

Quantile Risk Management in Equity-Linked Life Insurance with Stochastic Interest Rate

> Alexander Melnikov University of Alberta melnikov@ualberta.ca

Insurance company can issue a *mixed* contract for the period [0,T], where the payoff function is a function of stock prices $S_0, ..., S_T$ and T(x)

(future lifetime of a client of age x).

□ Terminology

- Segregated funds (Canada),
- Variable annuities (USA),
- Equity (unit)-linked insurance (Europe).

Numbers

According The Insured Retirement Institute (IRI, formerly, NAVA): "Variable annuity sales for the 3-rd quarter were \$34 billion. Year-to year quarterly sales of variable annuities were up, posting a 9.7% increase from third quarter 2009 sales".

Types and Features of Contracts

- > Death and maturity guarantees.
- > Term of the guarantee.
- Resets (policyholder is allowed to reset the guarantee at the current fund value).
- Fund switching (policyholder has the right to switch investments between various funds).

Types of Hedging

> *Perfect* hedging:

$$P\{X_T^{\pi^*} \ge H\} = 1$$

Mean-variance hedging:

 $E(X_T^{\pi^*} - H)^2$ is minimal

 \succ

$$E\{l(H-X_T^{\pi^*})^+\}$$
 is minimal

where l is some loss function.

In particular, for *quantile* hedging, we have $l(x) = I_{(0,\infty)}(x)$ and $P\{X_T^{\pi^*} \ge H\}$ is maximized.

- Using Hedging for Pricing and Risk Management: construct a strategy that exactly replicates the cash flows of a contingent claim
- Exact replication is not possible: find a strategy with a cash flow "close enough" to the payoff of the contingent claim in some probabilistic sense
- Equity-linked life insurance contracts have a mortality component => the exact replication is not possible

Introduction References on Equity-linked Life Insurance

- □ Brennan and Schwartz (1976, 1979)
- □ Boyle and Schwartz (1977)
- □ Bacinello and Ortu (1993)
- □ Aase and Person (1994)
- □ Ekern and Person (1996)
- □ Moeller (1998, 2001)
 - Contracts with fixed or deterministic guarantees
 - Reduced them to call/put options
 - Apply perfect or mean-variance hedging to calculate prices

Introduction References on Equity-linked Life Insurance

- $\square \quad \text{Melnikov} (2004)$
- □ Melnikov and Skornyakova (2005)
 - > Contracts with stochastic guarantee
 - > Reduce them to embedded option $\left(S_T^1 S_T^2\right)^+$
 - > Apply quantile hedging to calculate prices
- □ Quansheng Gao, et.al (2010)
 - Guarantee of the contracts grows exponentially over time
 - Stochastic interest rate
 - Diffusion model

Introduction Contents

- □ Briefly review the work of Melnikov and Skornyakov (2005)
- Consider a two-factor jump-diffusion model to describe a financial market and HJM framework for stochastic interest rate
- □ Study equity-linked pure endowment contracts with a stochastic guarantee
- □ Use quantile hedging technique for pricing these contracts
- □ Illustrate our results with actual data

Review: Financial settings Melnikov and Skornyakova (2005)

- > Non-risky asset $B_t = \exp(rt), t \ge 0, r \ge 0$
- ► Risky assets S_t^1 and S_t^2 on (Ω, \mathbf{F}, P) , prices follow the jump-diffusion model $dS_t^i = S_{t-}^i(\mu_i dt + \sigma_i dW_t - \nu_i d\Pi_t), i = 1,2$
- $\square \quad \text{Market is complete, the unique risk-neutral probability has the density} \\ Z_T = \exp\left\{\alpha^* W_T \frac{(\alpha^*)^2}{2}T + (\lambda \lambda^*)t + \ln\frac{\lambda^*}{\lambda} \cdot \Pi_t\right\} \\ (\alpha^*, \lambda^*) \text{ are the unique solutions to } \begin{cases} \mu_1 r = -\sigma_1 \alpha^* + v_1 \lambda^*, \\ \mu_2 r = -\sigma_2 \alpha^* + v_2 \lambda^*, \ \lambda^* > 0 \end{cases}$
- **Conditions:**

