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Topic 1
Heterogeneity:  phenomenological observation

Source:  MMWR: 2003, 52 (18)

“A picture is worth 1000 words.” --- really?



Heterogeneity:  phenomenological observation

In addition, # secondary infections one typical infected individual produces through 
ones entire infectious period depends on 

• the size of the susceptible population (if not infinity) 
• whether this individual is at the beginning of,  the middle of, or near the end of 

the epidemic. 

R0 = average # of infections produced during ones entire infectious period
as one infectious individual seeded in an infinitely large susceptible population, 

Source:  MMWR: 2003, 52 (18)

• but some infect many and some infect a few.  R0 is about the mean.

• Heterogeneity, in a phenomenological sense, is about the variance.



Heterogeneity:  phenomenological observation
As phenomenon,  heterogeneity is about the variance.

Homogeneity in extreme sense: no variation

Loosely speaking,    

variance ≤ mean+mean2
Homogeneous:
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Illustration assuming R0 = 3

Poisson distribution, 
variance = mean

Geometric distribution, 
variance = mean+mean2

Number of the secondary transmissions
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Source:  MMWR: 2003, 52 (18)

Most individuals produce very 
few transmissions.

A few individuals produce many 
transmissions.

variance > mean+mean2
Heterogeneous: 
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Number of the secondary transmissions

Geometric distribution, 
variance = mean+mean2

Bars:  distributions with 
larger variances than
mean+mean2
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• No random variation :      variance = 0
• Poisson distribution:        variance = mean
• Geometric distribution:    variance = mean + mean2

In models assuming homogeneous transmission, one expects 
to see the distribution of the secondary transmissions being:



Heterogeneity:  phenomenological observation

Small outbreaks and large outbreaks
From Anderson and Watson (1980): 

simulation based on n=100 individuals.

Bi-modal distribution with one mode at zero, 
and another mode around 0.8.

• a handful cases followed by extinction. 
• The expected number of infected individuals by the end of the outbreak is finite even if the 

population size can be infinitely large: 

∞→→
∞ n
n

C  as ,0)(
where C(∞) is the expected cumulative number of infected individuals as .∞→t

Sometimes:  a small outbreak:

• The expected cumulative number of infected individuals scales linearly with the size of 
the susceptible population: 

∞→>→
∞ n
n

C  as ,0)( η

Other times:  a large outbreak:

Important questions that can be addressed by the phenomenon:
As phenomenon,  heterogeneity is about the variance.



Heterogeneity:  phenomenological observation
R0 is about the mean.  Heterogeneity, as phenomenon, is about variance.

N = # of infections produced during ones entire infectious period as an infectious individual 
seeded in infinite susceptible population.  N is a random variable, R0 = E[N]

The distribution of N is uniquely determined by its probability generating function 0  ),( >ssGN
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π is the smallest root of the fixed-point equation
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1. What is the risk of a large outbreak: 1−π = ?
  .1  then ,1 If 0 <> πR

The risk of large outbreak = 1− π .

certainty. with ,1  then ,1 If 0 =≤ πR
Zero risk of large outbreak.

A small versus a large outbreak

With prob. π,  
the final size is 
this distribution. 



Heterogeneity:  phenomenological observation

R0=3

the larger the variance, the more convex is                  . 
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2. What does variance do to the risk of a large outbreak?

A small versus a large outbreak
With prob. π,  
the final size is 
this distribution. 

1. What is the risk of a large outbreak: 1−π = ?

  .1  then ,1 If 0 <> πR
The risk of large outbreak = 1− π .

certainty. with ,1  then ,1 If 0 =≤ πR
Zero risk of large outbreak.

R0 is about the mean.  Heterogeneity, as phenomenon, is about variance.

With some ordering assumption wrt. prob. generating 
functions, the larger the variance, the higher is the probability 
of a small outbreak and the less is the risk of a large outbreak. 

