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The problem 

• Renewables (Wind, Solar, small Hydro)  are 
the cornerstone of green power initiatives 
both in Ontario and worldwide.  

• Wind “penetration” has increased 
dramatically in recent years 

• But wind and other renewables require 
expensive subsidies and do not result in 
dispatchable power.   

 



Hourly Ontario wind production (MW): 

May 5 – May 8 2011.  Source: IESO, Melissa Mielkie 
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Some see impacts of this on markets 

• Greater instability, even negative prices 

• Wind in Ontario is given a fixed feed in Tariff 
and, as such, is treated as “must dispatch” 

• So wind arriving in the middle of the night, in 
the fall, when demand is low can actually put 
a glut on the market (since nuclear baseload is 
hard to shift). 

• Result is negative prices.   Validity of story 
uncertain,  but negative prices are a fact:   



Ontario Electricity Price, $/MWh 
Source IESO, Ying Wang 



Is the solution storage? 

• Some see energy storage as the solution. 

• This could smooth out uncertainties. 

• (Old use for energy storage was to smooth 
predictable fluctuations in daily load).   



But storage is expensive! 

• Discuss energy storage:   some quantitative 
examples.  How much water do you need to 
store (and how high)  to store $1000 worth of 
electricity? 

• How many 1.5 volt AA batteries would you 
need?  And how much would they cost?  And 
how much would they weigh? 



Pump storage 

• 1MWh costs about $50 on the market. 
It is 3.6 billion Joules. 

• If you raise a kg of water 100m  you have 
about 1000 Joules of potential energy. 

• So to get 3.6 billion J of potential energy you 
need to raise 3.6 million kg of water 100m. 

• That’s 3600 cubic metres,  or a 60 m x 60m x 1 
m wading pool hauled up a mountain.   

• The hardware to do this will be expensive! 



AA batteries 

• A Nickel-Cadmium AA battery contains 1.2W-h of 
electricity, weighs about 30g and costs about 
$0.50. 

• To store a Megawatt hour in AA batteries would 
take about 800,000 of them,  for a total weight of 
24,000 kg and cost about $400K. 

• Maybe you’d be better off using them as a 
working fluid for a pump storage unit!  

• The goal for AA cells is different;  next slide shows 
cost of industrial size battery storage units.  



Battery costs vs. efficiencies 
(Source:  The Future of Energy Storage, Global Business Insights) 



Who pays for storage?  

• In current Ontario setting, not the wind or 
solar producers 

• The cost of uncertainty is another cost of 
running green markets. 

• In fact, in Ontario if you did build a PSR facility 
you’d have to buy and sell at the open market 
price:  No Feed In Tariff 



My existing storage work 

• I’ve worked a fair bit on Energy storage, with 
papers on Pump Storage (Thompson, MD, 
Rasmussen Operations Research 2004,  Zhao 
& MD Renewable Energy 2009, J. Hydrology 
2009),  Natural Gas Storage (Thompson MD & 
Rasmussen Naval Research Logistics 2009)  
and Compressed Air Energy Storage 
(Carriveau, Ting, Konrad, MD, Simpson) 
Renewable Energy Reviews,  under review) 



A new tack 

• All my work works on building realistic models 
of the physics and engineering of various 
facilities, getting some kind of stochastic 
model for prices or water inflows,  turning it 
all into a big PDE or stochastic program, and 
generating numerical work after some 
numerical analysis. 

• All this work ignores regulation entirely. 



Simple model 

• Today  I present a very simple model of a storage 
facility with just 4 parameters:  the value of a unit 
of power,  the fractional loss in storing the power,  
the probability of generating the power,  and the 
penalty resulting in bidding power into the 
market that isn’t delivered. 

• The model generates a nonlinear system of 
difference equations that can be solved in closed 
form!   

• This closed form solution allows us to obtain 
many insights.   



Wind “physics” 

• A wind producer either produces M electricity 
if it is windy,  otherwise none. 

• Each hour it is windy with probability p and 
calm with probability 1-p, 0 ≤ p ≤ 1.  

• Bids for each hour must be made without 
information and can either be to deliver a unit 
of power or to deliver nothing. 
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Model bidding 

• The wind producer must decide in advance 
whether to offer power into the market. 

• If power is offered and it is windy,  producer 
gets $M. 

