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Topic 1
Heterogeneity: phenomenological observation

Superspreading SARS Events,

FIGURE 2. Probable cases of severe acute respiratory ) B_el-"ng? 2003 -
syndrome, by reported source of infection®* — Singapore, R o e e
February 25-April 30, 2003

Figure 2. Probable cases of severe acute respiratory syndrome by

SOUI"CGZ MMWR: 2003 52 (1 8) source of transmission in chain of 77 cases in Beijing, 2003.

Emerging Infectious Diseases » www,.cdc.gov/eid « Vol. 10, No. 2, February 2004

“A picture is worth 1000 words.” --- really?
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Heterogeneity: phenomenological observation

R, = average # of infections produced during ones entire infectious period
as one infectious individual seeded in an infinitely large susceptible population,

*  but some infect many and some infect a few. R, is about the mean.

Superspreading SARS Events,

FIGURE 2. Probable cases of severe acute respiratory Beijing, 2003
syndrome, by reported source of infection® — Singapore, Fang fing. Wei 5" Dasiel P. Chin:t
February 25-April 30, 2003 Zonghan Zhw.§ Anme Schackatis

Gmemtion 1 2 k3

ere acute respiratory syndrome by
ain of 77 cases in Bejjing, 2803
=2 - wwode.goweid - Vel. 10, No. 2, Fetruary 2004

Source: MMWR: 2003, 52 (18)

« Heterogeneity, in a phenomenological sense, is about the variance.

In addition, # secondary infections one typical infected individual produces through
ones entire infectious period depends on

» the size of the susceptible population (if not infinity)
« whether this individual is at the beginning of, the middle of, or near the end of
the epidemic.
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Heterogeneity: phenomenological observation

FIGURE 2. Probable cases of severe acute respiratory
syndrome, by reported source of infection® — Singapore,
February 25-April 30, 2003

As phenomenon, heterogeneity is about the variance.
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Heterogeneity: phenomenological observation

As phenomenon, heterogeneity is about the variance.
Important questions that can be addressed by the phenomenon:

Small outbreaks and large outbreaks

From Anderson and Watson (1980):
simulation based on n=100 individuals.

Frequency

Bi-modal distribution with one mode at zero,
and another mode around 0.8.

Size

& 60 80 100

Sometimes: a small outbreak:

* a handful cases followed by extinction.
The expected number of infected individuals by the end of the outbreak is finite even if the

population size can be infinitely large:

C(o0
; ) —0,asn—>© where C(«) is the expected cumulative number of infected individuals as ¢ —> 0.

Other times: a large outbreak:
The expected cumulative number of infected individuals scales linearly with the size of

the susceptible population:
C(0)

—>n>0,asn—> o0
n
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Heterogeneity: phenomenological observation

R, is about the mean. Heterogeneity, as phenomenon, is about variance.

N = # of infections produced during ones entire infectious period as an infectious individual
seeded in infinite susceptible population. N is a random variable, R, = E[/N]

The distribution of N is uniquely determined by its probability generating function G,(s), s >0

d

2

Gy(0)=PriN =0}, Gy (=1, —-Gy(s) >0, %GN(S) > 0.
S S

104

0.2 1

Gy(s), 5 >0

06+

0.4 7

R,

S

Gy ()

s=1

A small versus a large outbreak

Frequency

1. What is the risk of a large outbreak: 1—m = ?

n is the smallest root of the fixed-point equation

Gy(s)=s

With prob. m,
the final size 1s
this distribution.

Size

If R, <1, then =1, with certainty.
Zero risk of large outbreak.
If R, >1, thenz <.
The risk of large outbreak = 1-=.

100
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Heterogeneity: phenomenological observation

R, is about the mean. Heterogeneity, as phenomenon, is about variance.

1. What is the risk of a large outbreak: |- = ?

If R, <1, then 7 =1, with certainty.

Zero risk of large outbreak.
If R, >1, thenz <.

The risk of large outbreak = 1— .

A small versus a large outbreak

With prob. m,
the final size 1s
this distribution.

/

o 20 40 100

Frequency

Size

1.0 5

0%

2

var[N]= % G, (s)
s

s=1

+R,—R,"| Given the same Ry

0.é

Gy (5), 320

0.4 _.________________

024

the larger the variance, the more convex is GN(S)|S:1 :

| S tatemem‘l

With some ordering assumption wrt. prob. generating
functions, the larger the variance, the higher is the probability
0 e e s . ofasmall outbreak and the less is the risk of a large outbreak.
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Heterogeneity: phenomenological observation

R, is about the mean. Heterogeneity, as phenomenon, is about variance.