$$\mu_{1} > \mu_{2}, \sigma_{1} > \sigma_{2}, \nu_{1}, \nu_{2} < 1, \quad \begin{cases} \sigma_{2}\nu_{1} - \sigma_{1}\nu_{2} \neq 0, \\ (\mu_{1} - r)\sigma_{2} - (\mu_{2} - r)\sigma_{1} \\ \sigma_{2}\nu_{1} - \sigma_{1}\nu_{2} \end{cases} > 0$$

Review: Insurance settings Melnikov and Skornyakova (2005)

 \Box T(x) on $(\widetilde{\Omega}, \widetilde{\mathbf{F}}, \widetilde{P})$ is the remaining life time of a person at age x

 $\square \quad _T p_x = \widetilde{P}\{T(x) > T\} \text{ is a survival probability}$

 \square Assumption: (Ω, \mathbf{F}, P) and $(\widetilde{\Omega}, \widetilde{\mathbf{F}}, \widetilde{P})$ are independent

□ Mortality risk arises from the dependence of the payoff on the survival status of a client at maturity $H(T(x)) = H \cdot I_{\{T(x) > T\}}$

 $\square \quad \text{The payoff for the model:} \quad H(T(x)) = \max\left\{S_T^1, S_T^2\right\} \cdot I_{\{T(x) > T\}}$

Main Results: Theorem

- Financial market is described by two-factor jump-diffusion model
- Equity-linked life insurance contract with a flexible guarantee

• On a set
$$\{\Pi_T = n\}$$
, if

$$\frac{(\mu_1 - r)\nu_1 - (\mu_2 - r)\nu_2}{\sigma_2 \nu_1 - \sigma_1 \nu_2} = \frac{\sigma_1 \sigma_2}{\sigma_2 + (\sigma_1 - \sigma_2)^2}$$

Then

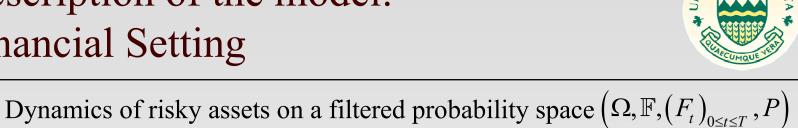
Then

$$\sum_{T}^{\infty} p_{n,T}^{*} \left(\upsilon_{n,T}^{1} \Phi \left(b_{+} \left(\upsilon_{n,T}^{1}, d_{n} \upsilon_{n,T}^{2}, T \right) \right) - \upsilon_{n,T}^{2} \Phi \left(b_{-} \left(\upsilon_{n,T}^{1}, d_{n} \upsilon_{n,T}^{2}, T \right) \right) \right)$$

$$\sum_{n=0}^{\infty} p_{n,T}^{*} \left(\upsilon_{n,T}^{1} \Phi \left(b_{+} \left(\upsilon_{n,T}^{1}, \upsilon_{n,T}^{2}, T \right) \right) - \upsilon_{n,T}^{2} \Phi \left(b_{-} \left(\upsilon_{n,T}^{1}, \upsilon_{n,T}^{2}, T \right) \right) \right)$$
where

$$\upsilon_{n,T}^{i} = (1 - \nu_{i})^{n} e^{\nu_{i}}, i = 1, 2, \qquad p_{n,T}^{*} = \exp\left\{ -\lambda^{*}T \right\} \frac{\left(\lambda^{*}T \right)^{n}}{n!}$$