Statement



Heterogeneity:  phenomenological observation

3. If a small outbreak, what is its final size?

.)( ssGN =1. Find π by solving

.1)(* <=
=πs

N sG
ds
dR2. Define and evaluate

R0 > 1

R* < 1

To find the mean and variance of the final cumulative infections C(∞):

Conditional variance is large if var[N] is large.
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Conditional mean

regardless how N is distributed.

R0 is about the mean.  Heterogeneity, as phenomenon, is about variance.

A small versus a large outbreak
With prob. π,  
the final size is 
this distribution. 
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The final size distribution of a small outbreak can be precisely calculated via .0  ),( >ssGN

E.g. 
• > 50% prob. that no transmission     

except for the initial case
• approx. 15% prob. that final size = 2

including the initial case, 
• and so on.



Heterogeneity:  phenomenological observation

4. If a small outbreak, how many generations it takes to become extinct?

If two random variables )2()1(  and gg TT such that 

, allfor  },Pr{}Pr{ )2()1( ggTgT gg ≥>≥

we say that they are ranked in stochastic order. 

The distribution of generation-to-extinction of a small outbreak can be calculated via .0  ),( >ssGN

:}Pr{ gTg ≥ the survivor function

K,2,1=gTLet be the number of generations to extinction, conditioning (with prob. π)
conditioning (with prob. π) on being a small outbreak.

Heterogeneity as large var[N] :  Not only lowers the risk of large outbreak 1−π, 
but also that should extinction occur, it happens more quickly with fewer generations.

The mean generation = .)Pr(∑ ≥
g

g gT

Large var[N] makes the generation-to-extinction 
smaller in stochastic order.

Statement

R0 is about the mean.  Heterogeneity, as phenomenon, is about variance.



Heterogeneity:  beyond phenomenological observation

1. Likely due lack of homogeneity in the environment.  The “super-spreading 
events” tend to occur in small “local population”,  e.g. hospital wards. 

2. For the term “super-spreaders”, the lack of homogeneity was either assigned to 
the infected host,  or to the agent (viruses with different infectivity). 

3. The same phenomenon can be re-produced under all the homogeneity criteria 
for the environment and hosts, by allowing the infectious period within host 
having very large variance.

Different aspects of heterogeneity may produce the same phenomenon.  

When it becomes a large outbreak, these aspects have different impacts on 
transmission dynamics.

Food for thoughts:  Is the 2003 SARS outbreak a large outbreak?



Topic 2
Homogeneity / Heterogeneity regarding

All susceptible individuals are the same ( Yes / No)
All infectious individuals are the same ( Yes / No)
Equally infectiousness during infectious period ( Yes / No)

Which parts of the outcomes 
of an outbreak are critically 
determined by these criteria ? 

Which individual criterion, if 
violated, will change which part 
of the outcome, in which way?

Agent: same infectiousness  ( Yes / No)

Host:

Environment: homogeneous mixing ( Yes / No)

Different aspects of heterogeneity may produce the same phenomenon.  



2. The instantaneous rate of passing the infection from a typical infectious individual

to another )(
)(

tn
tS

∝ :  % of susceptible individuals

Conceptual assumptions vs. tactical assumptions 

Example of conceptual assumptions

1. The force of infection onto a susceptible individual )(
)(

tn
tI

∝ : % infectious individuals 

1. Is there a latent period?  If yes, how long on average?   How variable?

Example of tactical assumptions

2. Besides the average infectious period       ,  how variable is it distributed?Iµ



1. The force of infection onto a susceptible individual )(
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2. The instantaneous rate of passing the infection from a typical infectious individual

to another )(
)(

tn
tS

∝ :  % of susceptible individuals
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Example of conceptual assumptions

Conceptual assumptions vs. tactical assumptions 
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tSβ same β ?

same β, and this is a hidden assumption !



Agent: same  infectiousness during the study period.  

Host:
• All susceptible individuals are the same: equally susceptible. 
• All infectious individuals are the same: equally infectious when infectious period starts.
• An infected individual remains equally infectious throughout its infectious period.