• If power is not offered it cannot be sold, 
whether or not it is windy.   



Penalties 

• If the producer bids and it is not windy she 
must (without storage) pay a penalty of –xM 

• The penalty satisfies x ≥ 0  

• Current Ontario market practice is for x = 0; 
current New York market practice has x > 0. 

 

 



Storage physics 

• The wind producer has access to a storage 
facility allowing them to store a single unit of 
wind energy.  This storage can be filled or 
withdrawn in a single hour. 

• Storage is “lossy”  and we assess the cost of 
this loss at withdrawal.  If a unit of energy is 
withdrawn it earns (1-γ)M,  0 ≤ γ ≤ 1.  



Storage contracts 

• Storage facilities are leased for a period of N 
hours.    

• At the end of the lease period they are 
returned to the owner.   A full facility gets a 
cash refund of (1-γ)M,  and empty facility gets 
nothing.  



V(F,k) and V(E,k) 

• The value of a full storage facility, assuming 
optimal operation,  with k periods left before 
the end of the lease is denoted by V(F,k) 

• The value of an empty storage facility, 
assuming optimal operation,  with k periods 
left before the end of the lease is V(E,k) 

 



V(F,B,k) and V(F,N,k) 

• With k periods remaining we must decide 
whether to bid in (offer) power or not.   

• The value of a full facility with k periods 
remaining given that we bid in is V(F,B,k) 

• If we don’t offer power the value of the full 
facility with k periods remaining is V(F,N,k). 

• Clearly V(F,k) = max[V(F,B,k),V(F,N,k)] 

 

 



V(E,B,k) and V(E,N,k) 

• The value of an empty facility with k periods 
remaining given that we bid in is V(E,B,k) 

• If we don’t offer power the value of the full 
facility with k periods remaining is V(E,N,k). 

• V(E,k) = max[V(E,B,k),V(E,N,k)] 

 



The recursion relation: empty 

• We use dynamic programming to solve this.   

• We’ve already ‘turned around’ time by 
describing everything in terms of time 
remaining. 

• V(E,B,k) = p[M+V(E,k-1)] + (1-p)[-xM+V(E,k-1)] 

• V(E,N,k) = pV(F,k-1) + (1-p)V(E,k-1) 

• Since if you don’t bid and it’s empty, you 
might as well fill the facility to sell later.   



The recursion relation: full 

• V(F,N,k) = pV(F,k-1) + (1-p)V(F,k-1) = V(F,k-1). 

• The V(F,B,k) case is a bit harder because if we 
bid and it’s not windy we can choose whether 
to pay the penalty or empty the storage.   
Hence:   

• V(F,B,k) = p[M + V(F,k-1)]  

             +(1-p)max[-xM+V(F,k-1), (1-γ)M+V(E,k-1)]  
 



A note on expectations 

• It probably makes sense to optimize the 
expected value of the cash flows as done 
above since the procedure will be repeated 
many times. 

• If, however, you want to add risk aversion via 
for instance a utility,  that will only have the 
effect of distorting the probability, so replace 
p by q and the structure of the equations 
remains.  



System 0 

V(F,B,k) = p[M+V(F,k-1)]+(1-p)max[-xM+V(F,k-1), (1-γ)M+V(E,k-1)] 

V(F,N,k) = V(F,k-1) 

V(F,k) = max[V(F,B,k),V(F,N,k)] 

V(E,B,k) = p[M+V(E,k-1)] + (1-p)[-xM+V(E,k-1)] 

V(E,N,k) = pV(F,k-1) + (1-p)V(E,k-1) 

V(E,k) = max[V(E,B,k),V(E,N,k)] 
V(F,0) = (1-γ)M 
V(E,0) = 0.  

 



Solving this 

• Solution of this system requires at each time: 

• Optimal bidding rules, when empty and when 
full,  before we know if the wind will blow or 
not. 

• The optimal decision about whether to pay 
the penalty or empty the storage in the 
full,bid,no wind case. 

• Expressions for V(F,k) and V(E,k).  

 



Analytic solution 

• We find a complete analytic solution for this 
nonlinear system of difference equations. 

• We could, of course, have coded this system 
without any difficulty (even in a spreadsheet!), 
but analytic solutions still are nice. 