Description of the model: **Financial Setting**



$$dS_t^i = S_{t-}^i \left(\mu_i dt + \sigma_i dW_t - \nu_i d\pi_t \right)$$

where $\mu_i \in R, \sigma_i > 0, \nu_i < 1$ and $\sigma_1 > \sigma_2$

HJM framework > f(t,T) : instantaneous forward interest rate $f(t,T) = f(0,T) + \int_0^t \alpha(s,T) ds + \int_0^t \sigma(s,T) dW_s + \int_0^t \beta \left[d\Pi_s - \lambda ds \right]$ > r(t) : spot interest rate $r(t) = f(t,t) = f(0,t) + \int_0^t \alpha(s,t) ds + \int_0^t \sigma(s,t) dW_s + \int_0^t \beta[d\Pi_s - \lambda ds]$

Description of the model: Financial Setting

- > P(t,T): price of a default-free discount zero-coupon bond at time t with maturity time T $P(t.T) = \exp\left(-\int_{t}^{T} f(t,s) ds\right)$ > B(t): accumulated money account $B(t) = \exp\left(\int_{0}^{t} r(s) ds\right)$
- □ Market is complete if

$$\frac{\mu_1 - r(t) \sigma_2 - (\mu_2 - r(t)) \sigma_1}{\sigma_2 v_1 - \sigma_1 v_2} > 0 \quad \text{and} \quad \sigma_2 v_1 - \sigma_1 v_2 \neq 0$$

• The unique martingale measure P^* has the local density

$$Z_{t} = \frac{dP^{*}}{dP}\Big|_{t} = \exp\left\{\int_{0}^{t}\phi_{s}dW_{s} - \frac{1}{2}\int_{0}^{t}\phi_{s}^{2}ds + \int_{0}^{t}(\lambda - \lambda_{s}^{*})ds + (\ln\lambda_{t}^{*} - \ln\lambda)\Pi_{t}\right\}$$

$$\left(\phi_{t}, \lambda_{t}^{*}\right) \text{ are the solutions for the equations } \begin{cases}\mu_{1} - r(t) + \phi_{t}\sigma_{1} - \nu_{1}\lambda_{t}^{*} = 0\\\mu_{2} - r(t) + \phi_{t}\sigma_{2} - \nu_{2}\lambda_{t}^{*} = 0\end{cases}$$

Description of the model: Financial Setting

Explicit representations of B(t) and S_t^i in terms of the parameters of the system:

$$B(t) = \frac{1}{P(0,t)} \exp\left\{\frac{1}{2} \int_{0}^{t} (\sigma^{*}(s,T))^{2} ds + \int_{0}^{t} \left[e^{-\beta(T-s)} - 1\right] \lambda_{s}^{*} ds + \int_{0}^{t} \sigma^{*}(s,T) dW_{s}^{*} - \int_{0}^{t} \beta(T-s) d\Pi_{s}\right\},$$

$$S_{t}^{i} = S_{0}^{i} B(t) \exp\left\{\sigma_{i} W_{t}^{*} + \Pi_{t} \ln(1-v_{i}) + \int_{0}^{t} \left(v_{i} \lambda_{s}^{*} - \frac{1}{2} \sigma_{i}^{2}\right) ds\right\}$$

Description of the model: Insurance Setting

- \square Assumption: (Ω, \mathbb{F}, P) and $(\tilde{\Omega}, \tilde{F}, \tilde{P})$ are independent.
- □ A single premium equity-linked life insurance contract with payoff $C(t) = \max(S_t^1, S_t^2)$
 - S^1 : maximal size of future profit
 - S^2 : stochastic guarantee for the insured
- □ The initial price of the contract: (Brennan-Schwartz price)

 $H(0) = E^* \left\{ \tilde{E} \left[C(T) B^{-1}(T) I \{ T_x > T \} \right] \right\} = E^* \left[C(T) B^{-1}(T) \right] \cdot_T p_x$

- □ Perfect hedging is not possible due to a budget constraint $H(0) < E^*[C(T) \cdot B^{-1}(T)]$
- □ Find a strategy that will hedge successfully with the maximal probability

