Multigroup populations, pair formation, and epidemic disease

K.P. Hadeler

Universität Tübingen
and Arizona State University

A tool: Homogeneous systems

$$
\begin{gathered}
f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}^{n} \\
f(\alpha x)=\alpha f(x), \quad \alpha \geq 0 \\
\dot{x}=f(x)
\end{gathered}
$$

No stationary points $x \neq 0$
Exponential solutions

$$
x(t)=\hat{x} e^{\hat{\lambda} t}, \quad \hat{x} \in \mathbb{R}_{+}^{n}
$$

Stability

Jacobian matrix

$$
f^{\prime}(\hat{x})
$$

Eigenvalues

$$
\lambda_{1}=\hat{\lambda}, \lambda_{2}, \ldots, \lambda_{n}
$$

Stability condition

$$
\Re \lambda_{k}<\lambda_{1}, \quad k=2, \ldots, n
$$

Projection

$$
\begin{gathered}
y=\frac{x}{e^{T} x}, \quad e^{T}=(1, \ldots, 1) \\
\dot{y}=f(y)-e^{T} y y
\end{gathered}
$$

on

$$
\Delta=\left\{y \in \mathbb{R}_{+}^{n}: e^{T} y=1\right\}
$$

Exponential solutions become stationary points.

Two-sex marriage problem

Keyfitz, Parlett, Yellin and Samuelson, ... Hadeler/Waldstätter/ Wörz 1988 lannelli/ Martcheva/ Milner (book 2005)

The standard model

x female single, y male single, p pair

$$
\begin{aligned}
& \dot{x}=\kappa_{x} p-\mu_{x} x+\mu_{y} p+\sigma p-\phi(x, y) \\
& \dot{y}=\kappa_{y} p-\mu_{y} y+\mu_{x} p+\sigma p-\phi(x, y) \\
& \dot{p}=-\left(\mu_{x}+\mu_{y}+\sigma\right) p+\phi(x, y)
\end{aligned}
$$

Pair formation function $\phi \geq 0$ $\phi(\alpha x, \alpha y)=\alpha \phi(x, y)$
$\phi(0, y)=\phi(x, 0)=0$
$\phi(x+u, y+v) \geq \phi(x, y), u, v \geq 0$

Result:
One-sex solutions $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) e^{-\mu_{x} t},\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) e^{-\mu_{y} t}$
Two-sex solution $\left(\begin{array}{l}\hat{x} \\ \hat{y} \\ \hat{p}\end{array}\right) e^{\hat{\lambda} t}$
If it exists then it is globally stable.

The two-sex solution exists when the female population is unstable against infection with males and conversely.

pair formation function

harmonic mean

$$
\phi(x, y)=2 \rho \frac{x y}{x+y}
$$

minimum

$$
\phi(x, y)=\rho \min (x, y)
$$

Which is "better"?

Age structure

$$
\begin{aligned}
& x_{t}+x_{a}+\mu x+(\mu+\sigma) p-\phi=0 \\
& y_{t}+y_{b}+\mu y+(\mu+\sigma) p-\phi=0 \\
& p_{t}+p_{a}+p_{b}+p_{c}+(2 \mu+\sigma) p=0 \\
& x(t, 0)=\int B(a, b) p d a d b d c \\
& y(t, 0)=\int B(a, b) p d a d b d c \\
& p(t, a, b, 0)=\phi(x(\cdot), y(\cdot))(a, b)
\end{aligned}
$$

What is ϕ ?
posssible choice:

$$
\phi(x(\cdot), y(\cdot))(a, b)=\frac{\rho(a, b) x(a) y(b)}{\int x(a) d a+\int y(b) d b}
$$

generalized harmonic mean
Existence of exponential two-sex solution Prüss, Zacher 2001

Application to sexually transmitted disease: A faithful pair is immune

Dietz and KPH 1988
Jacquez, Koopman et al., ...

Pair formation in a constant population

$$
x+p=\bar{x}, \quad y+p=\bar{y}
$$

scalar equation

$$
\dot{p}=-\sigma p+\phi(\bar{x}-p, \bar{y}-y)
$$

Convergence to equilibrium
Now we generalize this concept.

