Valuing Risky Projects Based on Managerial Cash Flow Estimates: A Real Options Approach

Sebastian Jaimungal

Department of Statistics, University of Toronto

Yuri Lawryshyn

Department of Chemical Engineering and Applied Chemistry,
University of Toronto

First 3-C Risk Forum & 2011 International Conference on Engineering and Risk Management Toronto, Canada October 28-30, 2011

Motivation

- To develop a real options approach to value R&D type projects
- Theory: Cash flows determined by GBM

$$df_t = \mu f_t dt + \sigma f_t dW_t$$

 Practice: Cash flows estimated as low, medium, high

Economic Profit (Optimistic)
Economic Profit (Likely)
Economic Profit (Pessimistic)

F. 0	F' 1	F. 2	F. 3	F' 4
80	120	150	180	200
50	70	75	80	90
20	25	25	20	20

Real Options

- Why Real Options?
 - Superior to discounted cash flow (DCF) analysis for capital budgeting / project valuation
 - Accounts for the inherent value of managerial flexibility
 - Adoption rate ~12% in industry (Brock (2007))
- What is required
 - Consistency with financial theory
 - Intuitively appealing
 - Practical to implement

Standard DCF Method

- Discount cash flows at the WACC
- For all equity firm (w/o loss of generality), CAPM:

$$R_{wacc} = \mathbb{E}[R_E] = R_f + \beta_C (\mathbb{E}[R_{MP}] - R_f)$$
$$\beta_C = \frac{\rho \sigma_C}{\sigma_{MP}}$$

- Some of the assumptions:
 - Returns are normally distributed
 - No managerial flexibility / optionality imbedded in the project
 - financial risk profile of the value of the cash-flows matches that of the average project of the company

Standard DCF Method

$$\beta_C = \frac{\rho \sigma_C}{\sigma_{MP}}$$

- Assumptions regarding β_c
 - Market volatility, σ_{MP} , is known
 - Cash flow volatility, σ_c , is known?
 - Correlation of the cash flows tothe market, ρ, is known

Real Options Models Used in Practice

Real Option Approaches*

	Intuitive	Practical / Easy to Implement	Financially Consistent	Minimal Subjectivity
Classic Approach	\checkmark	×	\checkmark	-
Subjective Approach	\checkmark	\checkmark	-	×
Market Asset Disclaimer	\checkmark	\checkmark	×	×
Revised Classic Approach	\checkmark	×	\checkmark	-
Integrated Approach	\checkmark	X	\checkmark	\checkmark

^{*}This classification was introduced by Borison, A. (2005)

Real Option Approaches: Classical

Cash flows are closely linked to a traded asset

or

- Cash flows are assumed to be closely linked to a traded asset
- Use the traded assets parameters to model the value of the cash flows
- Strengths:
 - —Intuitive, objective and financially consistent
- Weaknesses
 - —Difficult to find an appropriate traded asset
 - -Volatility of a company is likely less than of a project (note that this is an issue with DCF analysis as well)

Real Option Approaches: Subjective

- Use managerial / expert experience to estimate parameters
- Strengths:
 - Intuitive, easy to implement
- Weakness
 - Subjective

Real Option Approaches: MAD

- MAD (Market Asset Disclaimer)
- Brief outline of procedure
 - Develop a cash flow spreadsheet
 - Use Monte Carlo procedure based on managerial supplied uncertainty values to determine a histogram of cash flow returns
 - Use the histogram to estimate volatility
- Strengths:
 - Intuitive, easy to implement
- Weaknesses
 - Financially inconsistent (see Brandao)
 - Assumes that the value of the cash flows is traded and follows a GBM – leads to erroneous results where as the volatility increases, the real option value always increases

Real Option Approaches: Revised Classic

- Projects are either:
 - Project value primarily derived from exogenous (market) factors
 - Thus use Classical approach
 - Project value primarily derived from endogenous (private/company) factors
 - Thus apply classical decision analysis methods (e.g. decision trees)
- Strengths:
 - Intuitive, financially consistent
- Weakness
 - "All or nothing" nature of the approach
 - Unclear what discount factor to use for endogenous projects (r_f or WACC?)

