Multigroup populations, pair formation, and epidemic disease

K.P. Hadeler

Universität Tübingen and Arizona State University

## A tool: Homogeneous systems

$$f: \mathbb{R}^{n}_{+} \to \mathbb{R}^{n}$$

$$f(\alpha x) = \alpha f(x), \quad \alpha \ge 0$$

$$\dot{x} = f(x)$$

No stationary points  $x \neq 0$ Exponential solutions

$$x(t) = \hat{x}e^{\hat{\lambda}t}, \quad \hat{x} \in \mathbb{R}^n_+$$

## **Stability**

Jacobian matrix

$$f'(\hat{x})$$

Eigenvalues

$$\lambda_1 = \hat{\lambda}, \ \lambda_2, \dots, \lambda_n$$

Stability condition

$$\Re \lambda_k < \lambda_1, \quad k = 2, \ldots, n$$



## **Projection**

$$y = \frac{x}{e^T x}, \quad e^T = (1, \dots, 1)$$
  
 $\dot{y} = f(y) - e^T y y$ 

on

$$\Delta = \{ y \in \mathbb{R}^n_+ : e^T y = 1 \}$$

Exponential solutions become stationary points.

## Two-sex marriage problem

Keyfitz, Parlett, Yellin and Samuelson, ... Hadeler/Waldstätter/ Wörz 1988 Iannelli/ Martcheva/ Milner (book 2005)

#### The standard model

x female single, y male single, p pair

$$\dot{x} = \kappa_{x} p - \mu_{x} x + \mu_{y} p + \sigma p - \phi(x, y)$$

$$\dot{y} = \kappa_{y} p - \mu_{y} y + \mu_{x} p + \sigma p - \phi(x, y)$$

$$\dot{p} = -(\mu_{x} + \mu_{y} + \sigma) p + \phi(x, y)$$

Pair formation function  $\phi \ge 0$   $\phi(\alpha x, \alpha y) = \alpha \phi(x, y)$   $\phi(0, y) = \phi(x, 0) = 0$  $\phi(x + u, y + v) \ge \phi(x, y), u, v \ge 0$ 

#### Result:

One-sex solutions 
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^{-\mu_X t}$$
,  $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^{-\mu_y t}$ 

Two-sex solution  $\begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix} e^{\hat{\lambda} t}$ 

If it exists then it is globally stable.

The two-sex solution exists when the female population is unstable against infection with males and conversely.

## pair formation function

harmonic mean

$$\phi(x,y) = 2\rho \frac{xy}{x+y}$$

minimum

$$\phi(x,y) = \rho \min(x,y)$$

Which is "better"?

## Age structure

$$x_t + x_a + \mu x + (\mu + \sigma)p - \phi = 0$$

$$y_t + y_b + \mu y + (\mu + \sigma)p - \phi = 0$$

$$p_t + p_a + p_b + p_c + (2\mu + \sigma)p = 0$$

$$x(t, 0) = \int B(a, b)pdadbdc$$

$$y(t, 0) = \int B(a, b)pdadbdc$$

$$p(t, a, b, 0) = \phi(x(\cdot), y(\cdot))(a, b)$$

What is  $\phi$ ?



posssible choice:

$$\phi(x(\cdot),y(\cdot))(a,b) = \frac{\rho(a,b)x(a)y(b)}{\int x(a)da + \int y(b)db}$$

generalized harmonic mean

Existence of exponential two-sex solution Prüss, Zacher 2001

Application to sexually transmitted disease:

## A faithful pair is immune

Dietz and KPH 1988

Jacquez, Koopman et al., ...

## Pair formation in a constant population

$$x + p = \bar{x}, \quad y + p = \bar{y}$$

scalar equation

$$\dot{\mathbf{p}} = -\sigma \mathbf{p} + \phi (\bar{\mathbf{x}} - \mathbf{p}, \bar{\mathbf{y}} - \mathbf{y})$$

Convergence to equilibrium

Now we generalize this concept.