3. If a small outbreak, what is its final size?

0.600 -

A small versus a large outbreak

E.g.
* > 50% prob. that no transmission
except for the initial case

With prob. m,
the final size is

0.500 -

0.400 -

0300 | « approx. 15% prob. that final size = 2 » |l this distribution.
including the initial case, g
0.200 - o
* and so on. £

0.100 -

Size

0.000 40 100

1 2 & 4 5 6 7 8 9 10
Final outbreak size

The final size distribution of a small outbreak can be precisely calculated via G, (s), s >0.

To find the mean and variance of the final cumulative infections C(«):

104

1. Find mn by solving G, (s)=s.

024

2. Define and evaluate R = diGN (s) <l.
S

. S=7T
064

Conditional mean
E[C() | small outbreak] = IR*

Gy(s), s =0

IfR,<1, z=1and R" =R,.

IfR,>1, z7<land R <1.

regardless how N is distributed.

Conditional variance is large if var[N] is large.
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Heterogeneity: phenomenological observation

R, is about the mean. Heterogeneity, as phenomenon, is about variance.

4. If a small outbreak, how many generations it takes to become extinct?

The distribution of generation-to-extinction of a small outbreak can be calculated via G, (s), s> 0.
Let Tg =1,2,... be the number of generations to extinction, conditioning (with prob. )
conditioning (with prob. 1m) on being a small outbreak.

Pr{T, = g}: the survivor function
If two random variables 7" and 7” such that

1.000 -
O larger in stochastic order

Pr{Tg(l) > gt > Pr{Tg(z) > g}, forall g,

0.800 -

[ smaller in stochastic order

we say that they are ranked in stochastic order.

0.600 -

0.400 -+

| S L‘atement'

0.200

Large var[N] makes the generation-to-extinction
smaller in stochastic order.

0.000
g i = Pr(T > )
The mean generation Z ¢ =&

g

Heterogeneity as large var[N]: Not only lowers the risk of large outbreak /-1,
but also that should extinction occur, it happens more quickly with fewer generations.
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Heterogeneity: beyond phenomenological observation

1. Likely due lack of homogeneity in the environment. The “super-spreading
events” tend to occur in small “local population”, e.g. hospital wards.

2. Forthe term “super-spreaders”, the lack of homogeneity was either assigned to
the infected host, or to the agent (viruses with different infectivity).

3. The same phenomenon can be re-produced under all the homogeneity criteria
for the environment and hosts, by allowing the infectious period within host
having very large variance.

When it becomes a large outbreak, these aspects have different impacts on
transmission dynamics.

Food for thoughts: Is the 2003 SARS outbreak a large outbreak?
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Topic 2

Homogeneity / Heterogeneity regarding I

Environment

Agent: same infectiousness ( Yes / No) Which parts of the outcomes
of an outbreak are critically

Host: determined by these criteria ?

All susceptible individuals are the same ( Yes / No)
All infectious individuals are the same ( Yes / No)

Equally infectiousness during infectious period ( Yes / No) Which individual criterion, if
violated, will change which part
Environment: homogeneous mixing ( Yes / No) of the outcome, in which way?

Different aspects of heterogeneity may produce the same phenomenon.

(34 S
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Conceptual assumptions vs. tactical assumptions

Example of conceptual assumptions

1(2)

1. The force of infection onto a susceptible individual * () : %o infectious individuals

2. The instantaneous rate of passing the infection from a typical infectious individual
S(t)

to another o wo © % of susceptible individuals
Example of tactical assumptions Infectiousness may vary in stages
or modulated by intervention
L i *
t  latent period | infectious penod
moment at able to infect others no longer infectious
infection (recovered, 1solated, ete )

1. Is there a latent period? If yes, how long on average? How variable?

2. Besides the average infectious period (i, , how variable is it distributed?
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Conceptual assumptions vs. tactical assumptions

Example of conceptual assumptions

OIS, | : b
1. The force of infection onto a susceptible individual * 8 : %o infectious individuals

I Et; ).
2. The instantaneous rate of passing the infection from a typical infectious individual
to another o 8 : % of susceptible individuals
Sé? 1(?). same S ?