• I will now describe the solution and draw lots 
of insights about the wind storage problem 
from it.  



Theorem 1: Solving for V(F,k)-V(E,k) 

Theorem 1: 
For the above system of difference equations, 
V(F,k)-V(E,k)  = (1- γ)M + min[pγM, (1-pk)xM] 

 

The following preliminary lemma is useful in this 
proof:   

 



Lemma 2: 

Let V(F,k) – V(E,k) = Mm(k) + (1-γ)M.  Then 

m(k) = m(k-1) + min[x(1-p),γp –pm(k-1)] –   
     min[p,x(1-p),(1-p)m(k-1)];   

m(0) = 0.  

 



Proof of Lemma 2: 

• Subtract V(F,k)-V(E,k) in System 0,  repeatedly 
using facts like max(a+b,a+c) = a + max(b,c) 
and max(-a,-b) = -min(a,b) and easy but 
tedious algebra to obtain the first order 
difference equation:  

 



Proof of Theorem 1: 

Theorem 1 <->  m(k) = min[γp,  x(1-pk)]  solves 
the Lemma 2 system:  

m(k) = m(k-1) + min[x(1-p),γp –pm(k-1)] –   
   min[p,x(1-p),(1-p)m(k-1)];  m(0) = 0.  

Proof:  divide into 4 cases and use induction:   
i) x ≥ γ*max(1,p/(1-p) 
ii)  γ ≤ x < max(1,p/(1-p), 
iii)   γp ≤ x < γ  
iv) 0 ≤ x < γp 

 



Discussion 

• Note that V(F,k)-V(E,k) is nondecreasing in 
time remaining, just like an option. 

• If x ≤ γp, V(F,k)-V(E,k) is always increasing with 
a limit of (1-γ+x)M, 

• If x > γp, V(F,k)-V(E,k) increases until k = k* and 
then reaches a limit of [1-γ(1-p)]M at the finite 
time k*. 

• k* is the largest integer satisfying  
   k* < [ln(x-γp)-ln(x)]/ln(p) 



Getting to the optimal control 

Theorem 1 is the backbone allowing all the 
other results to come easily. 

Corollary 3:-xM + V(F,k) ≤ (1-γ)M+V(E,k) for all k. 

Proof:   –xM ≤ (1-γ)M –[V(F,k)- V(E,k)] 

 -xM ≤ - min[pγM, (1-pk)xM], (Thm 1) or 

x ≥ min*γp, x(1-pk)]  which is clear.   



Never optimal to pay penalty 

• Corollary 3 implies that, if you bid and the 
wind doesn’t blow, it is never optimal to pay 
the penalty but always better to empty the full 
storage.  This is true even for tiny penalties, or 
for no penalties at all. 

• It also says we can simplify System 0 a bit by 
replacing the expression for V(F,B,k) with:  
V(F,B,k) = p[M+V(F,k-1)]+(1-p)[(1-γ)M +V(E,k-1) 

 



You should always bid when full 

Corollary 4:   V(F,B,k) >= V(F,N,k) for all k. 

Proof:  From the above slide and System 0: 

V(F,B,k)-V(F,N,k) = p[M+V(F,k-1)]+(1-p)[(1-γ)M 
+V(E,k-1) – V(F,k-1)] 
= pM + (1-p) ){(1-γ)M – [V(F,k-1) – V(E,k-1)]} 

Using Theorem 1,  = pM – (1-p)min[pγM,x(1-pk-1)M] 

• (1-p)M*max[p/(1-p) - pγ,-x(1-pk-1)]   
= M*max[p(1-γ(1-p), -x(1-p) (1-pk-1) >= 0,   
since γ*(1-p) < 1. 



