl))2

 (13)

Proof.

. Same as presented in Schweizer (1996) for a 1-dimension processes

. We present the generalization of Rémillard and Rubenthaler (2009) for a multidi-
mensional framework under very mild conditions
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Pricing Framework: Investor Side

• Price a derivative written on S1
t

. Usual markets: Dynamic hedging position on S1
t

. Figure 6: Returns of S1
t and S2

t have same dynamic pattern
. Spread between prices: Evaluates the uncertainty of the expected market position

• Consider portfolios:

. A: trading on S1

. B: trading on both S1 and S2

• Short position scenario: prices quoted on 4/4/2008:

S1
0 = e23.96 and S2

0 = e24.61.
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Figure 7: Comparison between strategies A and B to price 5 period (5 day) calls written on

S1
t for different strike prices. Market is initially assumed to be short but expected to be long.

Price ratio = Price A
Price B, Risk ratio = Unhedged risk A

Unhedged risk B��������������������� ���	
���
���������
�������������� ����� ���� ����� � ����� ���� �����
20



Pricing Framework: Investor Side

Proposition 3. Assume a probability space (Ω, F,P ), H ∈ L2(FT ,P ), and stochas-
tic process (S ′t, Ξ)′t∈T ∈ L2

d+1(P ) adapted to the filtration F = (Ft)t∈T such that
E[∆S2

k|Fk−1] and E[(∆S ′k, ∆Ξk)′2|Fk−1] are invertible and satisfy the non-degeneracy
condition.

If P (E[(H − V0 − GT (ζ ,S))∆ΞT |FT−1] 6= 0) > 0, then hedging with (S ′t, Ξt)t∈T
is more efficient than hedging with (St)t∈T .
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Pricing Framework: Investor Side

• Interdependency between compliance periods:

. Need a multiperiod pricing framework

. Reduce market position risk

. Reduce liquidity: Non-emitters, who fear long term regulatory changes, may not
trade

• An equivalent solution to encourage non-emitters to trade:

. Need regulator’s intervention

. Provide new tradeable asset besides the right to emit
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Pricing Framework: Regulator Side

• New tradeable asset G
. Allow some of the intrinsic market risk to be hedged
. Exogenous to market participants
. Consider the social wealth of market parameters Γ, initially set up by the regulator
. Consistent with arbitrage free theory

• Indifference pricing
. U(Xx,α, Γ): Utility function of the representative agent
. x: Initial wealth; α: trading strategy
. The price νt(GT1) of G is given via:

sup
α
EP [U(Xx,α, Γ)] = sup

α
EP

[
U(Xx+νt(GT1),α−G, Γ)

]
(14)
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Pricing Framework: Regulator Side

• Exponential utility

U(x) = −e−γx, ∀x ∈ R and γ > 0, (15)

γ is a parameter selected by the regulator (Elliot and Vander Hoek (2009)).

• Price obtained by moving backward

νt(GT1) = E
(t,t+1)
Q (νt+1(GT1)), (16)

E (s,s+1)
Q (Ls+1) = EQ

 1
γs

log
(
EP(e

γsZs+1|Fs ∨FS
s+1)

)
|Fs

 , (17)

Es,sQ (Ls) = Ls, νT1(GT1) = GT1 (18)

FS = σ{S1}, Q is the S1 equivalent martingale measure. (19)
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Pricing Framework: Regulator Side

• Example: Digital option

• Pays out a certain amount if a predefined event happens at future time T

• Regulator announcement about the market position at time t: set of Yt values ob-
servable

• Example: Regulator pays 1 unit if he announces the market is short and expected to
remain short at the next compliance date

• Payment occurs if ω ∈ {ω1,ω5,ω9,ω13} happens

• Strategy C: Investor holds position on S1
t and νt.
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Figure 8: Risk ratio between strategy A and C for different values of γ −C(γ)− to price 5 period

(5 day) calls for different strike prices.����������������� ��	
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