Multitype (one-sex) model

$x=\left(x_{i}\right)$ vector of (single) types
$Y=\left(y_{i j}\right)$ symmetric matrix of pairs
Dynamic pair formation

$$
\begin{aligned}
\dot{Y} & =\frac{X Q X}{e^{T} x}-C * Y \\
\dot{x} & =(C * Y) e-\frac{X Q x}{e^{T} x}
\end{aligned}
$$

* Hadamard product

Invariant of motion

$$
x+Y e=\bar{x}
$$

The one-type two-sex model (with harmonic mean) is a special case:

$$
Q=\left(\begin{array}{ll}
0 & \rho \\
\rho & 0
\end{array}\right), \quad C=\left(\begin{array}{cc}
\sigma & \sigma \\
\sigma & \sigma
\end{array}\right)
$$

x_{1} female, x_{2} male, $y_{12}+y_{21}$ pair should be true in general

Results:

For each $\bar{x}>0$ there is at least one equilibrium.
If \bar{x} has zeros then boundary equilibrium.
Altogether $2^{n}-1$ equilibria.
$n=2$: unique and globally stable in the interior.

The case without separation: $C=0$

$$
\begin{gathered}
\dot{Y}=\frac{X Q X}{e^{T} x}, \quad \dot{x}=-\frac{X Q x}{e^{T} x} \\
Y(0)=0, \quad x(0)=\bar{x} \\
\text { For } t \rightarrow \infty: Y(t) \rightarrow A, x(t) \rightarrow 0 . \\
A e=\bar{x}
\end{gathered}
$$

Equivalent formulation

$$
\begin{gathered}
\dot{Y}=\frac{X Q X}{e^{T} x} \\
\dot{x}=\bar{x}-x-\frac{X Q x}{e^{T} x}
\end{gathered}
$$

open problem: formula connecting A to Q ?

Complete pair formation

as opposed to dynamic pair formation
Assume $A=A^{T}$ with $A e=\bar{x}$ is given.
Each individual must form a pair. No individual can be in two different pairs.
Problem: find all suitable matrices A, find explicit formulas, make biologically relevant choices

Normalized problem of complete pair

formation

Assume that $\bar{x}=p$ is normalized by
$e^{T} p=1$.
Complete pair formation is nothing else than a symmetric matrix $A \geq 0$ with the property

$$
A e=p
$$

Question: Do we want all matrices A for a given p or do we want a matrix function $p \mapsto A(p)$ with certain additional properties?

The representation formula

For given p the set of all A is a compact convex polyhedron in matrix space.
The formula of Busenberg and
Castillo-Chavez 1991, Blythe et al.

$$
A(p)=P\left(\Phi+\frac{(e-\Phi p)\left(e^{T}-p^{T} \Phi\right.}{1-p^{T} \Phi p}\right) P
$$

where Φ is any symmetric matrix with

$$
0 \leq \Phi<e e^{T}
$$

What is the meaning of this formula?
Choosing $\Phi=0$ gives "random pair formation"

$$
A=p p^{T}
$$

Try to understand the formula in biological terms!

Ben Morin 2010

Substochastic matrices

$\psi=\left(\psi_{i j}\right)$
not necessarily symmetric
$\psi_{i j} \geq 0, \sum_{i} \psi_{i j} \leq 1$

$$
\Psi \geq 0, \quad e^{T} \Psi \leq e^{T}
$$

Complement the matrix to a stochastic matrix

$$
\mathcal{S}=\left\{A \geq \Psi, \quad e^{T} A=e^{T}\right\}
$$

Proposition:

The matrices $A \in \mathcal{S}$ can be represented as

$$
A=\Psi+X \operatorname{diag}\left[e-\Psi^{\top} e\right]
$$

where X is an arbitrary (column) stochastic matrix. The elements of $A=\left(a_{i j}\right)$ are

$$
a_{i j}=\psi_{i j}+x_{i j}\left(1-\sum_{k} \psi_{k j}\right) .
$$

Probabilistic interpretation:

Given Ψ, find A such that the transition probability from state j to state i respects the lower bound $\psi_{i j}$.
For each state j the number $1-\sum_{i} \psi_{i j}$ is the probability mass not allocated by the matrix Ψ. The column $x^{(j)}=\left(x_{i j}\right)_{i=1}^{n}$ of the stochastic matrix X is the probability distribution according to which the remaining probability mass of state j is distributed to the states i.