Quantile Hedging Definitions

□ Self-financing strategy π has a budget constraint

$$H_0^{\pi} \le H_0 < E^* C_T e^{-rT}$$

 $\Box \qquad A\!\!\left(H_0^{\pi},\pi\right) = \!\left\{\omega: H_T^{\pi}\!\left(H_0^{\pi}\right) \ge C_T\right\} \quad \text{is a successful hedging set}$

 \square π^* is a *quantile hedge* if

$$P\{A(H_0^{\pi^*}, \pi^*)\} = \max_{\pi: H_0^{\pi} \le H_0} P\{A(H_0^{\pi}, \pi)\}$$

□ How to construct the quantile hedge π^* and the successful hedging set $A(H_0^{\pi^*}, \pi^*)$?

Quantile Hedging Methodology

The answer is given in the following fact (Foellmer and Leukert (1999)) Let $A^* \in F_T$ be a solution to the problem $P(A^*) = \max_{A \in F_T : E^*(C_T : I_A) \leq H_0} P(A)$

Then the quantile hedge π^*

- > does exist
- > is unique
- > is a perfect hedge for a modified claim $C_{A^*} = C_T \cdot I_{A^*}$

The structure of a maximal successful hedging set is $A^* = \left\{ Z_T^{-1} > a \frac{C_T}{B_T} \right\}$, where A constant *a* is defined $a = \inf \left\{ c : P^* \left(\frac{dP}{dP^*} > c \right) \le \alpha \right\}$

Equity-Linked Life Insurance Connecting Financial and Insurance Risks

Due to the structure of the price, $H(0) = E^* [C(T)B^{-1}(T)] \cdot {}_T p_x$

we apply quantile hedging,
$$H(0) = E^* \left[C(T) I_{\{A^*\}} \cdot B^{-1}(T) \right]$$

□ Key formulae connecting financial and insurance risks

$${}_{T} p_{x} = \frac{E^{*} \left[C(T) I_{\{A^{*}\}} \cdot B^{-1}(T) \right]}{E^{*} \left[C(T) \cdot B^{-1}(T) \right]}$$

Application of Quantile Hedging Preliminary Calculations

Maximal successful hedging sets

$$A^{*} = \left\{ Z_{T}^{-1} \ge a_{n} \frac{C_{T}}{B(T)} \right\} = \left\{ Z_{T}^{-1} \ge a_{n} \frac{\max\left(S_{T}^{1}, S_{T}^{2}\right)}{B(T)} \right\}$$

$$\Box \quad \text{The price of the contract } H(0) = E^* \left[\max\left(S_T^1, S_T^2\right) B^{-1}(T) I_{\{A^*\}} \right] \\ = E^* \left[\frac{S_T^1}{B_T} I_{\{A^*\}} \cdot I_{\{S_T^1 > S_T^2\}} \right] + E^* \left[\frac{S_T^2}{B_T} I_{\{A^*\}} \cdot I_{\{S_T^1 \le S_T^2\}} \right]$$

□ Further analysis relies on change of measure technique and properties of jump-diffusion processes

Main Results Theorem 1

- Financial market is described by two-factor jump-diffusion model
- Stochastic interest rate is in HJM framework
- Equity-linked life insurance contract with a flexible guarantee

Then the Brennan-Schwartz price of the contract is

$$H(0) = \sum_{n=0}^{\infty} p_{n,T}^{*} \left[e^{v_{1} \int_{0}^{T} \lambda_{t}^{*} dt} (1-v_{1})^{n} S_{0}^{1} \Psi_{1}(\Gamma_{1},\Gamma_{2}) + e^{v_{2} \int_{0}^{T} \lambda_{t}^{*} dt} (1-v_{2})^{n} S_{0}^{2} \Psi_{2}(\tilde{\Gamma}_{1},\tilde{\Gamma}_{2}) \right]$$

$$P_{n,T}^{*} = e^{-\int_{0}^{T} \lambda_{t}^{*} dt} \frac{\left(\int_{0}^{T} \lambda_{t}^{*} dt\right)^{n}}{n!}$$