In many deterministic models:
S)I(7)
n(r)

+ (susceptible replacement) — (non - disease related depletion)

d
ES(f)—_,B

S() _s} 5 SO1O)
I(t)=i n(t)

same B, and this is a hidden assumption !

| o l[Strdn=s-1
In stochastic, Markov SIR model: [(t+df)=i+1
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Homogeneity criteria in conceptual assumptions

same B, and this is a hidden assumption !

Agent: same infectiousness during the study period.

Host:

» All susceptible individuals are the same: equally susceptible.
« All infectious individuals are the same: equally infectious when infectious period starts.
* Aninfected individual remains equally infectious throughout its infectious period.

Environment (homogeneous mixing): an individual contacts with all other individuals in
the population with equal probability. In an infinitely large population, the number of
contacts made by a typical individual follows a stationary Poisson process.

—> 3 = Ap = contact freq.x prob. of infection per contact

* independent of time
* Independent of which contact pair

—> asingle parameter g for ﬁ%.
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Homogeneity / Heterogeneity in conceptual assumptions

Agent: same infectiousness (\/Yes/ No)

Host:
All susceptible individuals are the same (\/Yes / No)

All infectious individuals are the same (+/Yes / No)
Equally infectiousness during infectious period (\/Yes / No)

Environment: homogeneous mixing ( \Yes / No)

If all the answers are “Yes”, then we have the bilinear relationship g S(tif)(t).
n
We also have the expression: R, = fu,, where u, = average infectious period.
If the population is closed with size n, without The final size distribution of a large outbreak
replacement of susceptible individuals, the Mean value 7]
final size of the epidemic is meaningful:
n= o) , with mean 77 > 0.

n

Frequency

where C(«) is the cumulative number of infected y
individuals as —>. . Biso
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Homogeneity / Heterogeneity in conceptual assumptions

Agent: same infectiousness (\/Yes/ No)

Host:
All susceptible individuals are the same (\/Yes / No)
All infectious individuals are the same (+/Yes / No)
Equally infectiousness during infectious period (\/Yes / No)

Environment: homogeneous mixing ( \Yes / No)

The very beginning:  Ag an infectious individual seeded in a large susceptible population,

R, = ave. # of infections s/he produces during the entire infectious period.

R, = Bu,, where u, = average infectious period.

The end. 77 — C(CD) Wlth mean 77 > 0 The final size aquation when £ = €
o n ’ . 10
The very beginning Expected proportion of final infections

transcends to the very end: /\
1=7 = (I —&)exp(=R77)

Final proportion infected [ %)

Proportion of initial infectives Basic reproduction number R,
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Homogeneity / Heterogeneity in conceptual assumptions

Agent: same infectiousness (\/Yes/ No)

Host:
All susceptible individuals are the same (Yes / No )
All infectious individuals are the same (Yes /No /)
Equally infectiousness during infectious period (Yes / No /)

Environment: homogeneous mixing (Yes / No )

Mixed-Poisson Process

The prob. of transmission per
contact may vary around a
mean value and finite variance.

The contact process has extra-
Poisson variation, but maintains
the stationary increment property
as explained below.

Relaxing homogeneity assumptions to the extent; [omet when

infectiousness starts

The expected number of transmissions by a typical
infectious individual is proportional to the length of
time during the infectious period.

Still true: R = Bu,, where u, = average infectious period
Still true: 11— n =(1-&)exp(-R,77)

- but n will have larger variance.

ovd

X
Time lapsed since the
beginning of infectiousness

7T

Mean value 7}

The final size
distribution of a
large outbreak.

80 100

A

A 4
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Homogeneity / Heterogeneity in conceptual assumptions

Agent: same infectiousness (\/Yes/ No)

Host:

Mixed-Poisson Process

The prob. of transmission per

All susceptible individuals are the same (Yes / No” ) contact may vary around a

All infectious individuals are the same (Yes /No /)

Equally infectiousness during infectious period

Environment: homogeneous mixing (Yes / No )

mean value and finite variance.