Real Option Approaches: Integrated

- Most projects have both exogenous and endogenous aspects
- Market risk is valued through appropriate hedging while private risk is discounted at the risk-free rate
- Projects are either:
 - Project value primarily derived from exogenous (market) factors
 - Thus use Classical approach
 - Project value primarily derived from endogenous (private/company) factors
 - Thus apply classical decision analysis methods (e.g. decision trees)
- Strengths:
 - Intuitive, financially consistent and objective
- Weakness
 - Models are difficult to "fit" to reality
- Solution: Matching Method

Goals of Proposed Methodology

- Practical to implement
 - Matches cash flow estimates provided by managers
 - Requires minimal subjectivity with respect to parameter estimation
- Consistent with financial theory
 - Is completely consistent with theory
 - Properly accounts for market and private risk
 - Ensures that cash flows are appropriately correlated among time periods
 - Uses established martingale measures which minimizes hedging error variance
 - Replicates manager specified distributions

Matching Method

Matching Method

Market Sector Indicator

Assume there exists a market sector indicator

$$dS_t = vS_t dt + \eta S_t dW_t$$

- Market sector indicator
 - does not need to be traded
 - could represent market size / revenues
 - is not constrained to a GBM process
- Assume market sector indicator is correlated to a traded index / asset

$$dI_{t} = \mu I_{t} dt + \sigma I_{t} \left(\rho dW_{t} + \sqrt{1 - \rho^{2}} dW_{t}^{\perp} \right)$$

Match Cash Flow Payoff

• Each cash flow is effectively an option on the market sector indicator, $V_T = \phi(S_T)$

Matching probabilities

$$P(V_T < v) = F_A(v) \Rightarrow P(\phi(S_T) < v) = F_A(v)$$

Calculation of $\varphi(\cdot)$

We seek $\varphi(.)$ such that $\mathbb{P}(\varphi(S_T) \leq v | \mathcal{F}_0) = F^*(v)$. Since,

$$S_T|_{\mathcal{F}_0} \stackrel{d}{=} S_0 \exp\left\{(\nu - \frac{1}{2}\eta^2)T + \eta\sqrt{T}Z\right\}$$
 where $Z \underset{\mathbb{P}}{\sim} \mathcal{N}(0, 1)$,

we have that

$$\mathbb{P}(\varphi(S_T) \le v | \mathcal{F}_0) = \Phi\left(\frac{\ln \frac{\varphi^{-1}(v)}{S_0} - (\nu - \frac{1}{2}\eta^2)T}{\eta\sqrt{T}}\right) \triangleq F^*(v).$$

Consequently, if $F^*(.)$ is invertible then

$$\varphi(S) = F^{*-1} \left(\Phi\left(\frac{\ln \frac{S}{S_0} - (\nu - \frac{1}{2}\eta^2)T}{\eta\sqrt{T}} \right) \right)$$

Payoff Function

Replicating payoff function

$$\phi(S) = F_A^{*-1} \left(\Phi \left(z(S) \right) \right) = \begin{cases} y_- + \sqrt{(y_+ - y_-)(y_0 - y_-) \Phi \left(z(S) \right)} \,, & S \leq S_c \\ y_+ - \sqrt{(y_+ - y_-)(y_+ - y_0) (1 - \Phi \left(z(S) \right))} \,, & S > S_c \end{cases}$$

$$z(S) = \frac{1}{\eta \sqrt{T}} \ln \frac{S}{S_0} - \frac{\left(\nu - \frac{1}{2}\eta^2\right)}{\eta} \sqrt{T}$$

$$S_c = S_0 \exp\left\{ (\nu - \frac{1}{2}\eta^2)T + \eta \sqrt{T} \frac{y_0 - y_-}{y_+ - y_-} \right\}$$

