

Immuno-epidemiology: bringing together within-host and between-host dynamics for measles

Jane Heffernan and Matt Keeling

Significant cause of mortality and morbidity
 A leading cause of death in young children
 In 2007 197000 deaths, 74% decrease in deaths since 2000

< 50% (7 countries or 4%) 50-79% (52 countries of 27%) 80-89% (31 countries or 18%) >90% (102 countries or 53%)

Naccine
 Live attenuated

http://www.who.int/vaccines-surveillance/graphics/htmls/meacovmap.htm

Interesting temporal dynamics:

Bjornstad, Finkenstadt and Grenfell (2002), Ecological Moonographs, 72 p. 169-184

http://www.esajournals.org/perlserv/?request=get-document&issn=0012-9615&volume=072&issue=02&page=0169

Interesting temporal dynamics:

Figure 8. Measles — Reported Incidence, Canada, 1924–2005

Source: Canadian Immunization Guide, 7th edition, 2006

July 2008 - Measles Outbreak Declared Over

- The measles outbreak that began in Toronto in March 2008
- no new cases reported in two consecutive incubation periods (42 days).
- A total of 26 outbreak associated cases were reported to TPH
 - Vaccine 2 confirmed doses 1 person, 1 confirmed dose 7 people, Zero doses 10 people, Unknown – 8 people
- n Two individuals were infected with measles outside of Canada
- Also, 30 outbreak associated cases were reported in Ontario outside Toronto. During this outbreak, TPH staff followed-up on over 4,300 contacts of cases and 128 individuals sick with measles-like symptoms who needed to be ruled out. In addition, TPH vaccinated 454 people, gave immune globulin to 28 individuals and excluded 429 individuals from work/public activities to prevent further spread
- Endemic in many countries, resurgence of measles is being observed throughout the world wherever vaccination coverage is inadequate.
- 2008 the **USA** is experienced its largest measles outbreak in more than a decade, which spread to 15 states. Cases are primarily being seen in unimmunized children and groups. Measles has become endemic in the **UK** 14 years after transmission was halted.

SIRV Model

Simple model for waning immunity based on SIRV

$$p_{c} = \left(1 + \frac{w_{v}}{d}\right) \left(1 - \frac{1}{R_{0}}\right) \qquad I^{*} = \frac{\left[(\beta - g - d)w_{v} + (\beta(1 - p) - g - d)d\right](w_{R} + d)}{\beta(d + w_{v})(g + d + w_{R})}$$

Immune System

Figure 1-7 Immunobiology, 6/e. (© Garland Science 2005)

Immune System

Transmission

- direct contact with nasal or throat secretions
- by airborne transmission

Acute infection

Immune response:
 Humoral immunity
 Cellular immunity

Development of memory

Figure 10-1 Immunobiology, 6/e. (© Garland Science 2005)

The course of a typical acute infection
 Naïve, activated, memory

Immunological Memory

Protective immunity consists of preformed immune reactants and immunological memory.

In-host Model

- x, y uninfected, infected cells
- n v virus
 - n q infectious
- w, z, m naïve, activated and memory CD8 Tcells
- d_{x, y, w, z, m} death rates
- u clearance rate
- n k bud rate
- p proliferation rate
- ⁿ c, c_m activation rates

In-Host Measles Model

 $\frac{dx}{dt} = \lambda_x - d_x x - \beta q x v$ $R_0 = \frac{k}{d_y} \frac{\beta q x_0}{\beta q x_0 + u}$ $\frac{dy}{dt} = \beta qxv - d_y y - \xi ya$ $\frac{dn}{dt} = \lambda_z - \frac{cqnv}{Cqnv + K} - d_n n$ $\frac{da}{dt} = \frac{cqnv}{Cqv+K} + \frac{pqva}{C_2qv+K_2} - \frac{(\rho+d_a)a}{C_3qv+K_3} + \frac{\sigma qmv}{C_4qv+K_4}$ $\frac{dm}{dt} = \frac{\rho a}{C_3 qv + K_3} - d_m m - \frac{\sigma q m v}{C_4 qv + K_4}$

Measles Pathogenesis

Measles Pathogenesis

Booster Infections

Booster Infections

Things we want to know

- Quanta expelled by infected person?
 - Relates to transmission between individual hosts
 - No lung infection data!
- Definition of asymptomatic infection
- Development of immunity with different initial levels of memory CD8
- Start time and length of infectious period for different initial levels of memory CD8
 Quantify level of infection for different initial levels of memory CD8

Infection Curves

Infectious stage

n K

Basic Reproductive Ratio

Number of secondary infections produced by a single infective in a totally susceptible population