(Yes /No /)| The contact process has extra-
Poisson variation, but maintains
the stationary increment property

Bulletin of Mathematical Biology (2006) 68 679-T02
CROT 1001 1558-005-9047-7

ORIGINAL ARTICLE

Generality of the Final Size Formula for an Epidemic
of a Newly Invading Infectious Disease

Junling Ma*, David J.D. Earn

Depariment of Mathematics & Statistics, McMaster University, Hamilton,

ON, Canada L85 4K1

valid. We show that the final size formula is unchanged
any number of distinct infectious stages and/or a stage
e 1solated (the durations of each stage can be drawn from

40y mntegranle dIsTioio

). We also consider the possibility that the transmission

rates of infectious individuals are arbitrarily distributed—allowing, in particular,

for the existence of super-spreaders—and prove that this potential complexity has

no mmpact on the final size formula. Finally, we show that the final size formula
1s unchanged even for a eeneral class of spatial contact structures. We conclude

1'11'.11' 1.1-'11|-'I-1'I.‘—'l1.-‘.‘—_l'|" a maan Tregmiratorss 1"|'!'|111J'|I'r."—‘l'|‘1| smaoaroas an achimate nf the |-'l-‘i:'1\."—_l|"‘1'|-'ll'1
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Homogeneity / Heterogeneity in conceptual assumptions

Agent: same infectiousness (\Yes / No) Staging

Host:
All susceptible individuals are the same ( \Yes / No)
All infectious individuals are the same (+/Yes / No) Staged infectious period with
Equal infectiousness during infectious period (Yes / X No ) different infectiousness.

Environment: homogeneous mixing ( \ Yes / No) +—

. %Total infectious period

SI(t) S(1)

B becomes —=(B1,(1)++BI,(1))
n(t) n(t)
where J; (t) represents the numbers of infectious individuals in stage j = 17, ..., k.
Ry = Bu, becomes R, = ﬁlzul(l) +ee :Bk/ufk) Mean value ]

) The final size
where &,”’ = average time of the /i stage of the infectious period | distribution of a
large outbreak.

Still true: 1-7 =(1—¢&)exp(—R,77)

- if the variation for 3 is small, the more the staging, —
the smaller is the variance for the final size n.

A
\ 4
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Homogeneity / Heterogeneity in conceptual assumptions

Agent: same infectiousness (\Yes / No) Structured population

Host:
All susceptible individuals are the same (Yes / XNo) multiple types of susectptibles
All infectious individuals are the same (Yes / XNo) multiple types of infectives

Equal infectiousness during infectious period (\/Yes / No)

Environment: homogeneous mixing ( \ Yes / No)

The next generation matrix:

a square matrix in which the jjt" element is the expected number of secondary
infections of type i caused by a single infected individual of type j, assuming
that the population of type i is entirely susceptible.

Expression of R):

the dominant eigen-value (spectral radius) of the second generation matrix.

This is a straightforward generalization of the single type population in which

R, = pu,, where u, = average infectious period
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Homogeneity / Heterogeneity in conceptual assumptions

Agent: same infectiousness (\Yes / No) Structured population

Host:
All susceptible individuals are the same (Yes / XNo) multiple types of susectptibles
All infectious individuals are the same (Yes / XNo) multiple types of infectives

Equal infectiousness during infectious period (\/Yes / No)

Environment: homogeneous mixing ( \ Yes / No)

Expression of R):

the dominant eigen-value (spectral radius) of the second generation matrix.

The final size equation: 1-7 =(1-¢&)exp(—R,77)
holds for single type of susceptibles and single type of infectives.
For structured populations, it is still true that the very beginning transcends to the very end.

Analogous relationships can be developed, although complicated.
(Ludwig, 1975; Scalia-Tomba, 1986; Ball, 1986; Addy, Longini, et al. 1991; and many others.)
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Homogeneity / Heterogeneity in conceptual assumptions
Agent: Host:
Same infectiousness (+/Yes / No) All susceptible individuals are the same (\/ Yes / No)

All infectious individuals are the same (\/Yes / No)
Equally infectiousness during infectious period (\/Yes / No)

Environment (homogeneous mixing): In an infinitely large population, the number of contacts
made by a typical individual follows a stationary Poisson process. (Yes/ XNo)

Some relaxation:

Variable contact probability with finite variance. In an infinitely large population, the number of
contacts follows a process with extra-Poisson variation but maintains stationary increment (i.e.
expected # contacts in a time interval proportional to the length of the interval).

In terms of mean values, still R, =/fu,, where p, = average infectious period.

177 = (1—£) exp(~R 7).

Heterogeneous mixing as “scale-free” networks:

If with preferential attachment : the more one attracts others, the larger the probability of
making more new connections, the contact process loses the stationary increment property.
The # contacts (in any time interval) follows highly skewed distributions (Yule, Waring, power-

law, etc.). The variance becomes infinitely large. Both the R, expression and the final size
relationship break down.
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Homogeneity / Heterogeneity in conceptual assumptions

Partial summary:

1. The relationship ﬂ% requires homogeneity in agent-host-environment.
n
2. Heterogeneous hosts (multiple types) invalidate the simple expression R, = Si;,
but there is a generalization as the spectral radius of the second generation matrix.