Special choices for the matrix X

1) Allocate all remaining mass for the state j to the state j. Then $X=I$ and

$$
A=\psi+D, \quad D=\left(d_{i} \delta_{i j}\right), \quad d_{j}=1-\sum_{i} \psi_{i j}
$$

2) Use the same distribution $x \in \Delta$ for all states j. Then

$$
A=\Psi+x\left(e^{T}-e^{T} \Psi\right)
$$

The perturbation has rank 1 unless Ψ is already stochastic.

The family (depending on $x \in \Delta$) of stochastic matrices

$$
A=\Psi+x\left(e^{T}-e^{T} \Psi\right)
$$

is distinguished by a probabilistic property

Additional requirement

Can the matrix Ψ be complemented to a stochastic matrix A with given stationary distribution p ?

$$
\mathcal{S}_{p}=\left\{A \geq \Psi: e^{T} A=e^{T}, A p=p\right\}
$$

Assume that Ψ is not stochastic and does not have p as an eigenvector.

Proposition: Suppose $p \in \Delta, e^{T} \Psi \leq e^{T}$, $e^{T} \Psi \neq e^{T}, \Psi p \leq p, \Psi p \neq p$. Then

$$
A=\Psi+\frac{(p-\Psi p)\left(e^{T}-e^{T} \Psi\right)}{1-e^{T} \Psi p} \in \mathcal{S}_{p}
$$

Other elements of \mathcal{S}_{p} ?

A theory of preferences

n groups with sizes p_{i} such that $\sum_{i} p_{i}=1$.
An individual in group i has preference
$\phi_{i j} \geq 0$ for j.
$\phi_{i j}$ are not necessarily symmetric.
Assume $\phi_{i j}<1$.
The product $p_{i} \phi_{i j}$ is the total preference in group i for group j. Can we find a stochastic matrix A that respects the preferences and also respects the group size distribution?

matrix formulation

$\Phi=\left(\phi_{i j}\right) \geq 0$ matrix of preferences

$$
\Phi \geq 0, \quad \Phi<e e^{T}
$$

$p=\left(p_{i}\right)$ group sizes, and $P=\left(p_{i} \delta_{i j}\right)$.
The matrix $P \Phi$ is substochastic,

$$
e^{T} P \Phi<e^{T}, \quad P \Phi p \leq p, \quad P \Phi p \neq p
$$

Proposition: $P \Phi$ can be complemented to a stochastic matrix $A \geq P \Phi$ such that $A p=p$.
There is a rank 1 perturbation of $P \Phi$ with this property,

$$
A=P \Phi+\frac{(p-P \Phi p)\left(e^{T}-p^{T} \Phi\right)}{1-p^{T} \Phi p}
$$

Compare to $A=p e^{T}$!

Pair formation

(Szenario of B + C-C 1991)
n groups with sizes p_{i} such that $\sum_{i} p_{i}=1$.
An individual in group i makes c_{i} contacts per time unit, and $\gamma_{i j} \geq 0$ is the probability that such contact is with an individual of group j, hence $\sum_{j} \gamma_{i j}=1$. The total number of contacts of individuals from group i with individuals from group j is $p_{i} c_{i} \gamma_{i j}$.

