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”And the mathematical method of treatment is really nothing but the 
application of careful reasoning to the problems at hand.” Sir Ronald Ross



Exemptions to Vaccination†

• Vaccination is mandatory because communicable diseases interrupt 
social activities such as the schooling of children

• But exemptions are allowed, and religious and philosophical ones are 
increasing, especially in states where the criteria are easily met

• Unvaccinated children may reside in the same neighborhoods, or 
attend the same schools

• Does the resulting spatial heterogeneity in coverage affect the risk of 
outbreaks?

• Surveys indicate that coverage is above the population-immunity 
threshold for most vaccine-preventable diseases

• But is their spatial scale appropriate?
• Can models, the source of this threshold and related concepts, allay or 

affirm our concerns?

†Omer SB, Salmon DA, Orenstein WA, deHart MP, Halsey N. Vaccine refusal, mandatory immunization, 
and the risks of vaccine-preventable diseases. N Engl J Med 2009; 360: 1981-88



Spatial Heterogeneity
• Dietz (1980), Anderson et al. (1986), May and Anderson (1987), and 

Diekmann et al. (1990) have shown that, when mixing among strata is 
proportional to activity, ℜ0 is proportional to mean activity plus the variance 
to mean ratio. Nold (1980) and Jacquez et al. (1988) developed a more general 
mixing framework that allows fraction(s) of one’s contacts to be reserved for 
others in one’s own group and complement(s) to be distributed proportionately 
among groups. Barbour (1978), Dye and Hasibeder (1986), Hasibeder and Dye 
(1988), and Adler (1992) showed that ℜ0 attains its maximum value when 
individuals with the greatest activity mix solely within their own groups 

• Using the simplest meta-population model capable of informing vaccination 
policy, we derive the basic and control reproduction numbers and explore the 
impact of sub-population sizes, activities and mixing regimes. We then 
determine the conditions under which heterogeneity in population immunity 
affects ℜv, the control reproduction number, and hence pc, the population-
immunity threshold, as descriptive (Wallinga et al. 2005) and simulation 
modeling studies (Glass et al. 2004) suggest 



Formulating these questions as 
simply as possible, but not more so

• Omit demographic 
phenomena

• By setting birth and 
death rates equal and 
vaccinating at birth

• If necessary, these 
details can be 
restored and others 
added later
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Assess impact of heterogeneity via 
ℜv, which is related to ℜ0, the …

• Average number of effective contacts while 
infectious, where effective contacts are 
sufficiently intimate for transmission if the 
contacted person is susceptible

• Derive from our SIR model, use to facilitate our 
understanding of control via vaccination, 
generalize to a meta-population, and explore the 
impact of heterogeneity



See slide A1 for derivation of:
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Table 4.1 from Anderson and May (reference later) includes 
estimated values of ℜ0 for various diseases, locations, epochs

Disease Location Period ℜ0

Measles Cirencester, 
England

1947-50 13-14

England and 
Whales

1950-69 16-18

Kansas, USA 1918-21 5-6

Ontario, Canada 1912-13 11-12

Willesden, 
England

1912-13 11-12

Ghana 1960-68 14-15

Eastern Nigeria 1960-68 16-17



Of what use is this threshold?

• For measles, ℜ0 = 5-18, so pc = 0.8-0.94
• Ignoring naturally-acquired immunity, the 

coverage required to attain p = 0.94 is ≈ 1 
(because p = coverage × efficacy, and 
MMR is ≈ 0.95 effective against measles)

• As this is essentially impossible, we have a 
second dose



So far, …

• We have reviewed reproduction numbers 
and the population-immunity threshold

• Familiar concepts among vaccine-
preventable disease epidemiologists

• Now we will introduce heterogeneity by  
spatially stratifying our model

• Will the corresponding meta-population 
results be equally useful?