Environment (homogeneous mixing): an individual contacts with all other individuals in 
the population with equal probability. In an infinitely large population, the number of 
contacts made by a typical individual follows a stationary Poisson process.

contactper infection  of prob. freq.contact ×== pλβ

• independent of time
• Independent of which contact pair

Homogeneity criteria in conceptual assumptions

a single parameter     for β .
)(
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same β, and this is a hidden assumption !



Homogeneity / Heterogeneity in conceptual assumptions

If all the answers are “Yes”, then we have the bilinear relationship .
)(

)()(
tn

tItSβ

We also have the expression: ,0 IR βµ= where          average infectious period.  =Iµ

If the population is closed with size n,  without 
replacement of susceptible individuals, the 
final size of the epidemic is meaningful:

.0mean   with ,)(
>

∞
= ηη

n
C

where C(∞) is the cumulative number of infected 
individuals as . ∞→t

The final size distribution of a large outbreak 
Mean value η

Agent: same infectiousness  (   Yes / No)

Host:

Environment: homogeneous mixing (    Yes / No)

√

All susceptible individuals are the same (   Yes / No)
All infectious individuals are the same (   Yes / No)
Equally infectiousness during infectious period (   Yes / No)

√
√

√

√



As an infectious individual seeded in a large susceptible population,  
R0 = ave. # of infections s/he produces during the entire infectious period. 

The very beginning:

,0 IR βµ= where          average infectious period.  =Iµ

The end: .0mean   with ,)(
>

∞
= ηη

n
C

The very beginning 
transcends to the very end:

Homogeneity / Heterogeneity in conceptual assumptions
Agent: same infectiousness  (   Yes / No)

Host:

Environment: homogeneous mixing (    Yes / No)

√

All susceptible individuals are the same (   Yes / No)
All infectious individuals are the same (   Yes / No)
Equally infectiousness during infectious period (   Yes / No)

√
√

√

√



Homogeneity / Heterogeneity in conceptual assumptions
Agent: same infectiousness  (   Yes / No)

Host:
All susceptible individuals are the same (Yes / No   )
All infectious individuals are the same (Yes / No   )
Equally infectiousness during infectious period (Yes / No   )

√

?
?

?

Environment: homogeneous mixing (Yes / No    )?

- but η will have larger variance.

Relaxing homogeneity assumptions to the extent:

The expected number of transmissions by a typical 
infectious individual is proportional to the length of 
time during the infectious period.

,0 IR βµ= where          average infectious period  =Iµ

)exp()1(1 0ηεη R−−=−

Still true:

Still true:

The contact process has extra-
Poisson variation, but maintains 
the stationary increment property
as explained below.

Mixed-Poisson Process

The prob. of transmission per 
contact may vary around a 
mean value and finite variance.



Homogeneity / Heterogeneity in conceptual assumptions
Agent: same infectiousness  (   Yes / No)

Host:
All susceptible individuals are the same (Yes / No   )
All infectious individuals are the same (Yes / No   )
Equally infectiousness during infectious period (Yes / No   )

√

?
?

?

Environment: homogeneous mixing (Yes / No    )?

The contact process has extra-
Poisson variation, but maintains 
the stationary increment property 

The prob. of transmission per 
contact may vary around a 
mean value and finite variance.

Mixed-Poisson Process



All susceptible individuals are the same (    Yes / No)
All infectious individuals are the same (   Yes / No)
Equal infectiousness during infectious period (Yes /     No )

Homogeneity / Heterogeneity in conceptual assumptions
Agent: same infectiousness  (   Yes / No)

Host:

√

X

Environment: homogeneous mixing (     Yes / No)

√
√

√
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where Ij (t) represents the numbers of infectious individuals in stage j = 1, …, k.

where           average time of the jth stage of the infectious period

IR βµ=0

=)( j
Iµ

becomes )()1(
10

k
IkIR µβµβ L+=

- if the variation for β is small,  the more the staging, 
the smaller is the variance for the final size η.

)exp()1(1 0ηεη R−−=−Still true:

Staged infectious period with 
different infectiousness.