# Multitype (one-sex) model

 $x = (x_i)$  vector of (single) types  $Y = (y_{ij})$  symmetric matrix of pairs Dynamic pair formation

$$\dot{Y} = \frac{XQX}{e^{T}x} - C * Y$$

$$\dot{x} = (C * Y)e - \frac{XQx}{e^{T}x}$$

\* Hadamard product Invariant of motion

$$x + Ye = \bar{x}$$



The one-type two-sex model (with harmonic mean) is a special case:

$$Q = \begin{pmatrix} 0 & \rho \\ \rho & 0 \end{pmatrix}, \quad C = \begin{pmatrix} \sigma & \sigma \\ \sigma & \sigma \end{pmatrix}$$

 $x_1$  female,  $x_2$  male,  $y_{12} + y_{21}$  pair should be true in general

#### **Results:**

For each  $\bar{x} > 0$  there is at least one equilibrium.

If  $\bar{x}$  has zeros then boundary equilibrium. Altogether  $2^n - 1$  equilibria.

n = 2: unique and globally stable in the interior.

## The case without separation: C = 0

$$\dot{Y}=rac{XQX}{e^Tx},\quad \dot{x}=-rac{XQx}{e^Tx}$$
 $Y(0)=0,\quad x(0)=ar{x}$ 
For  $t o\infty$ :  $Y(t) o A$ ,  $x(t) o 0$ .
 $Ae=ar{x}$ 

#### Equivalent formulation

$$\dot{Y} = \frac{XQX}{e^T x}$$

$$\dot{x} = \bar{x} - x - \frac{XQx}{e^Tx}$$

open problem: formula connecting A to Q?

## **Complete pair formation**

as opposed to dynamic pair formation

Assume  $A = A^T$  with  $Ae = \bar{x}$  is given. Each individual must form a pair. No individual can be in two different pairs.

Problem: find all suitable matrices A, find explicit formulas, make biologically relevant choices

# Normalized problem of complete pair formation

Assume that  $\bar{x} = p$  is normalized by  $e^T p = 1$ .

Complete pair formation is nothing else than a symmetric matrix  $A \ge 0$  with the property

$$Ae = p$$
,

Question: Do we want all matrices A for a given p or do we want a matrix function  $p \mapsto A(p)$  with certain additional properties?



## The representation formula

For given p the set of all A is a compact convex polyhedron in matrix space.

The formula of Busenberg and Castillo-Chavez 1991, Blythe et al.

$$A(p) = P\left(\Phi + \frac{(e - \Phi p)(e^T - p^T\Phi)}{1 - p^T\Phi p}\right)P$$

where  $\Phi$  is any symmetric matrix with

$$0 \leq \Phi < ee^T$$

What is the meaning of this formula?

Choosing  $\Phi = 0$  gives "random pair formation"

$$A = pp^T$$

Try to understand the formula in biological terms!

Ben Morin 2010

#### **Substochastic matrices**

$$egin{aligned} \Psi &= \left( \psi_{ij} 
ight) \ & ext{not necessarily symmetric} \ \psi_{ij} &\geq 0, \ \sum_i \psi_{ij} \leq 1 \ & ext{} \Psi &> 0, \quad e^T \Psi < e^T \end{aligned}$$

Complement the matrix to a stochastic matrix

$$S = \{A \ge \Psi, e^T A = e^T\}$$

## **Proposition:**

The matrices  $A \in \mathcal{S}$  can be represented as

$$A = \Psi + X \operatorname{diag}[e - \Psi^T e]$$

where X is an arbitrary (column) stochastic matrix. The elements of  $A = (a_{ij})$  are

$$a_{ij}=\psi_{ij}+x_{ij}(1-\sum_{\mathbf{k}}\psi_{\mathbf{k}j}).$$

## Probabilistic interpretation:

Given  $\Psi$ , find A such that the transition probability from state j to state i respects the lower bound  $\psi_{ij}$ .