Replicating Payoff Function

Information Distortion

Option Value

Risk-neutral process for traded index

$$dI_{t} = rI_{t}dt + \sigma I_{t} \left(\rho dW_{t} + \sqrt{1 - \rho^{2}} dW_{t}^{\perp} \right)$$

 Risk-neutral process for the market sector indicator

$$dS_{t} = \overline{r}S_{t}dt + \eta S_{t}dW_{t}$$

$$\overline{r} = v - \frac{\rho\eta}{\sigma}(\mu - r)$$

The value of the option

$$RO_0 = e^{-rt} E \left[max (V_t - K, 0) \right]$$

Risk-Neutral Measure

$$\begin{split} \widehat{F}_{v_k|S_t}(v) &= \mathbb{Q}\left(\varphi_k(S_{T_k}) \leq v \left| S_t = S \right) \right. \\ &= \mathbb{Q}\left(\varphi_k\left(Se^{(\widehat{\nu} - \frac{1}{2}\eta^2)(T_k - t) + \eta\sqrt{T_k - t}\,Z}\right) \leq v\right) \\ &= \mathbb{Q}\left(\Phi\left(\frac{\ln(S/S_0) + (\widehat{\nu} - \frac{1}{2}\eta^2)(T_k - t) - (\nu - \frac{1}{2}\eta^2)T_k}{\eta\sqrt{T_k}} + \sqrt{\frac{T_k - t}{T_k}}Z\right) \leq F_k(v)\right) \\ &= \mathbb{Q}\left(Z \leq \sqrt{\frac{T_k}{T_k - t}}\Phi^{-1}\left(F_k(v)\right) - \widehat{\lambda}_k(t, S)\right) \end{split}$$

$$\widehat{F}_{v_k|S_t}(v) = \Phi\left(\sqrt{\frac{T_k}{T_k - t}}\Phi^{-1}\left(F_k(v)\right) - \widehat{\lambda}_k(t, S)\right)$$

$$\widehat{\lambda}_{k}(t,S) = \frac{1}{\eta \sqrt{T_{k} - t}} \ln \frac{S}{S_{0}} + \frac{\widehat{\nu} - \frac{1}{2}\eta^{2}}{\eta} \sqrt{T_{k} - t} - \frac{\nu - \frac{1}{2}\eta^{2}}{\eta} \frac{T_{k}}{\sqrt{T_{k} - t}}$$

Risk-Neutral Density

Project Value

Value of the cash flows at time, t

$$V_{t} = \sum_{i=1}^{n} e^{-r(t_{i}-t)} \mathbb{E} \left[V_{t_{i}} \middle| F_{t} \right]$$

Project value

$$V_{\text{proj}} = e^{-rt_K} \int_{-\infty}^{\infty} \left(\sum_{i=1}^{n} \left(e^{-r(t_i - t_K)} \int_{-\infty}^{\infty} \phi_i \left(S_{t_i} \right) \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} dy \right) - K, 0 \right) \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx$$

$$S_{t_i} = S_0 e^{(\overline{r} - \frac{1}{2}\eta^2)t_i + \eta(\sqrt{t_K}x + \sqrt{t_i - t_K}y)}$$

Cash-Flow and Market Sector Indicator

Sample Path of Value of Cash Flows

Option Value: Correlation and Risk

Real option value versus correlation.