Staging



All susceptible individuals are the same (Yes /    No)
All infectious individuals are the same (Yes /    No)
Equal infectiousness during infectious period (   Yes / No )

Homogeneity / Heterogeneity in conceptual assumptions
Agent: same infectiousness  (   Yes / No)

Host:

√

Environment: homogeneous mixing (     Yes / No)

X

√

√
X

The next generation matrix:
a square matrix in which the ijth element is the expected number of secondary 
infections of type i caused by a single infected individual of type j, assuming 
that the population of type i is entirely susceptible.

Expression of R0:
the dominant eigen-value (spectral radius) of the second generation matrix. 

This is a straightforward generalization of the single type population in which 
,0 IR βµ= where          average infectious period  =Iµ

multiple types of susectptibles
multiple types of infectives

Structured population



All susceptible individuals are the same (Yes /    No)
All infectious individuals are the same (Yes /    No)
Equal infectiousness during infectious period (   Yes / No )

Homogeneity / Heterogeneity in conceptual assumptions
Agent: same infectiousness  (   Yes / No)

Host:

√

Environment: homogeneous mixing (     Yes / No)

X

√

√
X

Expression of R0:

the dominant eigen-value (spectral radius) of the second generation matrix. 

The final size equation: )exp()1(1 0ηεη R−−=−

holds for single type of susceptibles and single type of infectives.

For structured populations,  it is still true that the very beginning transcends to the very end.  
Analogous  relationships can be developed, although complicated.
(Ludwig, 1975; Scalia-Tomba, 1986; Ball, 1986;  Addy, Longini, et al. 1991; and many others.) 

multiple types of susectptibles
multiple types of infectives

Structured population



Environment (homogeneous mixing): In an infinitely large population, the number of contacts 
made by a typical individual follows a stationary Poisson process.  (Yes /     No)

Homogeneity / Heterogeneity in conceptual assumptions
Host:

Same infectiousness  (   Yes / No)√ All susceptible individuals are the same (   Yes / No)
All infectious individuals are the same (   Yes / No)
Equally infectiousness during infectious period (   Yes / No)

√
√

√

X

Heterogeneous mixing as “scale-free” networks:

If with preferential attachment : the more one attracts others, the larger the probability of 
making more new connections,  the contact process loses the stationary increment property. 
The # contacts (in any time interval) follows highly skewed distributions (Yule, Waring,  power-
law, etc.).  The variance becomes infinitely large.  Both the R0 expression and the final size 
relationship break down.

Agent:

Variable contact probability with finite variance.  In an infinitely large population, the number of 
contacts follows a process with extra-Poisson variation but maintains stationary increment (i.e. 
expected # contacts in a time interval proportional to the length of the interval). 

Some relaxation:

,0 IR βµ= where          average infectious period.  =Iµ

).exp()1(1 0ηεη R−−=−
In terms of mean values,  still 



Homogeneity / Heterogeneity in conceptual assumptions
Partial summary:

1. The relationship 
)(

)()(
tn

tItSβ requires homogeneity in agent-host-environment.  

2. Heterogeneous hosts (multiple types) invalidate the simple expression ,0 IR βµ=

but there is a generalization as the spectral radius of the second generation matrix. 

3. In many heterogeneous transmission situations, how people interact and transmit at 
the beginning of the epidemic determines the final size, as the “escape probability” of 
susceptible individuals, with or without a simple equation. 

4. In many cases, a simple equation                                holds.  It is extremely useful.)exp()1(1 0ηεη R−−=−

I. R0 = 5:   20% reduction of R0, 1% reduction of final size
II. R0 = 3:   20% reduction of R0, 6% reduction of final size
III. R0 =1.5: 20% reduction of R0, 27% reduction of final size

5. In extremely heterogeneous environment (e.g. scale-free network),  R0 , as  mathematical 
expectation, may not exist, not to mention the relationship between R0 and the final size. 



Topic 3
Homogeneity vs. variability in tactical assumptions 

Given the same average infectious period,  what do large or small variations do to 
the transmission dynamics over time and to the effectiveness of control measures?   