For each state j the number  $1 - \sum_{i} \psi_{ij}$  is the probability mass not allocated by the matrix  $\Psi$ . The column  $x^{(j)} = (x_{ij})_{i=1}^n$  of the stochastic matrix X is the probability distribution according to which the remaining probability mass of state *i* is distributed to the states i.

## Special choices for the matrix X

1) Allocate all remaining mass for the state j to the state j. Then X = I and

$$A = \Psi + D, \quad D = (d_i \delta_{ij}), \quad d_j = 1 - \sum_i \psi_{ij}$$

2) Use the same distribution  $x \in \Delta$  for all states j. Then

$$A = \Psi + x(e^T - e^T \Psi)$$

The perturbation has rank 1 unless  $\Psi$  is already stochastic.



The family (depending on  $x \in \Delta$ ) of stochastic matrices

$$A = \Psi + x(e^T - e^T \Psi)$$

is distinguished by a probabilistic property

## **Additional requirement**

Can the matrix  $\Psi$  be complemented to a stochastic matrix A with given stationary distribution p?

$$S_p = \{A \geq \Psi : e^T A = e^T, Ap = p\}$$

Assume that  $\Psi$  is not stochastic and does not have p as an eigenvector.

**Proposition:** Suppose  $p \in \Delta$ ,  $e^T \Psi \leq e^T$ ,  $e^T \Psi \neq e^T$ ,  $\Psi p \leq p$ ,  $\Psi p \neq p$ . Then

$$\mathcal{A} = \Psi + rac{(
ho - \Psi 
ho)(e^{\mathcal{T}} - e^{\mathcal{T}}\Psi)}{1 - e^{\mathcal{T}}\Psi 
ho} \in \mathcal{S}_{
ho}.$$

Other elements of  $S_p$ ?

## A theory of preferences

*n* groups with sizes  $p_i$  such that  $\sum_i p_i = 1$ . An individual in group *i* has preference  $\phi_{ij} \geq 0$  for *j*.

 $\phi_{ij}$  are not necessarily symmetric.

Assume  $\phi_{ij} < 1$ .

The product  $p_i\phi_{ij}$  is the total preference in group i for group j. Can we find a stochastic matrix A that respects the preferences and also respects the group size distribution?

#### matrix formulation

$$\Phi = (\phi_{ij}) \ge 0$$
 matrix of preferences  $\Phi \ge 0, \quad \Phi < ee^T$ 

 $p = (p_i)$  group sizes, and  $P = (p_i \delta_{ij})$ . The matrix  $P\Phi$  is substochastic,

$$e^T P \Phi < e^T$$
,  $P \Phi p \leq p$ ,  $P \Phi p \neq p$ 

**Proposition:**  $P\Phi$  can be complemented to a stochastic matrix  $A \ge P\Phi$  such that Ap = p.

There is a rank 1 perturbation of  $P\Phi$  with this property,

$$A = P\Phi + rac{(
ho - P\Phi
ho)(e^T - 
ho^T\Phi)}{1 - 
ho^T\Phi
ho}$$

Compare to  $A = pe^T!$ 

#### **Pair formation**

(Szenario of B + C-C 1991)

*n* groups with sizes  $p_i$  such that  $\sum_i p_i = 1$ . An individual in group i makes  $c_i$  contacts per time unit, and  $\gamma_{ij} \geq 0$  is the probability that such contact is with an individual of group j, hence  $\sum_{i} \gamma_{ij} = 1$ . The total number of contacts of individuals from group i with individuals from group j is  $p_i c_i \gamma_{ij}$ .

Assume that contacts are symmetric! Need a balance law

$$p_i c_i \gamma_{ij} = p_j c_j \gamma_{ji}$$

Introduce matrices  $\Gamma = (\gamma_{ij})$ ,  $C = (c_i \delta_{ij})$ ,  $P = (p_i \delta_{ij})$ .