where

Main Results Theorem 1

$$\begin{split} \Gamma_{1} &= -\ln \frac{a_{n} \cdot S_{0}^{1} \left(\lambda_{T}^{1}\right)^{n}}{\lambda^{n}} - \frac{1}{2} \delta_{1}^{2} - \int_{0}^{T} \left(\lambda - \lambda_{s}^{1}\right) ds \\ \Gamma_{2} &= \ln \frac{S_{0}^{1} \left(1 - v_{1}\right)^{n}}{S_{0}^{2} \left(1 - v_{2}\right)^{n}} - \int_{0}^{T} \lambda_{s}^{*} \left(v_{2} - v_{1}\right) ds + \frac{1}{2} \delta_{2}^{2} \\ \tilde{\Gamma}_{1} &= -\ln \frac{a_{n} \cdot S_{0}^{2} \left(\lambda_{T}^{2}\right)^{n}}{\lambda^{n}} - \frac{1}{2} \tilde{\delta}_{1}^{2} - \int_{0}^{T} \left(\lambda - \lambda_{s}^{2}\right) ds \\ \tilde{\Gamma}_{2} &= \ln \frac{S_{0}^{2} \left(1 - v_{2}\right)^{n}}{S_{0}^{1} \left(1 - v_{1}\right)^{n}} - \int_{0}^{T} \lambda_{s}^{*} \left(v_{1} - v_{2}\right) ds + \frac{1}{2} \tilde{\delta}_{2}^{2} \\ \lambda_{t}^{1} &= \lambda_{t}^{*} \left(1 - v_{1}\right) \qquad \lambda_{t}^{2} &= \lambda_{t}^{*} \left(1 - v_{2}\right) \end{split}$$

Main Results Theorem 2

The survival probability of an insured is as following:

$${}_{T}p_{x} = \frac{\sum_{n=0}^{\infty} p_{n,T}^{*} \left[p\Psi(\Gamma_{1},\Gamma_{2};\rho,\delta_{1},\delta_{2}) + q\Psi(\tilde{\Gamma}_{1},\tilde{\Gamma}_{2};\tilde{\rho},\tilde{\delta}_{1},\tilde{\delta}_{2}) \right]}{\sum_{n=0}^{\infty} p_{n,T}^{*} \left[p\Phi\left(\frac{d_{1}}{(\sigma_{1}-\sigma_{2})\sqrt{T}}\right) + q\Phi\left(\frac{d_{2}}{(\sigma_{1}-\sigma_{2})\sqrt{T}}\right) \right]}$$

Where
$$d_1 = \ln \frac{S_0^1 (1 - v_1)^n}{S_0^2 (1 - v_2)^n} - \int_0^T \lambda_s^* (v_2 - v_1) ds + \frac{1}{2} \delta_2^2$$
, $p_n = e^{v_1 \int_0^T \lambda_t^* dt} (1 - v_1)^n S_0^1$

$$d_{2} = \ln \frac{S_{0}^{2} (1 - v_{2})^{n}}{S_{0}^{1} (1 - v_{1})^{n}} - \int_{0}^{T} \lambda_{s}^{*} (v_{1} - v_{2}) ds + \frac{1}{2} \tilde{\delta}_{2}^{2} \quad , \quad q_{n} = e^{v_{2} \int_{0}^{T} \lambda_{t}^{*} dt} (1 - v_{2})^{n} S_{0}^{2}$$

Remark: How to determine the constant *a*

□ Fix a probability \mathcal{E} of failure to hedge on each set $\{\Pi_T = n\}$ Or equivalently, fix the probability of successful hedging as

Where

$$P\left(A^* | \pi_T = n\right) = 1 - \varepsilon = \Phi\left(\Delta\right) \qquad \Delta = \Delta_1 \cup \Delta_2$$

$$\Delta_1 = \frac{-\ln \frac{a \cdot S_0^1 \left(\lambda_T^1\right)^n}{\lambda^n} - \frac{1}{2} \delta_1^2 - \int_0^T \left(\lambda - \lambda_s^1\right) ds}{\delta_1}$$

$$\Delta_2 = \frac{-\ln \frac{a \cdot S_0^2 \left(\lambda_T^2\right)^n}{\lambda^n} - \frac{1}{2} \tilde{\delta}_1^2 - \int_0^T \left(\lambda - \lambda_s^2\right) ds}{\tilde{\delta}_1}$$