3. In many heterogeneous transmission situations, how people interact and transmit at
the beginning of the epidemic determines the final size, as the “escape probability” of
susceptible individuals, with or without a simple equation.

4. In many cases, a simple equation 1-7 =(1—-¢)exp(—R,7) holds. It is extremely useful.

The final size equation when £ % 0

l. R, =5: 20% reduction of R,, 1% reduction of final size
Il. R, =3: 20% reduction of R,, 6% reduction of final size
1. R, =1.5: 20% reduction of R, 27% reduction of final size

Final proportion infected (%)

1 ¥, 3
Basic reproduction number R,

5. In extremely heterogeneous environment (e.g. scale-free network), Ry, as mathematical
expectation, may not exist, not to mention the relationship between R, and the final size.
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Topic 3

Homogeneity vs. variability in tactical assumptions

Infectiousness may vary in stages
or modulated by intervention

L

+  latent period :i_ infectious period 1
mornent at able Lo infect obhers no longer infections
nfection (recoverad, 1solated, etc)

What will the presence of a latent period make a difference to the transmission
dynamics over time and effectiveness of control measures ?

What will the variations of the latent period make a difference to the above questions?

Given the same average infectious period, what do large or small variations do to
the transmission dynamics over time and to the effectiveness of control measures?
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Variability of random variables for time durations

Plots of probability density functions with mean = u

-1

. Distributions with the same mean
i but less variable than exponential 1°\

3ﬂ_1 = I|/ . \\'\
; Exponential distribution 001" \ “
: mean = 4, variance = z°
-1 !
247" 4 / \-
il
| el Distributions with the same mean /

but more variable than exponential

Su 61 Tu 8u Ou 104

« Some models assume that the latent and the infectious periods are constants (no variation).

« SEIR models: ODEs or Markov process, assume that the latent and the infectious periods
are distributed exponentially (variance = mean?).

» If the infectious period is staged (k — stages), with each stage being exponential (mean = H ),
. . . : . : . _ k
the infectious period still has mean = u but with smaller than exponential variation.
A A S 4
my BB BB B I

- ;—Total infectious period —_—
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Variability of random variables for time durations

Plots of probability density functions with mean = u

-1

Distributions with the same mean
Hi

| but less variable than exponential
3,[[ = | |/
|

Exponential distribution 0.01z™" i
2u ~ I

mean = y, variance = 4’ \

Distributions with the same mean /
but more variable than exponential

Su 6u

Conveniently, homogeneity can be regarded as distributions with variations equal to or
smaller than that of the exponential distribution (as in most models in the literature).
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Variability of random variables for time durations

b ®
. - . . . %‘o'ps’}gp ¢ %&? PR
How does variability of infectious period do to  #2:2 {20z o
) SRl "".' :
s
ST At FlR
o gv 66% 6b
Assuming all the homogeneity criteria for agent-host-environment so that R, = S,
the larger the variance of the infectious period, the larger is the variance of N.

var[N] = Bu, + B* var[infectious period]  (This can be proven using probability generating functions.)

The shape of the (discrete) probability distribution of N, the secondary transmissions (by a
typical infectious individual), resembles the probability density function of the infectious period.

(The theory behind is given by Lynch, J.,Scan. J. Stat. 1988).
Distribution of N:

100%

Distribution of the infectious period:

=1

/ Geometric distribution,

90% - 47"

80% 1 ) ~ 2 ] I Distributions with the same mean
70% | variance = mean+mean g - / but less variable than exponential
60% | '

so% | Poisson distribution, 1 ' Exponential distribution

40%

Frequencies

30% A
Distributions with the same mean
but more variable than exponential

20% -

variance = mean 2u7 ' / mean = 4, variance = 4

10%

0%

01 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20

Number of the secondary transmissions H 2p 3u 4u SH
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Variability orders of random variables for time durations

We rank distributions with the same mean value, according to their variability orders.

We show how variability orders for the latent period and the infectious period change
the transmission dynamics and affect control measure effectiveness.

Infectiousness rmay vary in stages
or tnodulated by intervention

* r'y T _
t latent paryod infecticus period

[
L

v

-

w

mamgnt at N no longer mfectmug
infection (recovered 1solated, ete)
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Variability orders of random variables for time durations

The most common measure for variability is the variance var[X]= E[(X —,u)2]
where X stands for the random variable, E/X]/=u is the mean value.