Real option value sensitivity to risk: 30 - ΔV , 70, 100 + ΔV Matching method in BLUE MAD method in RED

Practical Implementation

	Expected Cash Flows per Year								
Scenario	1	2	3	4	5	6	7	8	9
Optimistic	0	0	80	120	150	180	200	220	250
Most likely	0	0	50	70	75	80	90	100	110
Pessimistic	0	0	20	25	25	20	20	20	20
Investment		450							

Present Value of Cash Flows

Option Value

Hedging the Real Option

Hedging strategy that minimizes variance:

$$\Delta_t = \begin{cases} \rho \frac{\eta S_t}{\sigma I_t} \partial_S RO_t(S_t), & t \leq T_0, \\ \rho \frac{\eta S_t}{\sigma I_t} \partial_S V_t(S_t), & T_0 < t \leq T_n \end{cases}$$

where

$$V_t(S) = \sum_{k=\min\{m: T_m \ge t\}}^n e^{-r(T_k - t)} \int_0^\infty \left(1 - \widehat{F}_{v_k|S}(v) \right) dv$$

Hedging Delta

Hedging Results

Enhanced Matching Method Matching Revenues and GM%

Practical Considerations

- It is more likely that a sector indicator will be correlated to revenues than cash flows
- Cash flows are estimated based on:
 - Estimated revenues
 - Estimated gross margin percent
 - Other fixed and variable costs
- Assumptions
 - Revenues are stochastic and driven by a sector indicator
 - GM% values are stochastic and correlated to revenues
 - Other fixed and variable costs are not stochastic

Managerial Estimates

Scenario	End of Year Sales / Margin							
	3	4	5	6	7	8	9	
Optimistic	80	116	153	177	223	268	314	
	(50%)	(60%)	(65%)	(60%)	(60%)	(55%)	(55%)	
Most Likely	52	62	74	77	89	104	122	
	(30%)	(40%)	(40%)	(40%)	(35%)	(35%)	(35%)	
Pessimistic	20	23	24	18	20	20	22	
	(20%)	(20%)	(20%)	(20%)	(15%)	(10%)	(10%)	
SG&A*	10%	5%	5%	5%	5%	5%	5%	
Fixed Costs	30	25	20	20	20	20	20	

^{*} Sales / General and Administrative Costs

Practical Implementation

Traded index:

$$dI_t = \mu I_t dt + \sigma I_t dB_t$$

Sales sector indicator used to drive revenues

$$dX_t = \rho_{SI}dB_t + \sqrt{1 - \rho_{SI}^2}dW_t^S$$

Revenues partially drive GM% indicator

$$dY_t = \rho_{SM} dX_t + \sqrt{1 - \rho_{SM}^2} dW_t^M$$

Match Sales and GM%

Sales and GM% processes are driven by their respective indicators

$$S_k = \varphi_k^S(X_{T_k})$$
 and $M_k = \varphi_k^M(Y_{T_k})$

Matching probabilities

$$P(S_T < s) = P(\phi^S(X_T) < s) = F(s) \text{ and } P(M_T < m) = P(\phi^M(Y_T) < m) = G(m)$$

Payoff Function

• The payoff function $\varphi^s(x)$ which produces the manager specified distribution F(v) for the sales at time T, when the underlying driving uncertainty X_t is a BM, is given by

$$\varphi^{S}(x) = F^{-1} \left(\Phi \left(\frac{x - x_{0}}{\sqrt{T}} \right) \right)$$

Cash flow

$$V_k = (1 - \kappa_k) \phi_k^S \phi_k^M - \alpha_k$$

Cash Flow Profile

Real Option Value

Value of the cash flows

$$V_{T_0}(S_{T_0}, M_{T_0}) = \sum_{k=1}^n e^{-r(T_k - T_0)} \mathbb{E}^{\mathbb{Q}} [v_k \mid S_{T_0}, M_{T_0}]$$

$$= \sum_{k=1}^n e^{-r(T_k - T_0)} \mathbb{E}^{\mathbb{Q}} [\varphi_k(S_{T_k}, M_{T_k}) \mid S_{T_0}, M_{T_0}]$$

Real option value

$$RO_t(S, M) = e^{-r(T_0 - t)} \mathbb{E}^{\mathbb{Q}} \left[\left(V_{T_0}(S_{T_0}, M_{T_0}) - K \right)_+ \middle| S_t = S, M_t = M \right]$$