 \Box Using the log-normality of the conditional distribution to estimate a

Numerical Illustration Inputs

- □ Contracts with flexible guarantee: Russell 2000 and the S&P 500
- □ Transfer to One factor Vasicek-Hull-White model
- Estimated parameters for two-factor jump diffusion model (from monthly observations from 09/1987 to 09/2010)

$$\mu_1 = 0.2763$$
 $\mu_2 = 0.2898$ $\sigma_2 = 0.15$ $\sigma_1 = 0.19$

$$v_1 = -0.27$$
 $v_2 = -0.2$ $\lambda = 0.17$

- \Box $S_0 = 1000$ is an initial investment
- \Box T = 1, 3, 5, 10, 15, 20 years are terms of the contracts
- **\Box** Fix different level of financial risks $\varepsilon = 0.01, 0.025, 0.05$

Numerical Illustration

Table 1: Survival probabilities $_T p_x$ with flexible guarantee

Т	ε =0.01	ε =0.025	ε =0.05
1	0.9885	0.9718	0.9447
3	0.9878	0.9705	0.9426
5	0.9874	0.9697	0.9413
10	0.9867	0.9684	0.9391
15	0.9859	0.9667	0.9364
20	0.9853	0.9656	0.9345

Numerical Illustration

□ Table 2: Age of insured with flexible guarantee

Т	ε =0.01	ε =0.025	ε =0.05
1	58	69	78
3	45	55	63
5	39	48	56
10	23	39	46
15	12	31	39
20	6	24	33

Numerical Illustration from Melnikov and Skornyakova (2005)

□ Table 1: Survival probabilities with flexible guarantee

Т	ε =0.01	ε =0.025	ε =0.05
1	0.9447	0.8774	0.7811
3	0.9511	0.8910	0.8041
5	0.9549	0.9108	0.8387
10	0.9605	0.9108	0.8378

□ Table 2: Age of Insured with flexible guarantee

Т	ε =0.01	ε =0.025	ε =0.05
1	78	87	94
3	61	71	79
5	53	63	71
10	41	50	58

Numerical Illustration Conclusions

- □ Whenever the financial risk level \mathcal{E} increases, the survival probability_T p_x decreases, so that the clients' age increases in the same period. The insurance company should attract older clients for the contract with flexible guarantee to compensate increasing financial risk.
- With longer contract maturities, the company is able to attract younger clients while maintaining the same financial risk exposure, as a survival probability is decreasing over time.
- □ For fixed contract maturity, as the financial risk \mathcal{E} increases, the change of survival probabilities $_T p_x$ is not dramatic as the corresponding results in Melnikov and Skornyakova (2005).
- □ For fixed financial risk ε , as the contract maturity increases, the change of survival probabilities $_T P_x$ decreases in small percentage while the results in Melnikov and Skornyakova (2005) shows the opposite way, which is increasing.

Further Developments Discussion

- Mortality Modeling
 - > Use theoretical models of mortality Gompertz, Makeham, Lee-Carter
 - > Allows to take into account new tendencies in mortality
- □ Modeling with other Risk Measures
 - Conditional Tail Expectation:

$$CTE_{1-\varepsilon}(\pi) = E\left(H - X_T^{\pi}(\pi) \middle| H - X_T^{\pi}(\pi) \ge VaR_{1-\varepsilon}(\pi)\right)$$

> Rockafellar and Uryasev (2002):

