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A tool: Homogeneous systems

f : IRn
+ → IRn

f (αx) = αf (x), α ≥ 0

ẋ = f (x)

No stationary points x 6= 0

Exponential solutions

x(t) = x̂e λ̂t , x̂ ∈ IRn
+



Stability

Jacobian matrix

f ′(x̂)

Eigenvalues

λ1 = λ̂, λ2, . . . , λn

Stability condition

ℜλk < λ1, k = 2, . . . , n



Projection

y =
x

eTx
, eT = (1, . . . , 1)

ẏ = f (y) − eTy y

on

∆ = {y ∈ IRn
+ : eTy = 1}

Exponential solutions become stationary

points.



Two-sex marriage problem

Keyfitz, Parlett, Yellin and Samuelson, ...

Hadeler/Waldstätter/ Wörz 1988

Iannelli/ Martcheva/ Milner (book 2005)



The standard model

x female single, y male single, p pair

ẋ = κxp − µxx + µyp + σp − φ(x , y)

ẏ = κyp − µyy + µxp + σp − φ(x , y)

ṗ = −(µx + µy + σ)p + φ(x , y)

Pair formation function φ ≥ 0

φ(αx , αy) = αφ(x , y)

φ(0, y) = φ(x , 0) = 0

φ(x + u, y + v) ≥ φ(x , y), u, v ≥ 0



Result:

One-sex solutions





1

0

0



 e−µx t,





0

1

0



 e−µy t

Two-sex solution





x̂

ŷ

p̂



 e λ̂t

If it exists then it is globally stable.



The two-sex solution exists when the female

population is unstable against infection with

males and conversely.



pair formation function

harmonic mean

φ(x , y) = 2ρ
xy

x + y

minimum

φ(x , y) = ρmin(x , y)

Which is “better”?



Age structure

xt + xa + µx + (µ + σ)p − φ = 0

yt + yb + µy + (µ + σ)p − φ = 0

pt + pa + pb + pc + (2µ + σ)p = 0

x(t, 0) =

∫

B(a, b)pdadbdc

y(t, 0) =

∫

B(a, b)pdadbdc

p(t, a, b, 0) = φ(x(·), y(·))(a, b)

What is φ?



posssible choice:

φ(x(·), y(·))(a, b) =
ρ(a, b)x(a)y(b)

∫

x(a)da +
∫

y(b)db

generalized harmonic mean

Existence of exponential two-sex solution

Prüss, Zacher 2001



Application to sexually transmitted disease:

A faithful pair is immune

Dietz and KPH 1988

Jacquez, Koopman et al., ...



Pair formation in a constant population

x + p = x̄ , y + p = ȳ

scalar equation

ṗ = −σp + φ(x̄ − p, ȳ − y)

Convergence to equilibrium

Now we generalize this concept.



Multitype (one-sex) model
x = (xi) vector of (single) types

Y = (yij) symmetric matrix of pairs

Dynamic pair formation

Ẏ =
XQX

eTx
− C ∗ Y

ẋ = (C ∗ Y )e −
XQx

eTx

∗ Hadamard product

Invariant of motion

x + Ye = x̄



The one-type two-sex model (with harmonic

mean) is a special case:

Q =

(

0 ρ

ρ 0

)

, C =

(

σ σ

σ σ

)

x1 female, x2 male, y12 + y21 pair

should be true in general



Results:

For each x̄ > 0 there is at least one

equilibrium.

If x̄ has zeros then boundary equilibrium.

Altogether 2n − 1 equilibria.

n = 2: unique and globally stable in the

interior.



The case without separation: C = 0

Ẏ =
XQX

eTx
, ẋ = −

XQx

eTx

Y (0) = 0, x(0) = x̄

For t → ∞: Y (t) → A, x(t) → 0.

Ae = x̄



Equivalent formulation

Ẏ =
XQX

eTx

ẋ = x̄ − x −
XQx

eTx

open problem: formula connecting A to Q?



Complete pair formation

as opposed to dynamic pair formation

Assume A = AT with Ae = x̄ is given.

Each individual must form a pair. No

individual can be in two different pairs.

Problem: find all suitable matrices A, find

explicit formulas, make biologically relevant

choices



Normalized problem of complete pair

formation

Assume that x̄ = p is normalized by

eTp = 1.

Complete pair formation is nothing else than

a symmetric matrix A ≥ 0 with the property

Ae = p,

Question: Do we want all matrices A for a

given p or do we want a matrix function

p 7→ A(p) with certain additional properties?



The representation formula

For given p the set of all A is a compact

convex polyhedron in matrix space.

The formula of Busenberg and

Castillo-Chavez 1991, Blythe et al.

A(p) = P

(

Φ +
(e − Φp)(eT − pTΦ

1 − pTΦp

)

P

where Φ is any symmetric matrix with

0 ≤ Φ < eeT



What is the meaning of this formula?

Choosing Φ = 0 gives “random pair

formation”

A = ppT

Try to understand the formula in biological

terms!

Ben Morin 2010



Substochastic matrices

Ψ = (ψij)

not necessarily symmetric

ψij ≥ 0,
∑

i ψij ≤ 1

Ψ ≥ 0, eTΨ ≤ eT

Complement the matrix to a stochastic

matrix

S = {A ≥ Ψ, eTA = eT}



Proposition:

The matrices A ∈ S can be represented as

A = Ψ + Xdiag[e − ΨTe]

where X is an arbitrary (column) stochastic

matrix. The elements of A = (aij) are

aij = ψij + xij(1 −
∑

k

ψkj).