Bidding rules when empty 

V(E,B,k) – V(E,Nk)  = p[M+V(E,k-1)] +  
(1-p)[-xM+V(E,k-1)] – {pV(F,k-1) + (1-p)V(E,k-1)} 

= pM – p[V(F,k-1)-V(E,k-1)] – (1-p)xM 

= [p-(1-p)x]M – p[(1-γ)M + min{γp,x(1-pk-1)}M] 

= [γp – (1-p)x]M  - pM*min{γp,x(1-pk-1)} 

= [γp – (1-p)x]M  + pM*max{-γp,-x(1-pk-1)} 

= max{γp – (1-p)x, γp - x(1-pk)}M.  But, unless k = 0 
in which case we can’t bid anyway,  1-p ≥ 1-pk, 

Hence V(E,B,k) – V(E,N,k)  = [γp - x(1-pk)]M 



Empty bid rules: Large penalties 

• V(E,B,k) – V(E,N,k) = [γp - x(1-pk)]M 

• Large penalty:  x >= γ*max[1,p/(1-p)] 

• Then, if p < ½,  x(1-pk) > x(1-p) > px > γp and 
the expression is negative.  If p > ½ x(1-pk) > 
x(1-p)  > γp and the expression is still negative.   

• so V(E,B,k) – V(E,N,k) < 0  

• and so it’s optimal not to bid.   



Optimal control:  large penalties 

• If x ≥ γ*max[1,p/(1-p)] then the optimal 
control is to bid when full and not bid when 
empty.  That way you never have to pay 
penalties and you refill the first time it’s windy 
after a calm day. 

• Note that sufficiently huge penalties are never 
collected!  

• Here V(F,k)-V(E,k) = [1-γ(1-p)]M 



Empty bid rules: Small penalties 

• V(E,B,k) – V(E,N,k) = [γp - x(1-pk)]M 

• Small penalty:  x ≤ pγ  

• Then x(1-pk) < x ≤ pγ  

• so V(E,B,k) – V(E,N,k) > 0  

• and so it’s always optimal to bid.   

• Here V(F,k)-V(E,k) = [1-γp + x(1-pk)]M 

 

 



Optimal control: small penalties 

• With small penalties you always bid whether 
you are full or empty.   The effect of this is that 
if you start empty you never fill the storage, 
and if you start full you only use the storage 
once, to empty it.   

• So the penalties are too small to encourage 
use of the storage, even though it looks like 
you are using the storage when it’s full.  



Empty bid rules: medium penalties 

• V(E,B,k) – V(E,N,k) = [γp - x(1-pk)]M 

• Medium penalty:  γp < x < γmax[1,p/(1-p)] 

• Here γp - x(1-pk) is positive (when k < k*)  or 
negative (when k ≥ k*).   

• Here k* is the largest integer satisfying 

•    k* <  ln[1-γp/x]/ln(p) 

• So you don’t bid  (sufficiently far from maturity)  
and then bid (sufficiently close to maturity) 

 



Optimal control: medium penalties 

• The thinking here is that, with a sufficiently small 
amount of time left,  you might be able to “get 
away” with bidding even when empty, in the 
expectation of never having to pay a penalty.   

• x(1-pk) is the expected proportional penalty paid  
with k time steps remaining. 

• Eventually it’s better to play it safe and bid, with 
proportional loss of γ incurred with probability p. 

• Hence we compare γp and x(1-pk) . 



Facility values: large penalties 

• Here the equations are: 
V(F,k) = V(F,B,k)  
   = p[M+V(F,k-1)]+(1-p)[ (1-γ)M+V(E,k-1)] 

• V(E,k) = V(E,N,k) = pV(F,k-1) + (1-p)V(E,k-1) 

• So V(E,k) = V(E,k-1) + p[V(F,k-1)-V(E,k-1)] 

• V(E,0) = 0 and V(F,k)-V(E,k) = [1-γ(1-p)]M, so 

• V(E,k) = kp[1-γ(1-p)]M  (k ≥ 0).   

• V(F,k) = (kp+1)[1-γ(1-p)]M (k ≥ 1).   

 

 



Facility Values:  Small penalties 

• Here V(F,k) = V(F,B,k) and V(E,k) = V(E,B,k) so 
the recursion relations are: 

•   V(F,k) = p[M+V(F,k-1)]+(1-p)[ (1-γ)M+V(E,k-1)] 

• V(E,k) = p[M+V(E,k-1)] + (1-p)[-xM+V(E,k-1)] or 

• V(E,k) = V(E,k-1) +  [p-x(1-p)]M 

• Or V(E,k) = k[p-x(1-p)]M 

• V(F,k) = k[p-x(1-p)]M + (1-γ)M + x(1-pk)M. 