A generalization is the dilation order:
X, is smaller than X; in dilation order, denoted as X, <, X,
if E[®(X, - )] < E[®(X, - )] for all convex function ®@(x).

Fagiuoli, et al. (1999): dilation order is location independent.

— f py=pm, =0, X <, X,& E®X)]<E®DX,)] for all convex function d(x),
denoted as x, <X,

X, is smaller than X, in Laplace transform order, X, <, X,, if E[e”™]> E[e"™**],r > 0.

The Laplace transform order is an alternative to variance for comparing variability.

The former is a convenient tool in mathematical models. The latter is an useful statistical measure.

If u =u=un, X <, X, < X <. X, = X, 2, X,

1 cx

U
var[ X, ] < var[ X, ]
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Variability of the latent / infectious periods and dynamics

Homogeneity in conceptual assumptions
How people interact and transmit at the beginning transcendentally determines the final size.

Typical outputs of models:
 prevalence = # individuals in a “state”: S(t), I(t).
» (instantaneous) incidence i(t) = instantaneous infection

* cumulative incidence  C(¢) = Igi(u)du. If the population is closed (size n), C(w0)=nn.

The roles of latent/infectious periods: -« growth, peak incidence & prevalence, duration

1. Same total area ()= j: i(t)dt, i | C(®0)
S C=n-5@)

/7~

different paths for i(t): incidence.

2. Same total area
J:I(t)dt = 4, X j:i(t)dr = 4, x C ()

different paths for /(t): prevalence

ﬂﬂﬂﬂﬂ

Cumulative incidence

=
TIME

I:I(t)dt is the “value” of the epidemic, as the total person-time of infectiousness.
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The early phase of an epidemic
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Variability of the latent / infectious periods and dynamics

1.

C(®)

When depletion of susceptibles %
S(t) is negligible . e

g
If it turns out to be a large E
outbreak, C(t) grows exponentially. .Lg

E 00
Denote the exponential growth =t
rate p: the Malthusian number.

S®I1(2)

Under suitable homogeneity assumptions for agent-host-environment, so that g

n(t)

| Statementl The Malthusian number is separately determined (ranked) according to the

Laplace transform orders of the latent and the infectious periods, via

gLLatent (IO) [1 - Llnfectious (IO)] — 1

Where LLatent (10) = J.O e_pxdFLatent (X), Llnfectious (p) = J

Yan (J. of Theoretical Biology, 2008)

: e dF ;.0 (x) are the Laplace

transform functions for the latent and the infectious periods evaluated at p .
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Variability of the latent / infectious periods and dynamics

The early phase of an epidemic

s C(®)
1. When depletion of susceptibles % S A/ . _/_C(t):n -
S(t) is negligible . S |, [
-% [E000 /\/I
2. Ifitturns out to be a large T
outbreak, C(t) grows exponentially. ,Lg uuuuu
E a0
3. Denote the exponential growth \5\\\
rate p: the Malthusian number.
: : : : S)I(¢t)
Under suitable homogeneity assumptions for agent-host-environment, so that ,BT
n
| S L‘atementl ﬁLLm, (p)[l—L,nfecﬁous ( p)]=1 Yan (J. of Theoretical Biology, 2008)
yo

QOUOPIOU] PUB QOUI[BAJIJ

—> 1. When B and the infectious period distribution is given, the larger the latent
period in Laplace transform order, the smaller is the Malthusian number p.

—> 2. When B and the latent period distribution is given, the larger the infectious
period in Laplace transform order, the larger is the Malthusian number p.
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Variability of the latent / infectious periods and dynamics

The early phase of an epidemic

™ | C(®) —

1.  When depletion of susceptibles % S A/ /C(z)zn — %
S(t) is negligible . = W g

2. Ifit turns out to be a large ™ s
outbreak, C(t) grows exponentially. .Lg uuuuu =g

™ a

3. Denote the exponential growth \5\\\ %
rate p: the Malthusian number. ®

In most commonly used probability models, var[X,]<var[X,]< X, >, X,.

1. When B and the infectious period distribution is given, the larger the latent period in
Laplace transform order, the smaller is the Malthusian number p.

—> “Comparing with models without a latent period, a latent period slows the initial growth.
Of latent periods of equal mean values, the smaller the variance (homogeneous), the
smaller is the initial growth rate p."