Basic Reproductive Ratio

Accumulation of quanta in the lungs
 Find area bounded above by blue curve and below by red line

Basic Reproductive Ratio

Peak Memory Cells

Number of Memory Cells

SEIRS Model

 $\omega_{p-k},...,\omega_{k}$

 $\xrightarrow{\alpha_i} Y_i \xrightarrow{\gamma_p}$

Parameterize epidemiological model using in-host output $\beta_i, \alpha_i, \gamma_i, \omega_i, \sigma$

 $\rightarrow E_{c}$ –

 $\beta_i Y_i$

Other Parameters

Host natural death rate
Host immunity
vaccination distribution

 $\omega_p, \dots, \omega_{p-k+1}$ –

SEIRS Model

 $\frac{dS_i}{dt} = \lambda_i - dS_i - S_i \sum_i \beta_j Y_j - \omega_i S_i + \omega_{i+1} S_{i+1} + \sigma R_i$

 $\frac{dE_i}{dt} = S_i \sum_{i} \beta_j Y_j - \alpha_i E_i - dE_i$

 $\frac{dY_i}{dt} = \alpha_i E_i - \gamma_i Y_i - dY_i$

 $\frac{dR_p}{dt} = \sum_{f(j)=p} \gamma_j Y_j - \omega_p R_p + \omega_{p+1} R_{p+1} - \sigma R_p - dR_p$

$$R_{0,i} = \frac{\beta_i \overline{S}}{\gamma_i + d} \frac{\alpha_i}{\alpha_i + d} \approx \frac{\beta_i \overline{S}}{\gamma_i}$$

SIRV Model

Simple model for waning immunity based on SIRV

$$p_{c} = \left(1 + \frac{w_{v}}{d}\right) \left(1 - \frac{1}{R_{0}}\right) \qquad I^{*} = \frac{\left[(\beta - g - d)w_{v} + (\beta(1 - p) - g - d)d\right](w_{R} + d)}{\beta(d + w_{v})(g + d + w_{R})}$$

SEIRS Model

n Infected Equilibrium

Distribution of Immunity

Proportion of population in each class with i level of immunity at infected equilibrium

Comparison to SEIR model

Comparison to SEIR model

- Ignore birth to determine what happens to 1 individual under constant force of infection (i.e. infected equilbm)
- Start with one S0 (totally susceptible)
- Average age of 1st infection 4 5 years (Anderson and May 1992)
- Immunity is then raised to high levels and decays over host's lifetime
- From system sum(Bi Ii) (rate of encountering infection) is independent of immune status
 - Individual is expected to be infected (and their immunity boosted) every 4-5 years
 - Tail of dist'n get infected and may transmit and may show symptoms
 - However most individuals will just experience boosts since time between exposure is relatively short – LIFELONG IMMUNITY

Comparison to SEIR model

Proportion of population that is symptomatically infected as a function of age Variation from standard SEIR is slight and primarily occurs as a mild infection in older individuals

Distribution of immunity – 30 and 80 years

Waning immunity can severely limit effects of vaccination Prevalence of infection does not decrease linearly with vaccination coverage

n High levels of vaccination (>70%) and moderate levels of waning immunity (>30 years) lead to large scale epidemic cycles

92 % vacc
30,40,50,60
years waning
immunity

 Maximum proportion of infectious cases around the epidemic cycle compared with average
 Large relative amplitude of the infectious cycles

L=6 case

Can do similar analysis
 Not very different
 Level of infectious cases is higher, but more are asymptomatic
 Magnitude and period is smaller for outbreaks
 Suboptimal boosting

SEIRS Stochastic Simulation

Same infected equilibrium as the deterministic model

Critical population size

- n No vaccine 200,000 500,000
- With vaccine approx 10 million

Comments on model

- Including humoral immunity
 - Seasonal forcing
 - Likely to amplify any short-duration epidemic cycles exhibited by the unforced model, particularly when the unforced period is annual or multi-annual
- Mixing by age
 - Mixing between different age groups is not well known
- Stochastic model
 - Computationally complex
 - Need to keep track of every individual's immune system

Future Work

Small populations Naccine uptake Levels of vaccination, in-host parameters n RO n age of infection, age of individual n Networks Contacts, social

Other pathogens – flu - evolution

Thank You!

- Matt Keeling
- e² group at the University of Warwick
- Shared Hierarchical Research Computing Network (SHARCNET Canada)
- Natural Sciences and Engineering Research Council of Canada (NSERC)

References:

- n Heffernan, J.M. and M.J. Keeling (2008) An in-host model for acute infections: Measles as a case study, TPB 73, 134-147.
- n Heffernan, J.M. and M.J. Keeling (2009) Implications of vaccine and waning immunity, Proc Roy Soc B.