Required properties

$$PC\Gamma = \Gamma^T CP$$
,  $\Gamma > 0$ ,  $\Gamma e = e$ .



#### The case C = I:

Find row stochastic matrices  $\Gamma$  such that

$$P\Gamma = \Gamma^T P$$

The set of these matrices is a compact and convex polyhedron in matrix space. Find such matrices in the form  $\Gamma = MP$ . Then the conditions on M become  $PMP = PM^TP$ ,  $MP \ge 0$ , Mp = e. These conditions are satisfied if

$$M = M^T$$
,  $M \ge 0$ ,  $Mp = e$ .



## Pair formation preferences

$$\Phi < ee^T$$

Look for M with

$$M = M^T$$
,  $M \ge \Phi$ ,  $Mp = e$ ,

One candidate is

$$M = \Phi + \frac{(e - \Phi p)(e^T - p^T \Phi)}{1 - p^T \Phi p}$$

while  $ee^T$  is another.



## **Proposition:**

Suppose a symmetric preference matrix  $\Phi \geq 0$ ,  $\Phi < ee^T$  is given and a vector of group sizes  $p \in \Delta$ . Then the matrix

$$\Gamma = \left(\Phi + \frac{(e - \Phi p)(e^T - p^T \Phi)}{1 - p^T \Phi p}\right) P.$$

satisfies the conditions  $\Gamma \geq \Phi P$ ,  $P\Gamma = \Gamma^T P$ ,  $\Gamma e = e$ .

This  $\Gamma$  is one candidate. Another is  $ep^T$ .



The pair formation problem is the special case of the preference problem when the matrix  $\Phi$  is symmetric.

## Multitype epidemic model

n types or social groups x susceptible, y infected, z recovered

$$x + y + z = p \in \Delta$$

$$\dot{x} = -XBy$$
 $\dot{y} = XBy - Dy$ 
 $\dot{z} = Dy$ 

$$x(0) = p, \quad y(0) \approx 0, \quad z(0) = 0$$



## Basic reproduction number

,

$$R(p) = \rho(PBD^{-1}), \quad B = B(p)$$

Invariant of motion

$$BD^{-1}y + BD^{-1}x - \log x$$

Final size equation

$$BD^{-1}x - \log x = BD^{-1}p - \log p$$

Unique solution  $\bar{x}$ .



We take the view that B and D are given while p is subject to variation. What is the worst possible case for R(p)?

$$R_{\max} = \max_{p \in \Delta} \rho(PA)$$

Connection to max algebra. Ongoing work with L. Elsner.

#### **Different strains**

 $I_1.I_2$  normal strain, untreated and treated  $I_3, I_4$  resistant strain, untreated and treated

$$\dot{S} = \mu - S(\beta_1 I_1 + \beta_2 I_2 + \beta_3 I_3 + \beta_3 I_4) - \mu S 
\dot{I}_1 = S(\beta_1 I_1 + \beta_2 I_2) - \alpha_1 I_1 - \mu I_1 - \kappa I_1 
\dot{I}_2 = \kappa I_1 - \alpha_2 I_2 - \mu I_2 
\dot{I}_3 = S(\beta_3 I_3 + \beta_4 I_4) - \alpha_3 I_3 - \mu I_3 - \kappa I_3 
\dot{I}_4 = \kappa I_3 - \alpha_4 I_4 - \mu I_4 
\dot{R} = \alpha I_1 + \alpha_2 I_2 + \alpha_3 I_3 + \alpha_4 I_4 - \mu R$$

 $\label{lem:competitive} Kermack-McKendrick\ model\ +\ competitive\ exclusion\ model$ 

$$R_k = rac{eta_k}{lpha_k + \mu}, \quad k = 1, 2, 3, 4$$
  $R_1 > 1 > R_2$   $R_3 < R_1$   $R_4 > R_3, \quad R_4 > 1$ 

I there a "window" for  $\kappa$  such that both strains are eliminated? Maybe, if  $R_3 < 1$