In our meta-population model, …
• People are Susceptible, Infected or Removed (by immunization or 

recovery from infection), µ is the birth and death rate, pi are 
proportions immunized at birth, λi are risks of infection per 
susceptible, and γ is the recovery rate 

• The risk of infection, λi = aiβΣjcij[Ij/Nj], where ai is the number of 
contacts per person in sub-population i, β is the probability of 
transmission on contact with an infectious person, and [Ij/Nj] is the 
probability that a contacted member of sub-population j is infectious 

• We write the proportion of contacts a member of sub-population i has 
with j as cij = εiδij + (1−εi)fj, where fj = (1−εj)ajNj/Σk(1−εk)akNk, εi is the 
fraction of contacts with others in the same sub-population, and δij is 
the Kronecker delta (i.e., 1 when i=j and 0 otherwise)†

†Jacquez JA, et al. Modeling and analysis of HIV transmission: The effect of contact patterns. Math BioSci 1988; 92:119-99



See slide A2 for derivation of the 
limits of ℜv when ∀i: εi = 0 ∨ εi = 1
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Possible Approaches
• Biologically interesting questions concern the joint effect 

of pi on ℜv and modification by ai, εi and Ni (e.g., is low 
coverage a problem only if sub-populations are large, their 
members are active, and they mix with others?) 

• We could evaluate such questions via the multi-variable 
analogue of the partial derivative of ℜv with respect to pi (a 
vector†) and its magnitude and direction

• Alternatively, we could manipulate the reproduction 
numbers in Mathematica, with these potentially 
modifying variables as controls. This approach is not only 
more heuristic, but demonstrates this software
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“Manipulate” in Mathematica™
• Note that µ = 1/(70 × 365.25)
• The ℜ0i vary directly with ai and β and 

inversely with γ
• Neither εi nor Ni affect the ℜ0i, but they 

do affect the composites, ℜ0 and ℜv
• Mixing is proportional in the figure on the 

left (ε = 0) and preferential in that on the 
right (0 < ε  ≤ 1)

• The dark blue planes are joint values of pi
at which ℜv = 1. Note that preferential 
mixing increases ℜv (cf. the multicolored 
and light blue surfaces)

• Moreover, whereas the light blue surface is 
flat, the multicolored surface is curved  

• Does heterogeneity in pi affect ℜv?



Table 3.1 from Anderson and May 1991. Infectious Diseases 
of Humans: Dynamics and Control. Oxford, 757 pp.

Disease Incubation Latent Infectious
Measles 8-13 6-9 6-7
Mumps 12-26 12-18 4-8
Pertussis 6-10 21-23 7-10
Rubella 14-21 7-14 11-12
Diphtheria 2-5 14-21 2-5
Varicella 13-17 8-12 10-11
Hepatitis B 30-80 13-17 19-22
Poliomyelitis 7-12 1-3 14-20
Influenza 1-3 1-3 2-3
Smallpox 10-15 8-11 2-3
Scarlet Fever 2-3 1-2 14-21



Face-to-Face Conversations†
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†Mossong J, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Medicine 2008; 5:381-91



Mathematica



Expressing concern about the impact of 
heterogeneity in vaccine coverage …

… leads to answerable questions
Q: Does the variance of pi affect ℜv?
A: When εi > 0
Q: Is it modified by other heterogeneities (e.g., in ai, 

Ni)?
A: Yes, and they interact
Q: Does this model describe the recent outbreaks of 

measles well enough or …?
A: 



It also may lead to refinements and 
as-yet-unanswerable new questions

• What causes preferential mixing in a spatial context? 
Airplanes, automobiles, … notwithstanding, proximity 

• While this may seem perfectly obvious, it defines relevant 
spatial scales. Sub-populations are groups of people within 
which mixing is proportional and between which 
preferential

• Are counties sub-populations? What about classrooms, 
schools, households, neighborhoods, …? How do we tell? 
If necessary, by comparing empirical cij matrices element-
by-element to model ones

• Other mixing models may be more appropriate in a spatial 
context and this transmission model may be too simple (we 
may need an exposed class, age structure, seasonal forcing, 
…), but those possible needs describe a research agenda



Summary
• If ℜ0 is calculated correctly, 1 − 1/ℜ0 is the 

meta-population immunity threshold
• But, because the ℜ’s are functions of cij, the pi

required to ensure that ℜv < 1 depend on mixing 
• Mixing is proportional within spatial strata of 

interest and preferential between them
• Less intuitive results (slides A3-5) may 

nonetheless be capable of guiding interventions



A Case Study

In 2000, authorities declared measles eliminated from 
the United States. In January 2008, an intentionally 
unvaccinated 7-year-old boy unknowingly infected with 
measles returned from Switzerland, resulting in the 
largest outbreak in San Diego, California, since 1991