2. When 3 and the latent period distribution is given, the larger the infectious period in
Laplace transform order, the larger is the Malthusian number p.

= "Of the infectious periods of equal mean values, the smaller the variance (homogeneous),
the larger is the initial growth rate p."
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Variability of the latent / infectious periods and dynamics

The early phase of an epidemic

1.

C(®) —

When depletion of susceptibles % g
S(t) is negligible . g 2
'S 1500 (-D

If it turns out to be a large E s
outbreak, C(t) grows exponentially. .Lg =g
™ a

Denote the exponential growth S - B
rate p: the Malthusian number. ®

In most commonly used probability models, var[X,]<var[X,]< X, >, X,.

—> “Comparing with models without a latent period, a latent period slows the initial growth.
Of latent periods of equal mean values, the smaller the variance (homogeneous), the
smaller is the initial growth rate p."

|Con jectuze l also later peak, longer duration of the epidemic.

—> "Of the infectious periods of equal mean values, the smaller the variance (homogeneous),
the larger is the initial growth rate p."

| Con jectuze l also earlier peak, shorter duration of the epidemic.
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Variability of the latent / infectious periods and dynamics

What have been discussed: given the same R,

C(0) =

1.  Same total area (C(o0)= Iowi(t)dt, 2
=l
different paths for i(t): incidence. % ?
8=
2. Same total area 2 -
0 0 S o
Jo 1@t =, x ["i@ydt = p, xC () 2
s 2000
different paths for I(t): prevalence <
Conversely, for very different Rs:
Different distributions for the latent and

infectious period (even if the mean infectious =
period is fixed but the variance is assumed
differently), can produce the same or very
similar curves for i(t) or I(t).

Caution on curve fitting models to data to
estimate important transmission parameters.

S

- 400

350

50

e

100

50

Q0UIPIOU] PUL QOUI[BAJIJ



PUBLIC HEALTH AGENCY of CANADA | AGENCE DE SANTE PUBLIQUE dux CANADA
Variability of the latent / infectious periods and control measures
Recall: The final size equation 1-7 =(1—-¢)exp(—R,77)

The final size equation when € = 0 l. R, =5: 20% reduction of R,, 1% reduction of final size

Il. R, =3: 20% reduction of R, 6% reduction of final size
[l R, =1.5: 20% reduction of R, 27% reduction of final size

To reduce the final size, the same % reduction of R,
may or may not be very effective, depending on the
magnitude of R, before intervention.

Final proportion infected (%)

1 . 3
Basic repreduction number R,

Control measures can be pharmaceutical or non-pharmaceutical.

They can be applied to susceptible individuals (e.g. vaccine), or to infected individuals in
either latent or infectious periods.

Following a latent Following an infectious

- ____ period distribution —, period distribution £—=7 To reduce the reproduction number,
S » E l 1// gl l » R from R, to R,, for some control
9 measures, the effectiveness is
A. Removing from B. Removing from determined by the variability of the
circulation before circulation so that no : : :
being able to longer able to contact latent and the infectious period.

transmit the virus other susceptibles
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Variability of the latent / infectious periods and control measures

Following a latent Following an infectious .
— . period distribution —, period distribution /= To reduce the reproduction number,
S = l y g l » R from R, to R,, for some control
Z measures, the effectiveness is
A. Removing from B. Removing from determined by the variability of the

cwgulatlon before circulation so that no latent and the infectious period.

being able to longer able to contact

transmit the virus other susceptibles

S(I(2)
n(t)

Under suitable homogeneity assumptions for agent-host-environment, so that f

| &afeme”’fl Assuming both actions are “perfect” (100% success), the controlled reproduction
number depends on the distributions of both periods and is ranked separately
according to their Laplace transform orders.

R.(v,9)= g[, Ltont (W)[l = Ly octious (¢)] Yan and Feng (Mathematical Biosciences, 2010)

Unlike R, = By, , which does not depend on the latent period and depends on
the infectious period only by its mean value.
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Variability of the latent / infectious periods and control measures

Following a latent Following an infectious .
— . period distribution —, period distribution /= To reduce the reproduction number,
S = l y g l » R from R, to R,, for some control
Z measures, the effectiveness is
A. Removing from B. Removing from determined by the variability of the

mrgulatlon before circulation so that no latent and the infectious period.

being able to longer able to contact

transmit the virus other susceptibles

p
| Statementl R.(v,9)= ELLatent (w )[1 - Llnfectious (¢)] Yan and Feng (Mathematical Biosciences, 2010)

L.