Assume that contacts are symmetric! Need a balance law

$$
p_{i} c_{i} \gamma_{i j}=p_{j} c_{j} \gamma_{j i}
$$

Introduce matrices $\Gamma=\left(\gamma_{i j}\right), C=\left(c_{i} \delta_{i j}\right)$, $P=\left(p_{i} \delta_{i j}\right)$.
Required properties

$$
P C \Gamma=\Gamma^{T} C P, \quad \Gamma \geq 0, \quad \Gamma e=e
$$

The case $C=1$:

Find row stochastic matrices Γ such that

$$
P \Gamma=\Gamma^{T} P
$$

The set of these matrices is a compact and convex polyhedron in matrix space.
Find such matrices in the form $\Gamma=M P$.
Then the conditions on M become $P M P=P M^{T} P, M P \geq 0, M p=e$. These conditions are satisfied if

$$
M=M^{T}, \quad M \geq 0, \quad M p=e
$$

Pair formation preferences

$$
\Phi<e e^{T}
$$

Look for M with

$$
M=M^{T}, \quad M \geq \Phi, \quad M p=e
$$

One candidate is

$$
M=\Phi+\frac{(e-\Phi p)\left(e^{T}-p^{T} \Phi\right)}{1-p^{T} \Phi p}
$$

while $e e^{T}$ is another.

Proposition:

Suppose a symmetric preference matrix $\Phi \geq 0, \Phi<e e^{T}$ is given and a vector of group sizes $p \in \Delta$. Then the matrix

$$
\Gamma=\left(\Phi+\frac{(e-\Phi p)\left(e^{T}-p^{T} \Phi\right)}{1-p^{T} \Phi p}\right) P .
$$

satisfies the conditions $\Gamma \geq \Phi P, P \Gamma=\Gamma^{\top} P$, $\lceil e=e$.
This Γ is one candidate. Another is $e p^{T}$.

The pair formation problem is the special case of the preference problem when the matrix Φ is symmetric.

Multitype epidemic model

n types or social groups
x susceptible, y infected, z recovered

$$
\begin{gathered}
x+y+z=p \in \Delta \\
\dot{x}=-X B y \\
\dot{y}=X B y-D y \\
\dot{z}=D y \\
x(0)=p, \quad y(0) \approx 0, \quad z(0)=0
\end{gathered}
$$

Basic reproduction number

$$
R(p)=\rho\left(P B D^{-1}\right), \quad B=B(p)
$$

Invariant of motion

$$
B D^{-1} y+B D^{-1} x-\log x
$$

Final size equation

$$
B D^{-1} x-\log x=B D^{-1} p-\log p
$$

Unique solution \bar{x}.

We take the view that B and D are given while p is subject to variation.
What is the worst possible case for $R(p)$?

$$
R_{\max }=\max _{p \in \Delta} \rho(P A)
$$

Connection to max algebra. Ongoing work with L. Elsner.

Different strains

$I_{1} . I_{2}$ normal strain, untreated and treated
I_{3}, I_{4} resistant strain, untreated and treated

$$
\begin{aligned}
& \dot{S}=\mu-S\left(\beta_{1} I_{1}+\beta_{2} I_{2}+\beta_{3} I_{3}+\beta_{3} I_{4}\right)-\mu S \\
& \dot{I}_{1}=S\left(\beta_{1} I_{1}+\beta_{2} I_{2}\right)-\alpha_{1} I_{1}-\mu I_{1}-\kappa I_{1} \\
& \dot{I}_{2}=\kappa I_{1}-\alpha_{2} I_{2}-\mu I_{2} \\
& \dot{I}_{3}=S\left(\beta_{3} I_{3}+\beta_{4} I_{4}\right)-\alpha_{3} I_{3}-\mu I_{3}-\kappa I_{3} \\
& \dot{I}_{4}=\kappa I_{3}-\alpha_{4} I_{4}-\mu I_{4} \\
& \dot{R}=\alpha I_{1}+\alpha_{2} I_{2}+\alpha_{3} I_{3}+\alpha_{4} I_{4}-\mu R
\end{aligned}
$$

Kermack-McKendrick model + competitive exclusion model

$$
\begin{gathered}
R_{k}=\frac{\beta_{k}}{\alpha_{k}+\mu}, \quad k=1,2,3,4 \\
R_{1}>1>R_{2} \\
R_{3}<R_{1} \\
R_{4}>R_{3}, \quad R_{4}>1
\end{gathered}
$$

I there a "window" for κ such that both strains are eliminated?
Maybe, if $R_{3}<1$