What will the presence of a latent period make a difference to the transmission 
dynamics over time and effectiveness of control measures ?  

What will the variations of the latent period make a difference to the above questions? 



Variability of random variables for time durations

µ µ2 µ3 µ4 µ5

2   variance,mean µµ ==
Exponential distribution

1−µ

12 −µ

13 −µ

14 −µ

µ5 µ6 µ7 µ8 µ9 µ10

101.0 −µ

Distributions with the same mean 
but less variable than exponential

Distributions with the same mean 
but more variable than exponential

Plots of probability density functions with mean = µ

• Some models assume that the latent and the infectious  periods are constants (no variation).

• SEIR models: ODEs or Markov process,  assume that the latent and the infectious periods 
are distributed exponentially  (variance = mean2).

• If the infectious period is staged (k – stages), with each stage being exponential (                 ),
the infectious period still has mean = µ but with smaller than exponential variation. k

mean µ
=



µ µ2 µ3 µ4 µ5

2   variance,mean µµ ==
Exponential distribution

1−µ

12 −µ

13 −µ

14 −µ

µ5 µ6 µ7 µ8 µ9 µ10

101.0 −µ

Distributions with the same mean 
but less variable than exponential

Distributions with the same mean 
but more variable than exponential

Plots of probability density functions with mean = µ

Conveniently,  homogeneity can be regarded as distributions with variations equal to or 
smaller than that of the exponential distribution (as in most models in the literature).

Variability of random variables for time durations



How does variability of infectious period do to ?

Variability of random variables for time durations

Assuming all the homogeneity criteria for agent-host-environment so that ,0 IR βµ=

]period infectiousvar[]var[ 2ββµ += IN

the larger the variance of the infectious period, the larger is the variance of N. 

(This can be proven using probability generating functions.)

The shape of the (discrete) probability distribution of N, the secondary transmissions (by a 
typical infectious individual),  resembles the probability density function of the infectious period.

Homogeneity in extreme sense: no variation
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Distribution of N:

µ µ2 µ3 µ4 µ5

2   variance,mean µµ ==
Exponential distribution

1−µ

12 −µ

13 −µ

14 −µ

Distributions with the same mean 
but less variable than exponential

Distributions with the same mean 
but more variable than exponential

Distribution of the infectious period:

(The theory behind is given by Lynch, J.,Scan. J. Stat. 1988).



We rank distributions with the same mean value,  according to their variability orders.

Variability orders of random variables for time durations

We show how variability orders for the latent period and the infectious period change 
the transmission dynamics and affect control measure effectiveness.



The most common measure for variability is the variance [ ]2)(]var[ µ−= XEX
where X stands for the random variable,  E[X]=µ is the mean value.

A generalization is the dilation order:
X1 is smaller than X2 in dilation order, denoted as 21 XX dil≤
if )]([)]([ 2211 µµ −Φ≤−Φ XEXE for all convex function ).(xΦ

Fagiuoli, et al. (1999): dilation order is location independent.
If ,21 µµµ == ⇔≤ 21 XX dil )]([)]([ 21 XEXE Φ≤Φ for all convex function ),(xΦ

21 XX cx≤denoted as 

,21 XX Lt≤X1 is smaller than X2 in Laplace transform order, if .0 ],[][ 21 >≥ −− reEeE rXrX

The Laplace transform order is an alternative to variance for comparing variability. 

The former is a convenient tool in mathematical models. The latter is an useful statistical measure.

]var[]var[ 21

212121

XX

XXXXXX Ltcxdil

≤
⇓

≥⇒≤⇔≤If ,21 µµµ ==

Variability orders of random variables for time durations



1. Same total area         ,)()(
0∫
∞

=∞ dttiC

different paths for i(t):  incidence.
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2. Same total area         

different paths for I(t):  prevalence

is the “value” of the epidemic, as the total person-time of infectiousness.∫
∞

0
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Prevalence and Incidence

S(t) C(t)=n - S(t)

I(t)

i(t)
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The roles of latent/infectious periods: • growth, peak incidence & prevalence, duration

Homogeneity in conceptual assumptions 
How people interact and transmit at the beginning transcendentally determines the final size.