Measles in San Diego, 2008 (from Sugerman 
et al. Pediatrics 2010; 125:747-55)



Personal belief exemption rates by 
school and district, San Diego County



Spatial distribution of schools (n=638) in San 
Diego County (rotate 90° for North at the top)
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Spatial Mixing (n=638 schools)
• Mij = exp(−b×dij), where 

the dij are inter-school 
distances, we can divide 
each element by the 
marginal total, ∑jMij



Total Contact Duration (in hours) as a Function of 
Distance from Home (in kilometers) from EpiSimS 
(Del Valle et al. Social Networks 2007; 29:539-54)

• In EpiSimS, assumed the number 
of occurrences in period δt were 
Poisson with parameter σ

• Thus, the probability of no 
occurrences in time interval δt is 
exp(−σδt) and that of at least one 
occurrence is 1 − exp(−σδt)

• Using the mean duration Tij of 
contacts between a person in group 
i with people in group j,  the 
probability of transmission is Pij = 
1 − exp(−σTij)



Proportions of children with two doses of MMR (top) and 
exempt from vaccination (bottom) by school in San Diego 
County (left, n=638) and School District (right, n=200)



Proportions exempt in San Diego County (n=638 
schools, left) and School District (n=200, right)



Objectives

• To adopt if possible and develop if 
necessary a suitable spatial mixing model

• To assess the impact of a) heterogeneity in 
vaccine coverage and b) nonrandom mixing 
on the population immunity threshold

• To explore the utility of the gradient in 
guiding public health decision-making



A1. The reproduction numbers and 
population-immunity threshold
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Homework: Do the definitions of the reproduction numbers in terms of states and rates, on the 
left and right sides of this page, respectively, correspond to the words on the previous page?



A2. The meta-population reproduction 
numbers include cij (i.e., mixing matters)
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When p1 = p2 = 0, we have Rvi = R0i, whereupon 0 01 1 02 2 .f f= +R R R   
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21 ( ) 4
2v A D A D BC = + + − +  

R ,  

 
where 1 11 1 12 2 21 2 22,  ,  ,  v v v vA c B c C c D c= = = =R R R R .  
 
This equation enables us to derive the limiting conditions:  
 
Case 1: When ε1 = ε2 = 1, we have c11 = 1, c12 = 0, c21 = 0, c22 = 1. Thus, 

1 2,  0,  0,  ,v vA B C D= = = =R R and  



A3. ∆ℜv at all points (p1,p2) corresponding 
to 10% increases in p1 and p2

The more negative ℜv , the greater the reduction associated with ∆pi. At point (0,0), in this 
example, ∆ℜv decreases greatly in response to 10% increases in pi



A4. Magnitude of the gradient, ∇ℜv, at 
all points (p1,p2)

∇ℜv is a vector; its length, ∇ℜv, illustrates magnitudes of change in ℜv at points (p1,p2). 
The large gradient at point (0,0) corresponds to a very negative ∆ℜv (prior plot)



A5. Directions from evenly spaced 
points (p1,p2) in which ∇ℜv is greatest

Were the vector at a point vertical, the best way to reduce ℜv would be to increase p2 only 
(as the gradient direction has no p1 component)
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A6. Dallaire et al. J Infect Dis 2009; 
200:1602-5

Dallaire F, De Serres G, Tremblay FW, Markowski F, Tipples G. Long-lasting measles 
outbreak affecting several unrelated networks of unvaccinated persons.  
 
Despite a population immunity level estimated at approximately 95%, an outbreak of 
measles responsible for 94 cases occurred in Quebec, Canada. Unlike previous outbreaks 
in which most unvaccinated children belonged to a single community, this outbreak had 
cases coming from several unrelated networks of unvaccinated persons dispersed in the 
population. No epidemiological link was found for about one-third of laboratory-
confirmed cases. This outbreak demonstrated that minimal changes in the level of 
aggregation of unvaccinated individuals can lead to sustained transmission in highly 
vaccinated populations. Mathematical work is needed regarding the level of aggregation 
of unvaccinated individuals that would jeopardize elimination. 
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