Risk-Neutral measure

$$\begin{split} dX_t &= \widehat{\nu} \, dt + \rho_{SI} \, d\widehat{B}_t + \sqrt{1 - \rho_{SI}^2} \, d\widehat{W}_t^S, \\ dY_t &= \widehat{\gamma} \, dt + \rho_{SI} \rho_{SM} d\widehat{B}_t + \rho_{SM} \sqrt{1 \left| - \rho_{SI}^2 \, d\widehat{W}_t^S + \sqrt{1 - \rho_{SM}^2} \, d\widehat{W}_t^M}, \\ \frac{dI_t}{I_t} &= r \, dt + \sigma \, d\widehat{B}_t \end{split}$$

$$\widehat{\nu} = -\rho_{SI} \frac{\mu - r}{\sigma}$$
 and $\widehat{\gamma} = -\rho_{SI} \rho_{SM} \frac{\mu - r}{\sigma}$

Solution Methods

- Numerical integration
- Simulation
- Three dimensional trees
- PDE

$$rG = \frac{\partial G}{\partial t} + \widehat{\nu} \frac{\partial G}{\partial x} + \widehat{\gamma} \frac{\partial G}{\partial y} + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} + \frac{1}{2} \frac{\partial^2 G}{\partial y^2} + \rho_{SM} \frac{\partial^2 G}{\partial x \partial y}$$

Managerial Estimates

Scenario	End of Year Sales / Margin							
	3	4	5	6	7	8	9	
Optimistic	80	116	153	177	223	268	314	
	(50%)	(60%)	(65%)	(60%)	(60%)	(55%)	(55%)	
Most Likely	52	62	74	77	89	104	122	
	(30%)	(40%)	(40%)	(40%)	(35%)	(35%)	(35%)	
Pessimistic	20	23	24	18	20	20	22	
	(20%)	(20%)	(20%)	(20%)	(15%)	(10%)	(10%)	
SG&A*	10%	5%	5%	5%	5%	5%	5%	
Fixed Costs	30	25	20	20	20	20	20	

^{*} Sales / General and Administrative Costs

Real Option Value

Model Implementation

Valuation Eg

47 47

Conclusion: Proposed Method

- Practical to implement
 - Matches estimates provided by managers
 - Requires minimal subjectivity with respect to parameter estimation
 - Required market parameters: r, μ, σ
 - Required project parameters: ρ_{SI} , ρ_{SM}
- Consistent with financial theory
 - Is generally consistent with theory
 - Specifically:
 - Properly accounts for market and private risk
 - Ensures that cash flows are appropriately correlated among time periods

Managerial Risk Aversion and Real Options

Real Options in R&D Type Applications

Managers provide cash flow estimates

Scenario	Expected Cash Flows per Year									
	1	2	3	4	5	6	7	8	9	
Optimistic	0	0	80	120	150	180	200	220	250	
Most likely	0	0	50	70	75	80	90	100	110	
Pessimistic	0	0	20	25	25	20	20	20	20	
Investment		450	3		3	30		8		

Real Options in R&D Type Applications

- Problem:
 - How should we value the cash flows?
 - How should we account for managerial risk aversion?
- Approach:
 - Apply "matching method" with MMM to value cash flows
 - Apply indifference pricing to determine value with manager's risk aversion
- Traded index / asset

$$dI_t = \mu I_t dt + \sigma I_t dW_t$$

 Assume there exists a Market Sector Indicator correlated to the traded index

$$dS_t = \nu S_t dt + \eta S_t (\rho dW_t + \sqrt{1 - \rho^2} dW_t^{\perp})$$

Indifference Pricing: Problem Definition

- Goal: to maximize expected terminal utility of discounted wealth
- Case I: Invest in market only, with π_t invested in risky asset

$$V(t,X) = \sup_{\pi} \mathbb{E}_t \left[-\frac{1}{\gamma} e^{-\gamma X_T} \right]$$
$$dX_t = (\mu - r)\pi_t dt + \sigma \pi_t dW_t$$