 

 



Facility Values:  Medium penalties 

• When k < k*  it’s as if the penalties were small, so 
V(E,k) = k[p-x(1-p)]M,  k < k* 

• When k > k* the penalties are now large, so we 
can solve the large penalty difference equation 
with the “initial condition”  
V(E,k*) = k*[p-x(1-p)]M  

• V(E,k) = V(E,k-1) + p[V(F,k-1)-V(E,k-1)], where for 
k > k*,  V(F,k-1)-V(E,k-1) = [1-γ(1-p)]M, so 

• V(E,k) = kpM –k*x(1-p)M –(k-k*) γ(1-p)M, k ≥ k*. 
• k*: largest int satisfying k* <  ln[1-γp/x]/ln(p) 

 
 
 



Impact on storage values 

• So far the analysis has only told us what to do 
if we were given a storage facility.    

• In this light it’s not so surprising that we’d 
choose to empty a full facility rather than pay 
penalties. 

• But what if we had to rent a storage facility?  
Would it be worth it? 

• We need to compare with a turbine operated 
without a companion storage.   



Compare with turbine with no storage 

• Consider a turbine with no storage.  W(k) is the 
value of this turbine with k periods remaining. 

• W(k) follows the difference equation:  

• W(k) = max[W(B,k), W(N,k)] 

• W(B,k) = p[M + W(k-1)] + (1-p)[-xM + W(k-1)] 

• W(N,K)= pW(k-1) + (1-p)W(k-1) = W(k-1) 

• So W(k)=W(k-1)+max[p-x(1-p),0]*M; W(0) = 0. 

• So W(k) = kM*max[p-x(1-p),0].     

 



No storage wind turbine: controls 

• If x < p/(1-p)  the fines are small enough to 
make it worthwhile to operate, and you will 
always bid, and have W(k) = kM*[p-x(1-p)].  

• If x > p/(1-p)  the fines are large enough for 
the best policy be never to bid,  with W(k) = 0. 

• These are the correct “comparator” values for 
the combined wind– storage facility.   



Added value of high penalty storage 

• Here base case is to have no value from wind, so 
penalty is equivalent to a law requiring wind 
turbine operators to operate storage (or other 
backup) facility. 

• The added value from the storage, for a N period 
facility, is Np[1-γ(1-p)]M  

• Note this value doesn’t depend on the value of x 
(once it’s big enough). 

• It says that the more wind the better,  the longer 
the facility life the better, and the more efficient 
the facility the better.   



Battery costs vs. efficiencies 
(Source:  The Future of Energy Storage, Global Business Insights) 



Estimating p 

• We have access to the total production of 
wind in Ontario at each time and to the total 
availability of wind turbines at each time. 

• If our model were correct for each turbine, 
we’d expect the long run average of this ratio 
to be the probability of full output. 

• Next slide  shows the data 

• Yields (slightly conservative) estimate p = 20% 



Estimating p (data) 
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May 5 - Oct 11 2011.  Source: IESO 



Value:  High penalty cost 

• Take M = $140 (i.e. 1MW turbine). 

• Take γ = 15% (Sodium-Sulfur battery) 

• Take p = 20%.   

• Take N = 8760 hours 

• Then the value of the storage is about 
$215,000 per MWh (per year). 

• Cost is about $500,000 but lasts for a number 
of years.  So storage is “in the conversation”.  



Added value of low penalty storage 

• Here x < γp,  so x < p so x < p/(1-p)  and the base 
case is the “always run”  no storage facility with 
value W(k) = kM*[p-x(1-p)].  

• Here also, though V(E,k) = k[p-x(1-p)]M,  so the 
additional value of the storage is zero (since it 
doesn’t change bidding behaviour). 

• On the other hand,  in this regime we’d expect 
the regulator to collect on average N*(1-p)xM in 
penalties,  which could be used to defray the 
costs of storage.    With N = 8760, p = 20%, M = 
$140  and x = γp = 3%,  this is about $30,000. 



Conclusions 

• A simple model can be exactly solved and shows 
some interesting intuition. 

• Of course this is way too unrealistic for reality – 
we need correlated wind speeds,  storage with 
ability to store fractional units and seasonality, at 
the very least! 

• Our key focus now is adding simple weather 
forecast models to this,  but there wasn’t time to 
share these preliminary results today.   

• It’s fun to see how much insight we can get 
without a lot of computing.   