If
$$\overline{z}$$
 is a solution to $RU(z) = z + \frac{1}{\varepsilon} \left[\inf_{\pi} E(H - X_T^{\pi}(x) - z)^+ \right] \rightarrow \min$

then $VaR_{1-\varepsilon}(\pi^*) = \overline{z}$, $CTE_{1-\varepsilon}(\pi^*) = RU(\overline{z})$

Further Developments Discussion

- □ Shortfall minimization problem for the claim $H(z) = (H z)^+$ $E(H - X_T^{\pi}(x) - z)^+ = E((H - z)^+ - X_T^{\pi}(x))^+ \rightarrow \inf$ over all strategies with initial budget constraints
- $\square \quad \left(\widetilde{X}_0(z), \widetilde{\pi}(z)\right) \text{ solution to this problem (Foellmer and Leukert (2000)),} \\ \text{ where } \quad \widetilde{\pi}(z) \text{ is a perfect hedge to a modified claim}$

$$\widetilde{H}(z) = H(z)I_{\{Z_T^{-1} > \widetilde{a}(z)\}},$$

$$\widetilde{a}(z) = \inf\left(a \ge 0 : E^*H(z)I_{\{Z_T^{-1} > a\}} \le X_0\right)$$

The function
$$RU(z)$$
 has the following structure
 $RU(z) = z + \frac{1}{\varepsilon} EI_{\{Z_T^{-1} \le \widetilde{\alpha}(z)\}} H(z), \quad z < z^*, \quad RU(z) = z, \quad z \ge z^*$
where $E^*H(z^*) = X_0$

References

- Brennan, M., and E.S. Schwartz, 1976. The Pricing of Equity-Linked Life Insurance Policies with an Asset Value Guarantee. J. Financial Economics 3: 195-213
- Brennan, M., and E.S. Schwartz, 1979. Alternative Investment Strategies for the Issuers of Equity-Linked Life Insurance with an Asset Value Guarantee. Journal of Business 52: 63-93
- □ Ekern, S. and S. Persson, 1996. Exotic Unit-Linked Life Insurance Contracts. Geneva Papers on Risk and Insurance Theory 21: 35-63
- □ Foellmer, H., and P. Leukert, 1999. Quantile Hedging. Finance Stochast. 3: 251-273
- □ Melnikov, A., and V. Skornyakova, 2005. Quantile hedging and its application to life insurance. Statistics and Decisions 23: 601-615.
- □ Moeller, T., 1998. Risk-Minimizing Hedging Strategies for Unit-Linked Life-Insurance Contracts. Astin Bulletin 28: 17-47

THE SITY OF TUBERTY A

References

- □ Aase, K. and S. Persson, 1994. Pricing of Unit-Linked Insurance Policies. Scandinavian Actuarial Journal 1: 26-52
- Bacinello, A.R. and F. Ortu, 1993. Pricing of Unit-Linked Life Insurance with Endegeneous Minimum Guarantees. Insurance: Math. and Economics 12:245-257
- □ Shirakawa, H.,1991. Interest rate option pricing with Poisson-Gaussian forward rate curve processes, Mathematical Finance 1,4:77-94
- □ Kaushik I.Amin and Roberta A, Jarrow,1992. Pricing options on risky assets in a stochastic interest rate economy, Mathematical Finance 2,4:217-237
- Carl Chiarella and Christina N.Sklibosios, 2003. A class of Jumpdiffusion bond pricing models within the HJM framework, Asia-Pacific Financial Markets 10: 87-127
- Quansheng Gao, Ting He and Chi Zhang, 2011. Quantile hedging for equity-linked life insurance contracts in a stochastic interest rate economy, Economic Modelling 28:147-156

References

- Moeller, T., 2001. Hedging Equity-Linked Life Insurance Contracts. North American Actuarial Journal 5: 79-95
- Rockafellar, R.T. and S. Uryasev, 2002. Conditional Value-at-Risk for General Loss Distributions. J.Banking&Finance 26: 1443-1471
- Melnikov, A. (2004) 'Quantile hedging of equity-linked life insurance policies', Doklady mathematics 69: 428-430.