Case II: Invest in project (with option)

$$U(t, X, S) = \sup_{\pi} \mathbb{E}_{t} \left[-\frac{1}{\gamma} e^{-\gamma X_{T}} \right]$$

$$dX_{t} = (\mu - r)\pi_{t}dt + \sigma\pi_{t}dW_{t}, \ t \notin [T_{0}, T_{1}, ..., T_{n}]$$

$$X_{T_{0}} = X_{T_{0}}^{-} - Ke^{-rT_{0}}\mathbf{1}_{\mathcal{A}}$$

$$X_{T_{j}} = X_{T_{j}}^{-} + \varphi(S_{j})e^{-rT_{j}}\mathbf{1}_{\mathcal{A}}, \ j \in [1, 2, ..., n]$$

Indifference Pricing: HJB

• Indifference price, f, determined by U(t, x - f, S) = V(t, x), and U(t, x, S) satisfies HJB

$$\frac{\partial U}{\partial t} + \nu S \frac{\partial U}{\partial S} + \frac{1}{2} \eta^2 S^2 \frac{\partial^2 U}{\partial S^2} + \mu \frac{\partial U}{\partial I} + \frac{1}{2} \sigma^2 \frac{\partial^2 U}{\partial I^2} + \sigma \eta \rho S \frac{\partial^2 U}{\partial S \partial I} + \sup_{\pi} \left[(\mu - r) \pi \frac{\partial U}{\partial x} + \frac{1}{2} \sigma^2 \pi^2 \frac{\partial^2 U}{\partial x^2} + \sigma \eta \rho \pi S \frac{\partial^2 U}{\partial x \partial S} \right] = 0$$

$$U(T, x, S_T) = -\frac{1}{\gamma} e^{-\gamma(x + \varphi_n(S_T)e^{-rT})} + (t, \omega) \in (T_{n-1}, T_n] \times \mathcal{A}(\omega)$$

Indifference Pricing: Numerical Simulation

• With $U(t,x,S) = V(t,x) H^{\beta}(t,S)$, where $\beta = \frac{1}{1-\rho^2}$

$$\frac{\partial H}{\partial t} + \bar{\nu}S\frac{\partial H}{\partial S} + \frac{1}{2}\eta^2 S^2 \frac{\partial^2 H}{\partial S^2} = 0$$
$$H(T_n, S_T) = e^{-\gamma \varphi_n(S_T)e^{-rT_n}}$$

• At strike time, $t = T_0$, invest if $U(T_0, x, S) > V(T_0, x)$, but

$$U(T_0, x, S) = U(T_0^+, x - Ke^{-rT_0}, S)$$

= $V(T_0, x)H^{\beta}(T_0^+, S)e^{\gamma Ke^{-rT_0}}$

Therefore invest if

$$H^{\beta}(T_0^+,S)e^{\gamma Ke^{-rT_0}} \leq 1$$

 Equivalent to the cash flow indifference price being less than the strike

Indifference Pricing: Numerical Simulation

Finally,

$$U(t, x - f, S) = V(t, x)$$

$$V(t, x - f)H^{\beta}(t, S) = V(t, x)$$

$$-\frac{1}{\gamma}e^{-\gamma(x-f)}H^{\beta}(t, S) = -\frac{1}{\gamma}e^{-\gamma(x)}$$

$$f = -\frac{\beta}{\gamma}\ln\left(H^{\beta}(t, S)\right)$$

Results: Indifference Price

Results: Price for Varying γ

Conclusions

- Matching method provides a link between financial theory and practical implementation
- We now have a tool to show managers how risk-aversion can impact decision making based on their own cash flow estimates