Typical outputs of models:

• cumulative incidence

• prevalence = # individuals in a “state”:  S(t),  I(t).
• (instantaneous) incidence i(t) = instantaneous infection

.)( ηnC =∞.)()(
0∫=
t

duuitC If the population is closed (size n),

Variability of the latent / infectious periods and dynamics



Variability of the latent / infectious periods and dynamics

Prevalence and Incidence

S(t) C(t)=n - S(t)

I(t)

i(t)
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)(∞CThe early phase of an epidemic

1. When depletion of susceptibles 
S(t) is negligible .

2. If it turns out to be a large 
outbreak, C(t) grows exponentially.  

3. Denote the exponential growth  
rate ρ:  the Malthusian number.

Under suitable homogeneity assumptions for agent-host-environment, so that 
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where                                                           are the Laplace 
transform functions for the latent and the infectious periods evaluated at ρ .
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InfectiousLatent
x

Latent ∫∫
∞ −∞ − == ρρ ρρ

The Malthusian number is separately determined (ranked) according to the 
Laplace transform orders of the latent and the infectious periods, via 

Statement

Yan (J. of Theoretical Biology, 2008) [ ] 1)(1)( =− ρρ
ρ
β

InfectiousLatent LL



Variability of the latent / infectious periods and dynamics

Prevalence and Incidence

S(t) C(t)=n - S(t)

I(t)

i(t)
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)(∞CThe early phase of an epidemic

Under suitable homogeneity assumptions for agent-host-environment, so that 
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Statement Yan (J. of Theoretical Biology, 2008) [ ] 1)(1)( =− ρρ
ρ
β

InfectiousLatent LL

1. When β and the infectious period distribution is given, the larger the latent 
period in Laplace transform order, the smaller is the Malthusian number ρ.

2. When β and the latent period distribution is given, the larger the infectious 
period in Laplace transform order, the larger is the Malthusian number ρ.

1. When depletion of susceptibles 
S(t) is negligible .

2. If it turns out to be a large 
outbreak, C(t) grows exponentially.  

3. Denote the exponential growth  
rate ρ:  the Malthusian number.



Variability of the latent / infectious periods and dynamics

Prevalence and Incidence

S(t) C(t)=n - S(t)

I(t)

i(t)
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)(∞CThe early phase of an epidemic

1. When β and the infectious period distribution is given, the larger the latent period in 
Laplace transform order, the smaller is the Malthusian number ρ.

2. When β and the latent period distribution is given, the larger the infectious period in 
Laplace transform order, the larger is the Malthusian number ρ.

In most commonly used probability models, .]var[]var[ 2121 XXXX Lt≥⇔≤

“Comparing with models without a latent period, a latent period slows the initial growth.  
Of latent periods of equal mean values, the smaller the variance (homogeneous), the   
smaller is the initial growth rate ρ." 

"Of the infectious periods of equal mean values, the smaller the variance (homogeneous), 
the  larger is the initial growth rate ρ."

1. When depletion of susceptibles 
S(t) is negligible .

2. If it turns out to be a large 
outbreak, C(t) grows exponentially.  

3. Denote the exponential growth  
rate ρ:  the Malthusian number.



Variability of the latent / infectious periods and dynamics

Prevalence and Incidence

S(t) C(t)=n - S(t)

I(t)

i(t)

C
um

ul
at

iv
e 

in
ci

de
nc

e

)(∞CThe early phase of an epidemic

In most commonly used probability models, .]var[]var[ 2121 XXXX Lt≥⇔≤

Conjecture also later peak,  longer duration of the epidemic. 

Conjecture also earlier peak,  shorter duration of the epidemic. 