— The larger the latent period in Laplace transform order (~ smaller variance), the
larger is the probability for latent individuals to be removed, and the easier it is to
use A. to control the epidemic.

1= Linecios () — the average duration of infectious individuals in the I-class before either
¢ recovers naturally or removed by control measure (under constant rate ¢ ).

(v) = the proportion of latent individuals that eventually escape from being
removed (under constant rate y) and become infectious.

Latent

— The larger the infectious period in Laplace transform order (~ smaller variance),
the longer is the average duration of infectiousness, and the harder it is to use B.
to control the epidemic.
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Variability of the latent / infectious periods and control measures

p
| Statement' R.(v.9)= ELLmenz (Z )[1 ~ Lifections (¢)] assuming both actions are “perfect” (100% success)

Following a latent Following an infectious
Extension to “|eaky situations”: — —__ period distribution — period distribution /==
S Y E ] » R
Vv Y
A. Removing from B. Removing from
circulation before circulation so that no
being able to longer able to contact
transmit the virus other susceptibles

1. For action B, infected individuals may be put into “leaky isolation”, with reduced
transmissibility (1-o,) 4.

2. For action A, latent individuals may be put into “leaky isolation”, and when they
become infectious, they have reduced transmissibility (1-o,)/.

o,p

Quantitative: g o, 416,,0,)=(1-0,)R, +(, =)Ly W), + LW~ Lo @)

Yan and Feng (Mathematical Biosciences, 2010)

Qualitative statements on variability of the latent / infectious periods and control
measures based on Rc(l//,(é):g Ly )]1- L]nﬁms(qj)] remain unchanged.
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Variability of the latent / infectious periods and control measures

Qualitative discussions that are also applicable to other measures applied to
individuals during their latent and infectious periods:

1. Certain control measures, such as contract tracing for exposed individuals with subsequent
quarantine and/or pharmaceutical interventions ( prophylaxis), work well if there is a
significantly long latent period, and not so well if the latent period is very short.

Add:  Such measures work well if the latent period is a long and not very variable
(homogeneous). They may not work well if there is large variation
(heterogeneous), even if the latent period is long on average.

For the same average latent period: homogeneous: good;
heterogeneous: bad.

2. Isolating infectious individuals and/or treating them using antiviral drugs that may reduce
transmission, work better if the natural infectious period is short.

Add: Such measures work well if the infection period has large variation
(heterogeneous), even when the infectious period is long on average.

For the same average infectious period: homogeneous: bad;
heterogeneous: good.
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Final remarks: Connections

Under homogeneity assumptions for agent-host-environment, so that £ S(Zf)(’)
p

=L, (p)[l—L,nfmus (p)]: 1:  the initial (exponential) growth of a large outbreak is ranked by the
P Laplace transform orders of the latent and the infectious periods.

This connects to the question :  What is the risk of a large outbreak: 1—m = ?

Let N be the random variable so that R, = E[N], with probability generating function G,(s), s >0

n is the smallest root of the fixed-point equation Gy (s)=s

In faCt GN (S) = Llnfectious (IB(1 - S)) . LInfectious (IB(1 - ﬂ-)) =7

£
p

yo
If there is a latent period (SEIR): ﬁme(p)[l—L,nfmus(p)]:1 —_— |-z >E.
Yo,

If there is no latent period (SIR): é[1—L,nfmus(,o)]:1 > l-z=
Yo,

One can show that if R, > 1, it is always true that P < B.

One can use the observed initial growth rate in a large outbreak to provide a lower bound
of the risk of a large outbreak in a similar community, under similar initial conditions.
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Final remarks: Connections

I
Under homogeneity assumptions for agent-host-environment, so that £ S(Z t)(t)
p

=L, (p)[l—L,nfmus (p)]: 1:  the initial (exponential) growth of a large outbreak is ranked by the
P Laplace transform orders of the latent and the infectious periods.

This also connects to : R.(v,9)= glmm (W)[I—LGfecﬂous (¢)1

If one can set control objectives ¥ 2/, and ¢ = ¢, in order to achieve R, (v,$) <1 ,

then one can successfully prevent a large outbreak from taking place.

Ideally, itis achievable if w.=¢. = p.

Lessons can be learned from observed initial growth rate in large outbreak that
have happened elsewhere to set control targets to prevent a large outbreak
from happening in a similar community, under similar initial conditions.