Probabilistic interpretation:

Given Ψ, find A such that the transition

probability from state j to state i respects

the lower bound ψij .

For each state j the number 1 −
∑

i ψij is

the probability mass not allocated by the

matrix Ψ. The column x (j) = (xij)
n
i=1 of the

stochastic matrix X is the probability

distribution according to which the remaining

probability mass of state j is distributed to

the states i .



Special choices for the matrix X

1) Allocate all remaining mass for the state j

to the state j . Then X = I and

A = Ψ+D, D = (diδij), dj = 1−
∑

i

ψij

2) Use the same distribution x ∈ ∆ for all

states j . Then

A = Ψ + x(eT − eTΨ)

The perturbation has rank 1 unless Ψ is

already stochastic.



The family (depending on x ∈ ∆) of

stochastic matrices

A = Ψ + x(eT − eTΨ)

is distinguished by a probabilistic property



Additional requirement

Can the matrix Ψ be complemented to a

stochastic matrix A with given stationary

distribution p?

Sp = {A ≥ Ψ : eTA = eT , Ap = p}

Assume that Ψ is not stochastic and does

not have p as an eigenvector.



Proposition: Suppose p ∈ ∆, eTΨ ≤ eT ,

eTΨ 6= eT , Ψp ≤ p, Ψp 6= p. Then

A = Ψ +
(p − Ψp)(eT − eTΨ)

1 − eTΨp
∈ Sp.

Other elements of Sp?



A theory of preferences

n groups with sizes pi such that
∑

i pi = 1.

An individual in group i has preference

φij ≥ 0 for j .

φij are not necessarily symmetric.

Assume φij < 1.

The product piφij is the total preference in

group i for group j . Can we find a stochastic

matrix A that respects the preferences and

also respects the group size distribution?



matrix formulation

Φ = (φij) ≥ 0 matrix of preferences

Φ ≥ 0, Φ < eeT

p = (pi) group sizes, and P = (piδij).

The matrix PΦ is substochastic,

eTPΦ < eT , PΦp ≤ p, PΦp 6= p



Proposition: PΦ can be complemented to

a stochastic matrix A ≥ PΦ such that

Ap = p.

There is a rank 1 perturbation of PΦ with

this property,

A = PΦ +
(p − PΦp)(eT − pTΦ)

1 − pTΦp

Compare to A = peT !



Pair formation

(Szenario of B + C-C 1991)

n groups with sizes pi such that
∑

i pi = 1.

An individual in group i makes ci contacts

per time unit, and γij ≥ 0 is the probability

that such contact is with an individual of

group j , hence
∑

j γij = 1. The total number

of contacts of individuals from group i with

individuals from group j is piciγij .



Assume that contacts are symmetric! Need a

balance law

piciγij = pjcjγji

Introduce matrices Γ = (γij), C = (ciδij),

P = (piδij).

Required properties

PCΓ = ΓTCP , Γ ≥ 0, Γe = e.



The case C = I :

Find row stochastic matrices Γ such that

PΓ = ΓTP

The set of these matrices is a compact and

convex polyhedron in matrix space.

Find such matrices in the form Γ = MP .

Then the conditions on M become

PMP = PMTP , MP ≥ 0, Mp = e. These

conditions are satisfied if

M = MT , M ≥ 0, Mp = e.



Pair formation preferences

Φ < eeT

Look for M with

M = MT , M ≥ Φ, Mp = e,

One candidate is

M = Φ +
(e − Φp)(eT − pTΦ)

1 − pTΦp

while eeT is another.



Proposition:

Suppose a symmetric preference matrix

Φ ≥ 0, Φ < eeT is given and a vector of

group sizes p ∈ ∆. Then the matrix

Γ =

(

Φ +
(e − Φp)(eT − pTΦ)

1 − pTΦp

)

P .

satisfies the conditions Γ ≥ ΦP , PΓ = ΓTP ,

Γe = e.

This Γ is one candidate. Another is epT .



The pair formation problem is the special

case of the preference problem when the

matrix Φ is symmetric.



Multitype epidemic model

n types or social groups

x susceptible, y infected, z recovered

x + y + z = p ∈ ∆

ẋ = −XBy

ẏ = XBy − Dy

ż = Dy

x(0) = p, y(0) ≈ 0, z(0) = 0



Basic reproduction number

,

R(p) = ρ(PBD−1), B = B(p)

Invariant of motion

BD−1y + BD−1x − log x

Final size equation

BD−1x − log x = BD−1p − log p

Unique solution x̄ .



We take the view that B and D are given

while p is subject to variation.

What is the worst possible case for R(p)?

Rmax = max
p∈∆

ρ(PA)

Connection to max algebra. Ongoing work

with L. Elsner.



Different strains

I1.I2 normal strain, untreated and treated

I3, I4 resistant strain, untreated and treated

Ṡ = µ− S(β1I1 + β2I2 + β3I3 + β3I4) − µS

İ1 = S(β1I1 + β2I2) − α1I1 − µI1 − κI1

İ2 = κI1 − α2I2 − µI2

İ3 = S(β3I3 + β4I4) − α3I3 − µI3 − κI3

İ4 = κI3 − α4I4 − µI4

Ṙ = αI1 + α2I2 + α3I3 + α4I4 − µR



Kermack-McKendrick model + competitive

exclusion model

Rk =
βk

αk + µ
, k = 1, 2, 3, 4

R1 > 1 > R2

R3 < R1

R4 > R3, R4 > 1

I there a “window” for κ such that both

strains are eliminated?

Maybe, if R3 < 1