1. When depletion of susceptibles 
S(t) is negligible .

2. If it turns out to be a large 
outbreak, C(t) grows exponentially.  

3. Denote the exponential growth  
rate ρ:  the Malthusian number.

“Comparing with models without a latent period, a latent period slows the initial growth.  
Of latent periods of equal mean values, the smaller the variance (homogeneous), the   
smaller is the initial growth rate ρ." 

"Of the infectious periods of equal mean values, the smaller the variance (homogeneous), 
the  larger is the initial growth rate ρ."



Variability of the latent / infectious periods and dynamics
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different paths for I(t):  prevalence
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What have been discussed: given the same R0

Conversely, for very different R0s: 

Different distributions for the latent and 
infectious period (even if the mean infectious 
period is fixed but the variance is assumed 
differently),  can produce the same or very 
similar curves for i(t) or I(t).

Caution on curve fitting models to data to 
estimate important transmission parameters.



Variability of the latent / infectious periods and control measures

S I RE

Following a latent 
period distribution

Following an infectious  
period distribution

A. Removing from 
circulation before 
being able to 
transmit the virus

B. Removing from 
circulation so that no 
longer able to contact 
other susceptibles

ψ φ

Recall: The final size equation )exp()1(1 0ηεη R−−=−

I. R0 = 5:   20% reduction of R0, 1% reduction of final size
II. R0 = 3:   20% reduction of R0, 6% reduction of final size
III. R0 =1.5: 20% reduction of R0, 27% reduction of final size

To reduce the final size, the same % reduction of R0
may or may not be very effective, depending on the 
magnitude of  R0  before intervention.

To reduce the reproduction number,  
from R0 to Rc,  for some control 
measures,  the effectiveness is  
determined by the variability of the 
latent and the infectious period. 

Control measures can be pharmaceutical or non-pharmaceutical. 

They can be applied to susceptible individuals (e.g. vaccine),  or to infected individuals in 
either latent or infectious periods. 



Variability of the latent / infectious periods and control measures

Under suitable homogeneity assumptions for agent-host-environment, so that 
)(

)()(
tn

tItSβ

Statement

[ ].)(1)(),( φψ
φ
βφψ InfectiousLatentc LLR −=

Assuming both actions are “perfect” (100% success),  the controlled reproduction 
number depends on the distributions of both periods and is ranked separately 
according to their Laplace transform orders.

Yan and Feng (Mathematical Biosciences, 2010) 

Unlike                , which does not depend on the latent period and depends on 
the infectious period only by its mean value.

IR βµ=0

S I RE

Following a latent 
period distribution

Following an infectious  
period distribution

A. Removing from 
circulation before 
being able to 
transmit the virus

B. Removing from 
circulation so that no 
longer able to contact 
other susceptibles

ψ φ

To reduce the reproduction number,  
from R0 to Rc,  for some control 
measures,  the effectiveness is  
determined by the variability of the 
latent and the infectious period. 



Variability of the latent / infectious periods and control measures

Statement [ ].)(1)(),( φψ
φ
βφψ InfectiousLatentc LLR −= Yan and Feng (Mathematical Biosciences, 2010) 

=)(ψLatentL the proportion of latent individuals that eventually escape from being 
removed (under constant rate ψ) and become infectious.

The larger the latent period in Laplace transform order (~ smaller variance), the 
larger is the probability for latent individuals to be removed, and the easier it is to 
use A. to control the epidemic. 

=
−

φ
φ)(1 InfectiousL the average duration of infectious individuals in the I-class before either 

recovers naturally or removed by control measure (under constant rate    ).φ

The larger the infectious period in Laplace transform order (~ smaller variance), 
the longer is the average duration of infectiousness, and the harder it is to use B. 
to control the epidemic. 

S I RE

Following a latent 
period distribution

Following an infectious  
period distribution

A. Removing from 
circulation before 
being able to 
transmit the virus

B. Removing from 
circulation so that no 
longer able to contact 
other susceptibles

ψ φ

To reduce the reproduction number,  
from R0 to Rc,  for some control 
measures,  the effectiveness is  
determined by the variability of the 
latent and the infectious period. 



Variability of the latent / infectious periods and control measures
Statement [ ].)(1)(),( φψ

φ
βφψ InfectiousLatentc LLR −= assuming both actions are “perfect” (100% success)

Extension to “leaky situations”:
S I RE

Following a latent 
period distribution

Following an infectious  
period distribution

A. Removing from 
circulation before 
being able to 
transmit the virus

B. Removing from 
circulation so that no 
longer able to contact 
other susceptibles

ψ φ

1. For action B,  infected individuals may be put into “leaky isolation”, with reduced 
transmissibility .)1( βσ I−

2. For action A,  latent individuals may be put into “leaky isolation”, and when they 
become infectious,  they have reduced transmissibility .)1( βσ L−

Qualitative statements on variability of the latent / infectious periods and control 
measures based on                                               remain unchanged. [ ])(1)(),( φψ

φ
βφψ InfectiousLatentc LLR −=

[ ].)(1)()()()1(),|,( 00 φψ
φ
βσψσσσσσφψ InfectiousLatent

I
LatentILLILc LLRLRR −+−+−=

Yan and Feng (Mathematical Biosciences, 2010) 

Quantitative:  



Qualitative discussions that are also applicable to other measures applied to 
individuals during their latent and infectious periods:

Variability of the latent / infectious periods and control measures

1. Certain control measures, such as contract tracing for exposed individuals with subsequent 
quarantine and/or pharmaceutical interventions ( prophylaxis), work well if there is a 
significantly long latent period, and not so well if the latent period is very short. 

2. Isolating infectious individuals and/or treating them using antiviral drugs that may reduce 
transmission, work better if the natural infectious period is short.

Such measures work well if the latent period is a long and not very variable 
(homogeneous).  They may not work well if there is large variation 
(heterogeneous), even if the latent period is long on average.

homogeneous:    good;  
heterogeneous:   bad.

For the same average latent period:

Add:

Such measures work well if the infection period has large variation 
(heterogeneous),  even when the infectious period is long on average.

For the same average infectious period: homogeneous:    bad;  
heterogeneous:   good.

Add:



Final remarks:  Connections

[ ] :1)(1)( =− ρρ
ρ
β

InfectiousLatent LL

Under homogeneity assumptions for agent-host-environment, so that )(
)()(

tn
tItSβ

the initial (exponential) growth of a large outbreak is ranked by the 
Laplace transform orders of the latent and the infectious periods.

What is the risk of a large outbreak: 1−π = ?This connects to the question :

0  ),( >ssGNLet N be the random variable so that R0 = E[N], with probability generating function

π is the smallest root of the fixed-point equation ssGN =)(

If there is no latent period (SIR): [ ] 1)(1 =− ρ
ρ
β

InfectiousL ! 1
β
ρπ =−

))1(()( sLsG InfectiousN −= βIn fact: ππβ =− ))1((InfectiousL

One can show that if R0 > 1, it is always true that .βρ <

If there is a latent period (SEIR): . 1
β
ρπ >−[ ] 1)(1)( =− ρρ

ρ
β

InfectiousLatent LL

One can use the observed initial growth rate in a large outbreak to provide a lower bound 
of the risk of a large outbreak in a similar community, under similar initial conditions.



Final remarks:  Connections

[ ] :1)(1)( =− ρρ
ρ
β

InfectiousLatent LL

Under homogeneity assumptions for agent-host-environment, so that )(
)()(

tn
tItSβ

the initial (exponential) growth of a large outbreak is ranked by the 
Laplace transform orders of the latent and the infectious periods.

This also connects to : [ ].)(1)(),( φψ
φ
βφψ InfectiousLatentc LLR −=

If one can set control objectives                              in order to achieve                  , c and φφψψ ≥≥ c 1),( ≤φψcR

then one can successfully prevent a large outbreak from taking place.                 

Ideally,  it is achievable if  .ρφψ == cc

Lessons can be learned from observed initial growth rate in large outbreak that 
have happened elsewhere to set control targets to prevent a large outbreak 
from happening in a similar community, under similar initial conditions.


